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Short Description.

Content.
Within the last few years the markets for commodities, in particular energy-related commodities,
has changed substantially. New regulations and products have resulted in a spectacular growth in
spot and derivative trading. In particular, electricity markets have changed fundamentally over
the last couple of years. Due to deregulation energy companies are now allowed to trade not only
the commodity electricity, but also various derivatives on electricity on several Energy Exchanges
(such as the EEX).

Specific topics

1. Basic Principles of Commodity Markets, models for forwards and futures.

2. Stylized facts of electricity markets; statistical analysis of spot and futures markets.

3. Spot and Forward Market Models for Electricity, mathematical models based on Lévy
processes (including a short intro to such processes).

4. Special derivatives for the Electricity markets.
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Chapter 1

Fundamentals

1.1 Markets and Price Processes

Since the deregulation of electricity markets in the end of the 1990s, power can be traded at
exchanges like the Nordpool or the European Energy Exchange (EEX). All exchanges have estab-
lished spot and futures markets.
The spot market usually is organised as an auction, which manages the distribution of power
in the near future, i. e. one day ahead. Empirical studies, such as Knittel and Roberts (2001)
using hourly prices in the California power market, show that spot prices exhibit seasonalities on
different time scales, a strong mean-reversion and are very volatile and spiky in nature. Because
of inherent properties of electricity as an almost non-storable commodity such a price behaviour
has to be expected, see Geman (2005).
Due to the volatile behaviour of the spot market and to ensure that power plants can be deployed
optimally, power forwards and futures are traded. Power exchanges established the trade of
forwards and futures early on and by now large volumes are traded. A power forward contract is
characterized by a fixed delivery price per MWh, a delivery period and the total amount of energy
to deliver. Especially the length of the delivery period and the exact time of delivery determine the
value and statistical characteristics of the contract vitally. One can observe, that contracts with
a long delivery period show less volatile prices than those with short delivery. These facts give
rise to a a term structure of volatility in most power forward markets, which has to be modelled
accurately in order to be able to price options on futures. Figure 1.1 gives an example of such a
term structure for futures traded at the EEX. Additionally, seasonalities can be observed in the
forward curve within a year. Monthly contracts during winter months show higher prices than
comparable contracts during the summer (cp. Figure 1.2).
Aside from spot and forward markets, valuing options is an issue for market participants. While
some research has been done on the valuation of options on spot power, hardly any results can be
found on options on forwards and futures. Both types impose different problems for the valuation.
Spot options fail most of the arbitrage and replication arguments, since power is almost non-
storable. Some authors take the position to find a realistic model to describe the prices of spot
prices and then value options via risk-neutral expectations (cp. de Jong and Huisman (2002),
Benth, Dahl, and Karlsen (2004), Burger, Klar, Müller, and Schindlmayr (2004)). Other ideas
explicitly take care of the special situation in the electricity production and use power plants to
replicate certain contingent claims (cp. Geman and Eydeland (1999)).
Forward and futures options are heavily influenced by the length of their delivery period and
their time to maturity. In Clewlow and Strickland (1999), for example, a one-factor model is
presented, that tries to fit the term structure of volatility, but that does not incorporate a delivery
period, since it is constructed for oil and gas markets.
As an example let us have a look at the EEX spot market. Here we have the following structure

• the EEX spot market is a day-ahead auction for single hours of the following day
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Figure 1.1: Implied volatilities of futures with different maturities and delivery periods, Sep. 14

Figure 1.2: Forward prices of futures with different maturities and delivery periods, Feb. 18
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Figure 1.3: Bloomberg screen for energy spot prices

• participants submit their price offer/bit curves, the EEX system prices are equilibrium prices
that clear the market.

• EEX day prices are the average of the 24-single hours.

• on fridays the hours for the whole weekend are auctioned.

• similar structures can be found on other power exchanges(Nord Pool, APX, etc.).

The following are examples of price processe
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To analyse seasonalities one can preform a regression analysis. This can be done by standard
methods assuming a model for the mean, e. g.

St = β1 · 1(if t ∈ Mondays) + . . .+ β7 · 1(if t ∈ Sundays)
+ other calendar day effects
+β8 · t for long term linear trend

+β9 sin(
2π
365

(t− c)) for summer/winter seasonality

+ . . .

The unknown parameters β1, . . . , βp can be estimated easily by Least-Squares-Methods.
We also observe spikes
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Spikes are often modelled by jumps. The process of jumps is often modelled by a compound
poisson process

CPt :=
Nt∑
i=1

Ji

Nt is a Poisson process with intensity λ, which randomly jumps by 1 unit, so it counts how many
jumps occurred up to time t. Ji is the random jump size of the ith jump.
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1.2 Basic Products and Structures

We mostly have been dealing so far with derivatives based on underlying assets – stock – existing,
and available for trading, now. It frequently happens, however, that the underlying assets relevant
in a particular market will instead be available at some time in the future, and need not even exist
now. Obvious examples include crop commodities – wheat, sugar, coffee etc. – which might not
yet be planted, or be still growing, and so whose eventual price remains uncertain – for instance,
because of the uncertainty of future weather. The principal factors determining yield of crops such
as cereals, for instance, are rainfall and hours of sunshine during the growing season. Oil, gas,
coals are another example of a commodity widely traded in the future, and here the uncertainty is
more a result of political factors, shipping costs etc. Our focus here will be on electricity later on.
Financial assets, such as currencies, bonds and stock indexes, may also be traded in the future,
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on exchanges such as the London International Financial Futures and Options Exchange (LIFFE)
and the Tokyo International Financial Futures Exchange (TIFFE), and we shall restrict attention
to financial futures for simplicity.
We thus have the existence of two parallel markets in some asset – the spot market, for assets
traded in the present, and the futures market, for assets to be realized in the future. We may also
consider the combined spot-futures market.
We now want briefly look at the most important products.

1.2.1 Forwards

A forward contract is an agreement to buy or sell an asset S at a certain future date T for a certain
price K. The agent who agrees to buy the underlying asset is said to have a long position, the
other agent assumes a short position. The settlement date is called delivery date and the specified
price is referred to as delivery price. The forward price F (t, T ) is the delivery price which would
make the contract have zero value at time t. At the time the contract is set up, t = 0, the forward
price therefore equals the delivery price, hence F (0, T ) = K. The forward prices F (t, T ) need not
(and will not) necessarily be equal to the delivery price K during the life-time of the contract.
The payoff from a long position in a forward contract on one unit of an asset with price S(T ) at
the maturity of the contract is

S(T )−K.

Compared with a call option with the same maturity and strike price K we see that the investor
now faces a downside risk, too. He has the obligation to buy the asset for price K.

1.2.2 Futures Markets

Futures prices, like spot prices, are determined on the floor of the exchange by supply and demand,
and are quoted in the financial press. Futures contracts, however – contracts on assets traded in
the futures markets – have various special characteristics. Parties to futures contracts are subject
to a daily settlement procedure known as marking to market. The initial deposit, paid when the
contract is entered into, is adjusted daily by margin payments reflecting the daily movement in
futures prices. The underlying asset and price are specified in the contract, as is the delivery date.
Futures contracts are highly liquid – and indeed, are intended more for trading than for delivery.
Being assets, futures contracts may be the subject of futures options.
We shall as before write t = 0 for the time when a contract, or option, is written, t for the present
time, T for the expiry time of the option, and T ∗ for the delivery time specified in the futures (or
forward) contract. We will have T ∗ ≥ T , and in general T ∗ > T ; beyond this, T ∗ will not affect
the pricing of options with expiry T .

Swaps

A swap is an agreement whereby two parties undertake to exchange, at known dates in the future,
various financial assets (or cash flows) according to a prearranged formula that depends on the
value of one or more underlying assets. Examples are currency swaps (exchange currencies) and
interest-rate swaps (exchange of fixed for floating set of interest payments).

1.3 Basic Pricing Relations

1.3.1 Storage, Inventory and Convenience Yield

The theory of storage aims to explain the differences between spot and Futures (Forward) prices
by analyzing why agents hold inventories. Inventories allow to meet unexpected demand, avoid
the cost of frequent revisions in the production schedule and eliminate manufacturing disruption.
This motivates the concept of convenience yield as a benefit, that accrues to the owner of the
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physical commodity but not to the holder of a forward contract. Thus the convenience yield is
comparable to the dividend yield for stocks. A modern view is to view storage (inventory) as a
timing option, that allows to put the commodity to the market when prices are high and hold it
when the prices are low.
We will model the convenience yield y

• expressed as a rate, meaning that the benefit in a monetary amount for the holder of the
commodity will be equal to S(t)ydt over the interval (t, t + dt), if S(t) is the spot price at
time t;

• defined as the difference between the positive gain attached to the physical commodity minus
the cost of storage. Hence the convenience yield may be positive or negative depending on
the period, commodity and cost of storage.

In recent literature the convenience yield is often modelled as a random variable, which allows to
explain various shapes of forward curves over time.

1.3.2 Futures Prices and Expectation of Future Spot Prices

The rational expectation hypothesis (REH) (mainly used in the context of interest rates) states
that the current futures price f(t, T ) for a commodity (interest rate) with delivery a time T > t
is the best estimator for the price S(T ) of the commodity. In mathematical terms

f(t, T ) = IE[S(T )|Ft]. (1.1)

where Ft represents the information available at time t. The REH has been statistically tested in
many studies for a wide range of commodities (resulting most of the time in a rejection).
When equality in (1.1) does not hold futures prices are biased estimators of future spot prices. If

> holds, then f(t, T ) is an up-ward biased estimate, then risk-aversion among market partic-
ipants is such that buyers are willing to pay more than the expected spot price in order to
secure access to the commodity at time T (political unrest);

< holds, then f(t, T ) is an down-ward biased estimate, this may reflect a perception of excess
supply in the future.

No general theory for the bias has been developed. It may depend on the specific commodity,
the actual forecast of the future spot price by market participant, and on the risk aversion of the
participants.

1.3.3 Spot-Forward Relationship in Commodity Markets

Under the no-arbitrage assumption we have

F (t, T ) = S(t)e(r−y)(T−t) (1.2)

where r is the interest rate at time t for maturity T and y is the convenience yield. We start by
proving this relationship for stocks as underlying

Non-dividend paying stocks

Consider the portfolio

t T
buy stock −S(t) delivery
borrow to finance S(t) −S(t)er(T−t)

sell forward on S F(t,T)

All quantities are known at t, the time t cash-flow is zero, so the cash-flow at T needs to be zero
so we have

F (t, T ) = S(t)er(T−t) (1.3)
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dividend paying stocks

Assume a continuous dividend κ, so we have a dividend rate of κS(t)dt, which is immediately
reinvested in the stock. We thus have a growth rate of eg(T−t) over the period of the quantity of
stocks detained. Thus we only have to buy e−g(T−t) shares of stock S at time time. Replace in
the above portfolio and obtain

F (t, T ) = S(t)e(r−g)(T−t) (1.4)

storable commodity

Here the convenience yield plays the role of the dividend an we obtain (1.2).
In case of a linear rate this relationship is of the form

F (t, T ) = S(t) {1 + (r − y)(T − t)} .

With the decomposition y = y1 − c with y1 the benefit from the physical commodity and c the
storage cost we have

F (t, T ) = S(t) {1 + r(T − t) + c(T − t)− y1(T − t)} .

Observe that (1.2) implies

(i) spot and forward are redundant (one can replace the other) and form a linear relationship
(unlike options)

(ii) with two forward prices we can derive the value of S(t) and y

(iii) knowledge of S(t) and y allows us to construct the whole forward curve

(iv) for r − y < 0 we have backwardation; for y − r > 0 we have contango.

1.3.4 Futures Pricing Relations

We start by discussing the subtle but important issue of the difference of the price of a Futures
contract i.e. at which we can buy or sell the contract today (for payment at maturity) and the
value of a position build in the past and containing this contract.
So consider a Futures contract with a fixed maturity T and a designated underlying.
The price f(0, T ) of this contract is defined as the Euro amount the buyer of the contract agrees
to pay at date T in order to take delivery of the underlying at date T .
A day later (at t1) the price of the same contract is f(t1, T ) and may (and will) be different from
f(0, T ).
So the buyer (the long position) is facing a loss/gain equal to

f(t1, T )− f(0, T )

and needs to pay a margin call equal to this amount to the clearing house (Futures exchange).
Assuming the position is not closed until maturity T we get

f(T, T )− f(0, T ) = f(T, T )− f(tn−1, T )︸ ︷︷ ︸
last day

+ . . .+ f(t1, T )− f(0, T )︸ ︷︷ ︸
first day

.

So the left-hand side represents the profit and loss of a long position P in the Futures contract
initiated at time 0. Denoting by Vp(t) the market value of this position at any date t between 0
and T , we know Vp(0) = 0 (since this is how the contract is priced).
Also by the convergence assumption f(T, T ) = S(T ) since it is equivalent to buy a commodity on
the spot market and a Futures contract that matures immediately.
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In order to find the value Vp(t) of a portfolio containing a Futures contract purchased at date
t = 0 for delivery at T consider the portfolio consisting of P and a short position P ′ in a Futures
contract entered in at time t.
Payoff at T is

P : −f(0, T ) (buy commodity)
P ′ : f(t, T ) (sell commodity)
P ′′ = P + P ′ : f(t, T )− f(0, T )

.

So VP+P ′(T ) = f(t, T ) − f(0, t) and P ′′ is riskless at time t since the value of all cash flows is
known, so by no arbitrage

VP ′′(t) = er(T−t)(f(t, T )− f(0, T )).

Since the value VP ′(t) is zero (recall no payment needed to enter a Futures contact) we have

VP (t) = VP ′′(t)− VP ′(t) = e−r(T−t)(f(t, T )− f(0, T )).

So the value of a futures contract entered in at 0 at time t is

VP (t) = e−r(T−t)(f(t, T )− f(0, T )) (1.5)

Despite their fundamental differences, futures prices f(t, T ) and the corresponding forward prices
F (t, T ), are closely linked. We use the notation p(t, T ) for the bond price process.

Proposition 1.3.1. If the bond price process p(t, T ) is predictable, the combined spot-futures
market is arbitrage-free if and only if the futures and forward prices agree: for every underlying S
and every t ≤ T ,

fS(t, T ) = FS(t, T ).

In the important special case of the futures analogue of the Black-Scholes model the bond price
process – or interest-rates process – is deterministic, so predictable. We thus only consider the
case of deterministic interest rates and a non-dividend paying stock as underlying.
Observe:

(i) Under deterministic or stochastic interest rates the spot-forward relationship is

F (t, T ) =
S(t)
p(t, T )

with p(t, T ) the price at date t of a zero-coupon bound.

(ii) consider the following sequence of investments in the period [t, T ] with subperiods t, t +
1, . . . , T
at t: take a long position in 1/p(t, t+ 1) Futures contracts with maturity T

at t+ 1: close this position and invest the proceeds
1

p(t, t+ 1)
{f(t+ 1, T )− f(t, T )}

on a daily basis until date T with final wealth
1

p(t, t+ 1)
{f(t+ 1, T )− f(t, T )} 1

p(t+ 1, t+ 2) · . . . · p(T − 1, T )
.

Also take a long position in
1

p(t, t+ 1)p(t+ 1, t+ 2)
Futures contracts with maturity T .

at t+ 2: close/open positions as above.
at date T : we have the aggregate position

1
p(t, t+ 1) . . . p(T − 1, T )

{f(T ;T )− f(t− 1, T ) + . . .+ f(t+ 1, T )− f(t, T )}

=
f(T, T )− f(t, T )

p(t, t+ 1) · . . . · p(T − 1, T )
.

Lastly add a position of an investment of f(t, T ) Euros in a roll-over lending up to time T ,
which provides a wealth at T of

1
p(t, t+ 1) · . . . · p(T − 1, T )

f(t, T ).
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By addition the portfolio value is

1
p(t, t+ 1) · . . . · p(T − 1, T )

f(T, T )

and required an initial wealth of f(t, T ) since no payments are needed to enter a Futures
contract.

In case of deterministic interest rates we find from the no-arbitrage condition

p(t, t+ 1) · . . . · p(T − 1, T ) = p(t, t).

From f(T, T ) = S(T ) the final value of the portfolio can thus be written as S(T )
p(t,T ) and

required an investment of f(t, T ).

(iii) The position of buying at t 1
p(t,T ) shares and keeping them until T requires an investment

of S(t)/p(t, T ) and has a terminal value of S(T )
p(t,T ) .

So (ii) and (iii) yield portfolios with same value at date T in all states of the world. By no-arbitrage
(observe no in/out-flow of funds) they have the same value at any time t, in particular

f(t, T ) =
S(t)
p(t, T )

= F (t, T ).

1.4 Pricing Formulae for Options

1.4.1 Black-Scholes Formula

The Model

Recall the classical Black-Scholes model

dB(t) = rB(t)dt, B(0) = 1,
dS(t) = S(t) (bdt+ σdW (t)), S(0) = p ∈ (0,∞),

with constant coefficients b ∈ IR, r, σ ∈ IR+. We write as usual S̃(t) = S(t)/B(t) for the discounted
stock price process (with the bank account being the natural numéraire), and get from Itô’s formula

dS̃(t) = S̃(t) {(b− r)dt+ σdW (t)}.

Equivalent Martingale Measure

Because we use the Brownian filtration any pair of equivalent probability measures IP ∼ QQ on FT
is a Girsanov pair, i.e.

dQQ

dIP

∣∣∣∣
Ft

= L(t)

with

L(t) = exp

−
t∫

0

γ(s)dW (s)− 1
2

t∫
0

γ(s)2ds

,
and (γ(t) : 0 ≤ t ≤ T ) a measurable, adapted d-dimensional process with

∫ T
0
γ(t)2dt < ∞ a.s..

By Girsanov’s theorem A.1.4 we have

dW (t) = dW̃ (t)− γ(t)dt,
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where W̃ is a QQ-Wiener process. Thus the QQ-dynamics for S̃ are

dS̃(t) = S̃(t)
{

(b− r − σγ(t))dt+ σdW̃ (t)
}
.

Since S̃ has to be a martingale under QQ we must have

b− r − σγ(t) = 0 t ∈ [0, T ],

and so we must choose
γ(t) ≡ γ =

b− r

σ
,

(the ’market price of risk’). Indeed, this argument leads to a unique martingale measure, and we
will make use of this fact later on. Using the product rule, we find the QQ-dynamics of S as

dS(t) = S(t)
{
rdt+ σdW̃

}
.

We see that the appreciation rate b is replaced by the interest rate r, hence the terminology
risk-neutral (or yield-equating) martingale measure.
We also know that we have a unique martingale measure IP ∗ (recall γ = (b − r)/σ in Girsanov’s
transformation).

Pricing and Hedging Contingent Claims

Recall that a contingent claim X is a FT -measurable random variable such that X/B(T ) ∈
L1(Ω,FT , IP ∗). (We write IE∗ for IEIP∗ in this section.) By the risk-neutral valuation princi-
ple the price of a contingent claim X is given by

ΠX(t) = e{−r(T−t)}IE∗ [X| Ft],

with IE∗ given via the Girsanov density

L(t) = exp

{
−

(
b− r

σ

)
W (t)− 1

2

(
b− r

σ

)2

t

}
.

Now consider a European call with strike K and maturity T on the stock S (so Φ(T ) = (S(T )−
K)+), we can evaluate the above expected value (which is easier than solving the Black-Scholes
partial differential equation) and obtain:

Proposition 1.4.1 (Black-Scholes Formula). The Black-Scholes price
process of a European call is given by

C(t) = S(t)Φ(d1(S(t), T − t))−Ke−r(T−t)Φ(d2(S(t), T − t)). (1.6)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√
t

,

d2(s, t) = d1(s, t)− σ
√
t =

log(s/K) + (r − σ2

2 )t
σ
√
t

We can also use an arbitrage approach to derive the Black-Scholes formula. For this consider a
self-financing portfolio which has dynamics

dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)dS(t) = (ϕ0(t)rB(t) + ϕ1(t)µS(t))dt+ ϕ1(t)σS(t)dW (t).
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Assume that the portfolio value can be written as

Vϕ(t) = V (t) = f(t, S(t))

for a suitable function f ∈ C1,2. Then by Itô’s formula

dV (t) = (ft(t, St) + fx(t, St)Stµ+
1
2
S2
t σ

2fxx(t, St))dt+ fx(t, St)σStdWt.

Now we match the coefficients and find

ϕ1(t) = fx(t, St)

and
ϕ0(t) =

1
rB(t)

(ft(t, St) +
1
2
σ2S2

t fxx(t, St)).

Then looking at the total portfolio value we find that f(t, x) must satisfy the Black-Scholes partial
differential equation

ft(t, x) + rxfx(t, x) +
1
2
σ2x2fxx(t, x)− rf(t, x) = 0 (1.7)

and initial condition f(T, x) = (x−K)+.

1.4.2 Options on Dividend-paying Stocks

We assume that the stock pays a dividend at some fixed rate κ and that the dividend payments
are used in full for reinvestment. Consequently, a trading strategy ϕ = (ϕ0, ϕ1) is self-financing if
its wealth process

Vϕ(t) = ϕ0(t)B(t) + ϕ1(t)S(t)

satisfies
dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)dS(t) + κϕ1(t)S(t)dt,

or equivalently (using the stochastic dynamics of the stock),

dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)(κ+ µ)S(t)dt+ ϕ1(t)S(t)σdW (t).

Consider now the auxiliary process
S∗(t) = eκtS(t).

From an application of Itô’s lemma we see

dS∗(t) = µκS
∗(t)dt+ σS∗(t)dW (t), with µκ := µ+ κ.

In terms of this process we have

Vϕ(t) = ϕ0(t)B(t) + ϕ1(t)e−κtS∗(t) resp. dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)e−κtdS∗(t).

For the discounted wealth Ṽϕ(t) = Vϕ(t)/B(t) we find

dṼϕ(t) = ϕ1(t)e−κtdS̃(t) with S̃ϕ(t) = S∗/B(t).

or
dṼϕ(t) = ϕ1(t)σS̃(t)

(
dW (t) + σ−1(µκ − r)dt

)
.

Thus we obtain a unique martingale measure IP ∗ by using Girsanov’s theorem with γ = σ−1(µκ−
r). The dynamics of Ṽϕ(t) and S̃∗(t) are

dṼϕ(t) = σϕ1(t)S̃∗(t)dW̃ (t) and dS̃∗(t) = σS̃∗(t)dW̃ (t)

with W̃ (t) = W (t) − (r − µk)σ−1t. We can now simply repeat the argument used to obtain the
Black-Scholes formula to prove
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Proposition 1.4.2. The arbitrage price at t < T of a European call on a stock paying dividends
at a constant rate κ during the option’s lifetime is is given by the risk-neutral valuation formula

Cκ(t) = BtIE
∗ [
B−1
T (ST −K)+

∣∣Ft] (1.8)

or explicitly
Cκ(t) = S̄(t)Φ(d1(S̄(t), T − t))−Ke−r(T−t)Φ(d2(S̄(t), T − t)). (1.9)

where S̄(t) = S(t)e−κ(t−t) and the functions d1(s, t) and d2(s, t) are as above.

Proof. The first equality is the risk-neutral valuation formula. For the second observe the

Cκ(t) = e−r(T−t)IE∗
[
(ST −K)+

∣∣Ft] = e−κT e−r(T−t)IE∗
[
(S∗T − eκTK)+

∣∣Ft] .
The last expectation can now be evaluated similar to the corresponding expectation leading to
the Black-Scholes equation.

1.4.3 Black’s Futures Options Formula

We turn now to the problem of extending our option pricing theory from spot markets to futures
markets. We assume that the stock-price dynamics S are given by geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t),

and that interest rates are deterministic. We know that there exists a unique equivalent martingale
measure, IP ∗ (for the discounted stock price processes), with expectation IE∗. Write

f(t) := fS(t, T ∗)

for the futures price f(t) corresponding to the spot price S(t). Then risk-neutral valuation gives

f(t) = IE∗(S(T ∗)|Ft) (t ∈ [0, T ∗]),

while forward prices are given in terms of bond prices by

F (t) = S(t)/B(t, T ∗) (t ∈ [0, T ∗]).

So by Proposition 1.3.1
f(t) = F (t) = S(t)er(T

∗−t) (t ∈ [0, T ∗]).

So we can use the product rule to determine the dynamics of the futures price

df(t) = (µ− r)f(t)dt+ σf(t)dW (t), f(0) = S(0)erT
∗
.

In the following we study a general Futures market and assume

df(t) = µf(t)dt+ σf(t)dW (t).

Again, we say that a futures strategy is self-financing if

dV fϕ (t) = ϕ0(t)dB(t) + ϕ1(t)df(t).

But observe that
V fϕ (t) = ϕ0(t)B(t),

since it costs nothing to enter a Futures position.
We call a probability measure IP ∗ ∼ IP a Futures martingale measure, if

Ṽ fϕ (t) =
V fϕ (t)
B(t)

,

follows a (local) martingale.
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Lemma 1.4.1. IP ∗ ∼ IP is a Futures martingale measure if and only if f is a (local) martingale
under IP ∗.

Proof. Using the product rule we see that Ṽ fϕ (t) satisfies for any self-financing ϕ

dṼ fϕ (t) = B(t)−1 (ϕ0(t)dB(t) + ϕ1(t)df(t))− rB(t)−1Ṽ fϕ (t)dt

= B(t)−1
(
ϕ0(t)dB(t)− rṼ fϕ (t)dt

)
+B(t)−1ϕ1(t)df(t)

= B(t)−1
(
V fϕ (t)B(t)−1rB(t)dt− rṼ fϕ (t)dt

)
+B(t)−1ϕ1(t)df(t).

As usual we obtain from Girsanov’s theorem

Proposition 1.4.3. The unique martingale measure IP ∗ on (Ω, IF ) for the process f is given by

dIP ∗

dIP

∣∣∣∣
Ft

= exp
{
−µ
σ
W (t)− 1

2
µ2

σ2
t

}
.

Thus the IP ∗-dynamics for the Futures price f are

df(t) = σf(t)dW̃ (t)

and the process
W̃ (t) = W (t) + µσ−1t

is a IP ∗-Wiener process. Also

f(t) = f0 exp
{
σW̃ (t)− 1

2
σ2t

}
.

We turn now to the futures analogue of the Black-Scholes formula, due to Black (1976). We and
use the same notation - strike K, expiry T as in the spot case, and write Φ for the standard normal
distribution function.

Theorem 1.4.1. The arbitrage price C of a European futures call option is

C(t) = c(f(t), T − t),

where c(f, t) is given by Black’s futures options formula:

c(f, t) := e−rt(fΦ(d̃1(f, t))−KΦ(d̃2(f, t))),

where

d̃1,2(f, t) :=
log(f/K)± 1

2σ
2t

σ
√
t

.

Proof. By risk-neutral valuation,

C(t) = B(t)IE∗
[
(f(T )−K)+/B(T )|Ft

]
,

with B(t) = ert. For simplicity, we work with t = 0; the extension to the general case is immediate.
Thus

C(0) = IE∗
[
(f(T )−K)+/B(T )

]
= IE∗

[
e−rT f(T )1D

]
− IE∗

[
e−rTK1D

]
= 11 − 12
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say, where
D := {f(T ) > K}.

Thus
12 = e−rTKIP ∗(f(T ) > K)

= e−rTKIP ∗
(
f(0) exp

{
σW̃ (T )− 1

2
σ2T

}
> K

)
,

where W̃ is a standard Brownian motion under IP ∗. Now ξ := −W̃ (T )/
√
T is standard normal,

with law Φ under IP ∗, so

12 = e−rTKIP ∗
(
ξ <

log(f(0)/K)− 1
2σ

2

σ
√
T

)
= e−rTKΦ

(
log(f(0)/K)− 1

2σ
2

σ
√
T

)
= e−rTKd̃2(f(0), T ).

To evaluate 11 define an auxiliary probability measure ÎP by setting

dÎP

dIP ∗

∣∣∣∣∣
Ft

= exp
{
σW̃ (t)− 1

2
σ2t

}
,

and thus
11 = IE∗

[
e−rT f(T )1D

]
= e−rT f(0)ÎP (f(T ) > K).

Since
Ŵ (t) = W̃ (t)− σt

is a standard ÎP -Wiener process we see

f(t) = f0 exp
{
σŴ (t)− 1

2
σ2t

}
.

Thus
11 = e−rT f(0)ÎP (f(T ) > K)

= e−rT f(0)ÎP
(
f0 exp

{
σŴ (T )− 1

2
σ2T

}
> K

)
= e−rT f(0)ÎP

(
−σŴ (T ) < log(f(0)/K) +

1
2
σ2T

)
= e−rT f(0)Φ

(
d̃1(f(0), T )

)
.

Observe that the quantities d̃1 and d̃2 do not depend on the interest rate r. This is intuitively
clear from the classical Black approach: one sets up a replicating risk-free portfolio consisting of
a position in futures options and an offsetting position in the underlying futures contract. The
portfolio requires no initial investment and therefore should not earn any interest.



Chapter 2

Data Analysis

2.1 Introduction

Our aim now is to discuss models for the distribution of of electricity prices (e.g. their returns).
Recall the structure of the price processes

Figure 2.1: Spot prices

We start discussion possible choices for distributions and discuss their fit.

2.2 Distribution of electricity prices

2.2.1 Stable distributions

Stable distributions have been used to model financial assets for the following reasons

(i) stable laws are the only possible limit distributions for properly normalized and centered
sums of independent identically distributed random variables. So they are a natural gener-
alisation of normally distributed random variables.

23



CHAPTER 2. DATA ANALYSIS 24

Figure 2.2: Futures prices

(ii) stable distributions are leptokurtic, that is they have heavier tails than the normal distrib-
ution.

Stable distributions require four parameters for a complete description

α ∈ (0, 2], β ∈ [−1, 1], σ > 0, µ ∈ IR.

α is the tail exponent and determines the rate which which the tails of the distribution tend to
zero 

lim
x→∞

xαIP (X > x) = Cα(1 + β)σ2,

lim
x→∞

xαIP (X < −x) = Cα(1 + β)σ2,

When α > 1 the mean of the distribution exists and equals µ. β is the skewness parameter; if it
is positive (negative) the distribution is skewed to the right (left). σ is the scale parameter.
The drawback of these distributions is that their probability density functions and cumulative
distribution functions do not have a closed form expression. However, the characteristic functions
are well understood. We have for X ∼ Sα(σ, β, µ)

log φ(t) =

 −σα|t|α
{
1− iβsign(t) tan πα

2

}
, α 6= 1

−σ|t|
{
1 + iβsign(t) 2

π log |t|
}
, α = 1

2.2.2 Hyberbolic Distributions

Our concern here is the hyperbolic family, a four-parameter family with two type and two shape
parameters. Recall that, for normal (Gaussian) distributions, the log-density is quadratic – that
is, parabolic – and the tails are very thin. The hyperbolic family is specified by taking the log-
density instead to be hyperbolic, and this leads to thicker tails as desired (but not as thick as for
the stable family).
We need some background on Bessel functions. Recall the Bessel functions Jν of the first kind,
Watson (1944), §3.11, Yν of the second kind, Watson (1944), §3.53, and Kν , Watson (1944), §3.7,
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Figure 2.3: Futures returns

there called a Bessel function with imaginary argument or Macdonald function, nowadays usually
called a Bessel function of the third kind. From the integral representation

Kν(x) =
1
2

∞∫
0

uν−1 exp
{
−1

2
x(u+ 1/u)

}
du (x > 0) (2.1)

one sees that

f(x) =
(ψ/χ)

1
2λ

2Kλ(
√
χψ)

xλ−1 exp
{
−1

2
(ψx+ χ/x)

}
(x > 0) (2.2)

is a probability density function. The corresponding law is called the generalized inverse Gaussian
GIGλ,ψ,χ; the inverse Gaussian is the case λ = 1: IGχ,ψ = GIG1,ψ,χ. These laws were introduced
by Good (1953).
Now consider a Gaussian (normal) law N(µ+ βσ2, σ2) where the parameter σ2 is random and is
sampled from GIG1,ψ,χ. The resulting law is a mean-variance mixture of normal laws, the mixing
law being generalized inverse Gaussian. It is written IEσ2N(µ + βσ2, σ2); it has a density of the
form √

α2 − β2

2αδK1(δ
√
α2 − β2)

exp
{
−α

√
δ2 + (x− µ)2 + β(x− µ)

}
(2.3)

(Barndorff-Nielsen (1977)), where α2 = ψ + β2 and δ2 = χ. Just as the Gaussian law has log-
density a quadratic – or parabolic – function, so this law has log-density a hyperbolic function. It
is accordingly called a hyperbolic distribution. Various parametrizations are possible. Here µ is
a location and δ a scale parameter, while α > 0 and β (0 ≤ |β| < α) are shape parameters. One
may pass from (α, β) to (φ, γ) via

α = (φ+ γ)/2, β = (φ− γ)/2, so φγ = α2 − β2,

and then to (ξ, χ) via

ξ = (1 + δ
√
φγ)−

1
2 , χ =

ξβ

α
= ξ

φ− γ

φ+ γ
.
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This parameterization (in which ξ and χ correspond to the classical shape parameters of skewness
and kurtosis) has the advantage of being affine invariant (invariant under changes of location and
scale). The range of (ξ, χ) is the interior of a triangle

∇ = {(ξ, χ) : 0 ≤ |χ| < ξ < 1},

called the shape triangle.

Infinite Divisibility.

Recall ( Feller (1971), XIII,7, Theorem 1) that a function ω is the Laplace transform of an infinitely
divisible probability law on IR+ iff ω = e−ψ, where ψ(0) = 0 and ψ has a completely monotone
derivative (that is, the derivatives of ψ′ alternate in sign). Grosswald (1976) showed that if

Qν(x) := Kν−1(
√
x)/(

√
xKν(

√
x)) (ν ≥ 0, x > 0),

then Qν is completely monotone. Hence Barndorff-Nielsen and Halgreen (1977) showed that the
generalized inverse Gaussian laws GIG are infinitely divisible. Now the GIG are the mixing
laws giving rise to the hyperbolic laws as normal mean-variance mixtures. This transfers infinite
divisibility (see e.g. Kelker (1971), Keilson and Steutel (1974), §§1,2), so the hyperbolic laws are
infinite divisible.

Characteristic Functions.

The mixture representation transfers to characteristic functions on taking the Fourier transform.
It gives the characteristic function of hypζ,δ as

φ(u) = φ(u; ζ, δ) =
ζ

K1(ζ)

K1

(√
ζ2 + δ2u2

)
√
ζ2 + δ2u2

. (2.4)

If φ(u) is the characteristic function of Z1 in the corresponding Lévy process Z = (Zt), that of Zt
is φt = φt. The mixture representation of hypζ,δ gives

φt(u) = exp{tk(u2/2)},

where k(.) is the cumulant generating function of the law IG,

IE
(
e−sY

)
= ek(s),

where Y has law IGψ,χ (recall χ = δ2), and Grosswald’s result above is

Qν(t) =

∞∫
0

qν(x)dx/(x+ t),

where
qν = 2/(π2x(J2

ν (
√
x) + Yν(

√
x))2) > 0 (x > 0)

(thus Qν is a Stieltjes transform, or iterated Laplace transform, Widder (1941), VIII). Using this
and the Lévy-Khintchine formula Eberlein and Keller (1995) obtained the density ν(x) of the Lévy
measure µ(dx) of Z as

ν(x) =
1

π2|x|

∞∫
0

exp
{
−|x|

√
2y + (ζ/δ)2

}
y

(
J2

1 (δ
√

2y) + Y 2
1 (δ

√
2y)

)dy +
exp{−|x|ζ/δ}

|x|
, (2.5)
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and then

φt(u) = exp{tK(u2/2)}, K(u2/2) =

∞∫
−∞

(
eiux − 1− iux

)
ν(x)dx.

Now (Watson (1944), §7.21)

Jν(x) ∼
√

2/πx cos
(
x− 1

2
πν − 1

4
π

)
,

Yν(x) ∼
√

2/πx sin
(
x− 1

2
πν − 1

4
π

)
,

(x→∞).

So the denominator in the integral in (2.5) is asymptotic to a multiple of y
1
2 as y → ∞. The

asymptotics of the integral as x ↓ 0 are determined by that of the integral as y →∞, and (writing√
2y + (ζ/δ)2 as t, say) this can be read off from the Hardy-Littlewood-Karamata theorem for

Laplace transforms (Feller (1971), XIII.5, Theorem 2, or Bingham, Goldie, and Teugels (1987),
Theorem 1.7.1). We see that ν(x) ∼ c/x2, (x ↓ 0) for c a constant. In particular the Lévy measure
is infinite.

Tails and Shape.

The classic empirical studies of Bagnold (1941) and Bagnold and Barndorff-Nielsen (1979) reveal
the characteristic pattern that, when log-density is plotted against log-size of particle, one obtains
a unimodal curve approaching linear asymptotics at ±∞. Now the simplest such curve is the
hyperbola, which contains four parameters: location of the mode, the slopes of the asymptotics,
and curvature near the mode (the modal height is absorbed by the density normalization). This is
the empirical basis for the hyperbolic laws in particle-size studies. Following Barndorff-Nielsen’s
suggested analogy, a similar pattern was sought, and found, in financial data, with log-density
plotted against log-price. Studies by Eberlein and Keller (1995), Eberlein, Keller, and Prause
(1998), Eberlein and Raible (1998), Bibby and Sørensen (1997), and other authors show that
hyperbolic densities provide a good fit for a range of financial data, not only in the tails but
throughout the distribution. The hyperbolic tails are log-linear: much fatter than normal tails
but much thinner than stable ones.

Normal Inverse Gaussian Distribution

We start with the generalized hyperbolic distributions for log returns. For these distributions the
densities are given by (to fix the notation):

dGH(x;λ, α, β, δ, µ) = a(λ, α, β, δ, µ) (2.6)

×(δ2 + (x− µ)2)(λ−
1
2 )/2

×Kλ− 1
2
(α

√
δ2 + (x− µ)2)

× exp{β(x− µ)}

where

a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ−

1
2 δλKλ(δ

√
α2 − β2)

and Kν denotes the modified Bessel function of the third kind

Kν(z) =
1
2

∞∫
0

yν−1 exp
{
−1

2
z(y + y−1)

}
dy
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We will consider the Normal Inverse Gaussian Distribution (NIG), where the parameter λ = −1/2.
So the density is

dNIG(x) =
α

π
exp

{
δ
√
α2 − β2 + β(x− µ)

}

×
K1

(
αδ

√
1 +

(
x−µ
δ

)2
)

√
1 +

(
x−µ
δ

)2
.

2.3 Case Study: EEX

We estimate the moments (mean, variance, higher order) as usual

IE(X) = X̄ =
1
n

n∑
i=1

Xi

Var(X) =
1

n− 1

n∑
i=1

(Xi − X̄)2

IE(Xk) = µ(k) =
1
n

n∑
i=1

(Xi − X̄)k

For skewness S and kurtosis K we obtain

S =
IE(X3)

Var(X)
3
2

and

K =
IE(X4)

Var(X)2

An application to the daily log returns gives

underlying mean variance kurtosis skewness
Strom Spot (EEX) 0.0003 0.0058 5.7 0.63
Strom Spot (PJM)* 0.0002 0.0006 14.1 0.36
Gas Spot (Zeebrugge) 0.0007 0.0005 6.6 -0.52
DaimlerChrysler 0,0002 2.1 · 10−5 1.9 0.05

*Pennsylvania, Jersey, Maryland

Quelle: Energy and Power Risk Management Eydeland/Wolyniec, Wiley&Sons

We perform the standard tests for normality with the Jarque-Bera- and Kolmogorov-Smirnov -test

JB = n

(
skewness2

6
+

(kurtosis− 3)2

24

)
∼ χ2(2)

KS = sup |Fn(x)− F (x)| with

Fn(x) =
1
n

n∑
j=1

1(forXj < x)

Applied to the log returns we find



CHAPTER 2. DATA ANALYSIS 29

underlying JB 5% CI KS 5% CI
Strom Spot (EEX) 1570.8 <6.0 0.13 <0.041
Strom Spot (PJM)* 5054.4 <6.0 0.14 <0.044
Gas Spot (Zeebrugge) 1330.0 <6.0 0.11 <0.051
DaimlerChrysler 166.4 <6.0 0.05 <0.042

*Quelle: Energy and Power Risk Management Eydeland/Wolyniec, Wiley&Sons

Figure 2.4: Tail behaviour of the data and the fitted distributions

A comparison of the values is given below
To Appear: Modelling and forecasting electricity loads and prices, Rafal Weron
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Figure 2.5: Fit of distributions to de-seasonalized returns



Chapter 3

Stochastic Modelling of Spot
Price Processes

3.1 Geometric Brownian Motion for Spot Prices

Although our empirical study has revealed that GBM might not provide a good fit to observed
data, we will use it as a first modelling approach.
The standard form is

dSt = µStdt+ σStdWt

with (Wt) a standard BM.
Recall the spot-forward relationship (1.2) and consider the variation

F (t, T ) = Ste
(r+u−y)(T−t)

where y is the convenience yield (benefit of ownership) and u represents the storage costs.
In case we set the parameter µ = r + u− y we also obtain

F (t, T ) = IE(ST |St)

since ST = S0 exp{(r + u− y − 1
2σ

2)T + σWT } and IE(exp(σWT )) = e
1
2σ

2T .
So we assume that

dSt = (r + u− y)Stdt+ σStdWt.

The assumption that u and y are constants is often seen as a crude approximation.
In (Schwartz 1997) the standard BM with mean reversion is used to describe the evolution of the
convenience yield. Thus

dSt = (r − δt)Stdt+ σ1StdW
(1)
t

dδt = [κ(α− δt)− λ]dt+ σ2dW
(2)
t

with dW (1)
t dW

(2)
t = ρdt

where

• δ denotes the random convenience yield

• κ, α, σ2 are respectively the strength of mean reversion, the long-term value and the instan-
taneous volatility of convenience yield

• λ is a constant associated with the market price of risk associated with the unhedgable
convenience yield.

31
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Now the forward price is given by the equality

F (t, T ) = St · exp[−δ 1− e−κ(T−t)

κ
+A(t, T )]

where

A(t, T ) =
(
r − α+

λ

κ
+

1
2
σ2

2

κ2
− σ1σ2ρ

κ

)
(T − t)

+
1
4
σ2

2

1− e2κ(T−t)

κ3

+
[(
α− λ

κ

)
κ+ σ1σ2ρ−

σ2
2

κ

]
1− e−κ(T−t)

κ2
.

In the GBM case we can use the standard formulae for call and put options and obtain

CBS = CBS(t, S;T,X, r, σ) = SΦ(d1)−Xe−r(T−t)Φ(d2)

PBS = PBS(t, S;T,X, r, σ) = Xe−r(T−t)Φ(−d2)− SΦ(−d1)

with

d1 =
log(S/X) + (r + σ2/2)(T − t)

σ
√
T − t

= d2 + σ
√
T − t.

Introducing storage costs and convenience yield this gives

C = CBS(t, Se(u−y)(T−t);T,X, r, σ)

and
P = PBS(t, Se(u−y)(T−t);T,X, r, σ),

which now in terms of forward (futures) prices can be written

C = CBS(t, F (t, T )e−r(T−t);T,X, r, σ)

P = PBS(t, R(t, T )e−r(T−t);T,X, r, σ).

The benefit of this representation is that it does not require the knowledge of the convenience
yield for option valuation. A useful generalization of these valuation formulas is to the case of non
constant volatility, σ = σ(t).
Then the pricing formulas are still valid when σ is replaced by

σ̄ =

√√√√√ 1
T − t

T∫
t

σ2(u)du.

We can use the above formulas to obtain implied volatilities, which are often used as a forward-
looking measure of price uncertainty. Thus we need to solve

Cmarket
t,T,X = C(t, St;T,X, r, σI)

for σI . Often straddles, i.e. combinations of put and calls with the same strike, are used to find
σI .
Example 3.1 Assume that the current price of natural gas is $ 2.50. The ATM straddle, strike $
2.50, expiring 6 month from now is quoted at $ 0.42. The risk free rate is 5 %. Thus we need to
solve

0.42 = C(0, 2.50; 0.5, 2.50, 0.05, σI) + P (0, 2.50; 0.5, 2.50, 0.05, σI)
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using a standard numerical algorithm we find σI = 0.3.
This method does not take into account the term-structure of volatility. Since different times to
expiry imply different volatilities we need to use time dependent volatility.
Example 3.2
Option 1: t = 0, S0 = $ 2.50, T1 = 0.5, X1 = $ 2.50, r = 0.05; C1 = $ 0.24.
Option 2: t = 0, S0 = $ 2.50, T2 = 1, X2 = $ 2.70, r = 0.05; C2 = $ 0.37.
This leads to σI(T1) = 0.3, σI(T2) = 0.4.
We now use the formula with time dependent volatility and need to match

T1∫
0

σ2(s)ds = T1σ
2
I (T1)

and
T2∫
0

σ2(s)ds = T2σ
2
I (T2).

Using the data
0.5∫
0

σ2(s)ds = 0.5 · (0.3)2

and
1∫

0

σ2(s)ds = (0.4)2.

Among the infinite many functions satisfying these equations we can choose a piecewise constant
function

σ(t) = 0.30 for 0 ≤ t ≤ 0.5 and
σ(t) = 0.48 for 0.5 ≤ t ≤ 1.

In case we are given implied volatility for every T we have

T∫
0

σ2(t)dt = Tσ2
I (T )

or
σ2(t) =

∂

∂
[tσ2

I (t)].

Since volatility is positive tσ2
I (t) must be an increasing function. Unfortunately, there are empirical

term structures which cannot be fitted.

3.2 Modifications of GBM: Mean Reversion

Recall that a price process is said to be mean reverting toward a certain level, called a long-term
mean, if it exhibits the following property: the further it moves away from this level, the higher
the probability that in the future it will move back to it. GBM does not have the mean reverting
property.
Suggested modifications are

dSt
St

= κ(S∞ − St)dt+ σdWt
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i.e. the spot price shows the mean-reverting property or

dSt
St

= κ(θ − logSt)dt+ σdWt,

here θ − 1
2κσ

2 is the long-term mean of logarithms of spot prices (returns) and κ is the speed of
mean reversion.
Write Zt = logSt and use Itô’s lemma to find

dZt = κ(θ − 1
2κ
σ2 − Zt)dt+ σdWt.

Introducing Yt = eκtZt and again by Itô’s lemma obtain

dYt = κeκtZtdt+ eκtdZt = κ(θ − 1
2κ
σ2)eκtdt+ σektdWt

and we obtain the conditional distribution

YT |Yt ∼ N

[
Yt + (θ − 1

2κ
σ2)(eκT − ekt), σ

√
e2κT − e2κt

2κ

]

and

ZT |Zt ∼ N

[
e−κ(T−t)Zt + (θ − 1

2κ
σ2)(1− e−κ(T−t)), σ

√
1− e−2κ(T−t)

2κ

]
.

In order to use the model for pricing we need to modify the drift of Zt to make risk-neutral pricing
possible. We do this by calibrating the model to the forward curve.
Assume that t0 is the current time and that the long-term log-of-price parameter θ depends
deterministically on t, i.e. θ = θ(t). Also, assume that κ is constant and has already been
determined.
Now Yt = eκZZt is again normally distributed with

expectation IE(Yt) =

t∫
t0

κeκs[θ(s)− 1
2κ
σ2]ds

and

variance Var(Yt) = σ2 e
2κt − e2κt0

2κ
.

We can solve the expression for the expectation for θ

θ(t) =
1
κ
e−κt

∂

∂t
IE(Yt) +

1
2κ
σ2.

Thus

θ(t) =
1
κ
e−κt

∂

∂t
IE(eκtZt) +

1
2κ
σ2

= IE(Zt) +
1
κ

∂

∂t
IE(Zt) +

1
2κ
σ2.

In the risk-neutral world F (t0, t) = IE(St) where F (t0, t) is the forward curve at t0 and t the time
parameter. The terminal price is lognormally distributed because the distribution of its log, Zt, is
normally distributed.
So

IE(Zt) = IE(logSt) = log(F (t0, t))−
1
2
var(Zt).
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We know that

var(Zt) = σ2 1− e−2κ(t−t0)

2κ
.

Hence

θ(t) =
1
κ
e−κt

∂

∂t
IE(eκtZt) +

1
2κ
σ2

= logF (t0, t) +
1
κ

1
F (t0, t)

∂

∂t
F (t0, t) +

σ2

4κ
(1− e−2κ(t−t0)).

Now we can compute the price of a European call as

C(t0, S0;T,X, θ, κ, r, σ) = e−r(T−t0)IE(max(ST −X,σ)),

where the expectation is computed with θ(t) as defined above. The terminal price St is lognormally
distributed with expectation F (t0, T ) by construction of θ.
The standard deviation of the logarithm of ST is

σ̃T = σ

√
1− e−2κ(T−t0)

2κ
.

Therefore the expectation can be expressed in a Black-Scholes type framework with

C(t0, S0;T,X, θ, κ, σ) = CBS(t0, e−r(T−t0)F (t0, T );T,X, r, σ̃t).

3.3 Jump-Diffusion Processes

Using Jump-Diffusion Processes (JDPs) has the advantage that spikes (large jumps) and fat-tails
of the return distribution can be modelled. JDPs are combinations of a diffusion process (BM)
and a jump process, mostly a Poisson process qt. Recall that

IP (dqt = 0) = 1− λdt ”no jump
IP (dqt = 1) = λdt ”one jump”
IP (dqt > 1) = 0o (dt) ”more than one jump”.

Furthermore, we assume that increments of the Poisson process on any two non-overlapping in-
tervals are independent. The parameter λ is called the intensity of the Poisson process. We
have

IE(qt) = λt , Var(qt) = λt.

If τ1, τ2, . . . , τn, . . . are the arrival times of jumps, then the random variable Xi = τi+1 − τi, the
length of the intervals between jumps, are independent and have exponential distribution with
parameter λ, that is

IP (Xi < x) =

{
1− e−λx for x ≥ 0
0 for x < 0.

For a pure Poisson process all jumps have magnitude one. Since such a constant magnitude is
not realistic, jumps of a random magnitude are usually introduced in pricing models. Thus a
compound Poisson process is used for a jump component.
The typical representation is

dSt
St

= (µ− λκ)dt+ σdWt + (Yt − 1)dqt

or after the usual Zt = logSt

dZt = (µ− λκ− 1
2
σ2)dt+ σdWt + log(Yt)dqt,
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with St the spot price
Wt standard BM
µ expected instantaneous rate of relative change in spot prices
σ volatility (on intervals not containing jumps)
qt Poisson process
λ intensity of the Poisson process
Yt − 1 a random variable representing the magnitude of jumps in price returns, Yt ≥ 0
κ the expected jump magnitude, IE(Yt − 1) = κ .

The drift adjustment is made to ensure that the total rate of relative price changes (expected dif-
fusion and expected jump rate) is equal to µ.
A typical choice for the random sizes of jumps is

log(Yt) ∼ N (γ, δ)

with γ = log(1 + κ) − δ2/2. (Observe Yt is lognormally distributed.) We can now derive the
distribution of St or Zt = logSt. Conditionally on exactly n jumps in a time interval (t, t +4t)
we have

IP (4Zt = x|] jumps = n) = N ((µ− λκ− 1
2
σ2)4t+ nγ,

√
σ24t+ nδ2).

We know that for a Poisson process the probability of n jumps in the interval (t, t+4t) is

IP (dqt = n) =
e−λ4t(λ4t)n

n!
.

Therefore we find for the unconditional distribution

IP (4Zt ≤ x) =
∞∑
n=0

e−λ4t(λ4t)n

n!
Φ(x; (µ− λκ− 1

2
σ2)4t+ nγ,

√
σ24t+ nδ2).

By independence this argument allows to compute the distribution of ZT |Zt (replace 4t by τ =
T − t). In order to price options in this model we replace the drift rate µ by r (to use the risk-
neutral valuation approach. In addition, the market is incomplete here and a further argument is
needed). Then, as usual,

F (t, T ) = IE(ST ) = er(T−t)St

and the price of European call with strike X is (τ = T − t)

CJDP =
∞∑
n=0

e−λτ (λτ)n

n!
CBS(t, S;T,X, r − λκ+

nλ

τ
,

√
σ2 +

nδ2

τ
)

and for the put

PJDP =
∞∑
n=0

e−λτ (λτ)n

n!
PBS(t, S;T,X, r − λκ+

nλ

τ
,

√
σ2 +

nδ2

τ
).

In order to include spikes, we need to force to return the process quickly to its pre-jumps level.
Hence we add mean reversion

dSt
St

= κ̃(θ − λκ− logSt)dt+ σdWt + (Yt − 1)dqt

with κ̃ the strength of mean reversion and

θ − λκ− 1
2κ
σ2

the long-term mean of the logarithm of spot prices.
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The equivalent form is

dZt = κ̃(θ − λκ− 1
2κ
σ2 − Zt)dt+ σdWt + log(Yt)dqt.

The drawback is that we now have at least six parameters for calibration: κ̃, θ, λ, σ, κ, δ. Ad-
ditionally, if we want to calibrate the model we might need to introduce more parameters (or
functions).

3.4 Modelling based on Non-Gaussian Ornstein-Uhlenbeck
processes

3.4.1 The Normal Inverse Gaussian Distribution

The normal inverse Gaussian distribution is a 4 parameter family of distributions belonging to the
class of generalized hyperbolic distributions. We shall denote it by NIG(µ, α, β, δ). The density
function of the NIG distribution (compare chapter 2) is explicitly given as

f(x;µ, α, β, δ) =
αδ

π
exp{δ

√
α2 − β2 + β(x− µ)}

K1(α
√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
. (3.1)

Here, µ ∈ IR is the location of the density, β ∈ IR is the skewness parameter, α ≥ |β| measures the
heaviness of the tails and finally, δ ≥ 0 is the scale parameter. The function K1 is the modified
Bessel function of the third kind and index 1.
Let IG(δ, γ) denote the inverse Gaussian distribution with density function

g(z; δ, γ) =
δ√
2π

eδγz−3/2 exp{−1
2
(δ2z−1 + γ2z)}, z > 0 . (3.2)

TheNIG(µ, α, β, δ) distribution is a normal variance-mean mixture 1. In fact, it occurs as the mar-
ginal distribution of X for a pair of random variables (Z,X) where Z follows the IG(δ,

√
α2 − β2)

distribution while conditional on Z the distribution of X is normal: X ∼ N(µ + βZ,Z). This is
the reason why we refer to the distribution (3.1) as the normal inverse Gaussian distribution.
We give now some properties of the normal inverse Gaussian distributions and of random variables
that are NIG distributed.
It follows immediately from (3.1) that the moment generating function of the normal inverse
Gaussian distribution is

m(u;µ, α, β, δ) = IE eux =

∞∫
−∞

euxf(x;µ, α, β, δ) dx

=

∞∫
−∞

e

h
δ
√
α2−β2+βx+ux−βu

i
αδ

π

K1(α
√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
dx

=

∞∫
−∞

e

h
δ
√
α2−β2+(β+u)(x−µ)+µu

i
αδ

π

K1(α
√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
dx

= e

h
δ
√
α2−β2−δ

√
α2−(β+u)2+uµ

i ∞∫
−∞

f(x;µ, α, β + u, δ) dx .

1A random variable X is said to be of variance-mean mixture type if X can be interpreted in law as X
d
= βZ +ε,

where ε and Z(> 0) are independent random variables with ε ∼ N(µ, Z).
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Thus,
mNIG(u;µ, α, β, δ) = exp

{
δ
[√

α2 − β2 −
√
α2 − (β + u)2

]
+ µu

}
. (3.3)

Hence, all moments of NIG(µ, α, β, δ) have simple explicit expressions and, in particular, the
mean and variance are

IE [X] = µ+ δ
β/α

(1− (β/α)2)1/2

Var [X] =
δ

α
(
1− (β/α)2

)3/2

The moment generating function of the corresponding inverse Gaussian distribution can be calcu-
lated analogously:

mIG(u; δ,
√
α2 − β2) = IE euz =

∞∫
−∞

euzg(z; δ,
√
α2 − β2) dz

= e

h
δ
√
α2−β2−δ

√
α2−β2+2u

i
δ√
2π

eδ
√
α2−β2+2u

×
∞∫

−∞

z−3/2 exp
{
− 1

2
(
δ2z−1 + (α2 − β2 + 2u)z

)}
dz

= exp
{
δ
[√

α2 − β2 −
√
α2 − β2 + 2u

]}
. (3.4)

We define the normal inverse Gaussian Lévy process as the homogeneous Lévy process (i. e. Lévy
process with stationary increments) L = {Lt, t ≥ 0} for which the moment generating function of
Lt is

mt(u;µ, α, β, δ) = IEeuLt = m(µ, α, β, δ)t (3.5)

where m(µ, α, β, δ) is given by (3.3). The moment generating function mt of Lt is thus expressible
as

mt(u;µ, α, β, δ) = m(u; tµ, α, β, tδ) . (3.6)

Representation by subordination

As a direct consequence of the mixture representation of the normal inverse Gaussian distribution
we find that the normal inverse Gaussian Lévy process Lt may be described, via random time
change of a Brownian motion, as

Lt = µt+WZt
, (3.7)

where Wt is the Brownian motion with drift β and diffusion coefficient 1 and where Zt, stochasti-
cally independent of Wt, is the inverse Gaussian Lévy process with parameters δ and

√
α2 − β2.

The latter process is defined as the homogeneous Lévy process for which the density is given by
(3.2). The variate Zt has the interpretation of being the first passage time to level δt of a Brownian
motion with drift

√
α2 − β2 and diffusion coefficient 1. In other words, (3.7) represents the normal

inverse Gaussian Lévy process as a subordination of Brownian motion by the inverse Gaussian
Lévy process.

3.4.2 Ornstein-Uhlenbeck Processes

An important role in the financial applications play processes driven by Lévy process. They allow
to construct a large family of mean-reverting jump processes with linear dynamics on which various
properties such as positiveness or the choice of a marginal distribution can be imposed.
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In this section we will consider the so-called Ornstein-Uhlenbeck-type processes or OU processes for
short. They offer the possibility of capturing important distributional deviations from Gaussianity
and for flexible modelling of dependence structures.
For any t > 0 and λ > 0 we can use the representation of a random variable X in the class L as
follows:

X =

∞∫
0

e−λs dLλs

=

∞∫
t

e−λs dLλs +

t∫
0

e−λs dLλs

= e−λtX0 + Ut ,

where

X0 =

∞∫
0

e−λs dLλ(s+t)

and

Ut = e−λt
t∫

0

eλs dLλ(t−s)

X0 and Ut being independent. Note that X0
d= X and

Ut
d=

t∫
0

e−λ(t−s) dLλs .

Definition 3.4.1. A stochastic process (Xt)t≥0, such that Xt
d= X, is said to be of Ornstein-

Uhlenbeck type if it satisfies a stochastic differential equation of the form

dXt = −λXt dt+ dLλt , (3.8)

for any λ > 0. The process Lt is a homogeneous Lévy process, termed the Background Driving
Lévy Process (BDLP) corresponding to the process Xt.

The process (Xt)t≥0 is stationary on the positive half-line, i. e. there exists a distribution D,
called the stationary distribution or the marginal distribution, such that Xt follows D for every t
if the initial X0 is chosen according to D. If Xt is an OU process with marginal law D, then we
say that Xt is a D-OU process.

Remark 3.4.1. Positive OU processes present a particular interest in the context of stochastic
volatility modelling.

The stationary process (Xt)t≥0 can be extended to a stationary process on the whole real line.
To do this we introduce an independent copy of the process Lt but modify it to be RCLL, thus
obtaining a process L̄t.
For t < 0 define Lt by Lt = L̄−t, and for t ∈ IR let

Xt = e−λt
t∫

−∞

eλs dLλs .

Then (Lt)t∈IR is a (homogeneous, RCLL) Lévy process; and (Xt)t∈IR is a strictly stationary process
of Ornstein-Uhlenbeck type.
From the above discussion it follows, in particular, that there exists a (Xt)t∈IR stationary OU
process such that Xt ∼ NIG(µ, α, β, δ) for every t ∈ IR. We refer to this process as the normal
inverse Gaussian OU process, or the NIG OU process for short.
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3.4.3 The Spot Price Model with Lévy Noise

Summarizing antecedent results we propose in the last section of the chapter the model of (de-
seasonalized) spot prices as the exponential of a non-Gaussian Ornstein-Uhlenbeck process.
Let (Ω,F , (Ft)t≥0, IP ) be a complete filtered probability space which satisfies the usual conditions,
i.e. the σ-algebra F is IP -complete and the Ft, t ≥ 0 must contain all the sets in F of IP -probability
zero, and be right-continuous (Ft = Ft+, t ≥ 0).
Introduce a Lévy process Lt with Lévy-Khintchine representation

Lt = χt+ σWt +
∫

|z|<1

zÑ
(
(0, t], dz

)
+

∫
|z|≥1

zN
(
(0, t], dz

)
, (3.9)

whereWt is a standard Brownian motion, χ a constant, σ > 0 a constant, N(dt, dz) a homogeneous
Poisson random measure associated to the Lévy process Lt and Ñ(dt, dz) = N(dt, dz)− dtL(dz)
its compensated (Poisson) measure. The σ-finite measure L(dz) on the Borel sets of IR is called
the Lévy measure, and satisfies the conditions

L({0}) = 0 and
∫
IR

min(1, z2)L(dz) =
∫
IR

(1 ∧ z2)L(dz) <∞ .

Alternatively, the Lévy-Khintchine formula can be written as

IE exp{iuLt} = exp{tψ(u)},

with ψ(u) being the cumulant characteristic function or characteristic exponent, which satisfies

ψ(u) = iχu− σ2

2
u2 +

∫
IR

{eiuz − 1− iuz1{|z|<1}}L(dz) . (3.10)

We say that our infinitely divisible distribution has a triplet of Lévy characteristics (or Lévy triplet
for short)

[
χ, σ2,L(dz)

]
. If the Lévy measure is of the form L(dz) = l(z)dz, we call l(z) the Lévy

density. The Lévy density has the same mathematical requirements as a probability density,
except that it does not need to be integrable and must have zero mass at the origin.
From the Lévy-Khintchine formula, we see that, in general, a Lévy process consists of three
independent parts: a linear deterministic part, a Brownian part and a pure jump part. The Lévy
measure L(dz) dictates how the jumps occur. Jumps of sizes in the set A occur according to a
Poisson process with intensity parameter

∫
A

L(dz).

Assume St is the spot price at time t, which we model as the stochastic process

St = Λ(t) eXt , (3.11)

where Λ(t) : [0, T ] −→ IR is continuous deterministic function of time modelling the seasonality.
T is assumed to be a fixed finite planning horizon. The non-Gaussian Ornstein-Uhlenbeck process
Xt has dynamics

dXt = a(m−Xt) dt+ dLt , (3.12)

and initial state X0 = x. The speed of mean-reversion is given by a ≥ 0, while m > 0 indicates a
long-term mean of the process.
To solve (3.12) we, first, find the solution to the homogeneous differential equation. It is X̌t =
xe−at, whereas the solution X̂t, derived by the method of variation of constants, results from

d(CXt) = −ae−atC(t) + C ′(t)e−at = −ae−atC(t) + amdt+ dLt

⇔ C ′(t) = eat(amdt+ dLt) .
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Integrating the last equality leads to

C(t) = am

t∫
0

eas ds+

t∫
0

eas dLs = m(eat − 1) +

t∫
0

eas dLs .

=⇒ X̂t = C(t)e−at = m(1− e−at) +

t∫
0

e−a(t−s) dLs .

Thus, the solution Xt to the stochastic differential equation (3.12) is the sum of X̌t and X̂t:

Xt = xe−at +m(1− e−at) +

t∫
0

e−a(t−s) dLs . (3.13)

Concluding, we remark that in modelling considerations we shall pay particular attention to the
process Xt, being the NIG OU process, i. e. the BDLP of Xt will be the NIG Lévy process2 Lt.
The representation of Lt, as the sum of three independent homogeneous Lévy processes, is given
in Theorem ??.
In particular, when Lt = χt+ σWt, the process St reduces to the classical mean-reversion model
of Schwartz. Choosing a = 0 in (3.12), we obtain Xt = Lt and the spot dynamics becomes the
exponential of a Lévy process, generalizing the classical geometric Brownian motion model. Hence,
our geometric spot price model (3.11) generalizes geometric Brownian motion and Schwartz’ mean-
reversion dynamics.
We also remark in passing that starting the dynamics of the spot price directly in exponential
form rather than as the solution to a stochastic differential equation is advantageous when fitting
to data.

2A process Lt is called NIG Lévy process if L1 is distributed according to the NIG distribution.



Chapter 4

Forward Price Processes

4.1 Heath-Jarrow-Morton (HJM) type models

Recall the Black Futures model in §1.4.3. There a futures with fixed maturity was considered.
We extend that now to include the whole term structure for futures in analogy to the HJM-type
models for interest rates. So

dF (t, T ) = µ(t, T, F (t, T ))dt+
∑
j

σj(t, T, F (t, T ))dW j
t , 0 ≤ t ∈ T,

where W j
t are independent BMs. As usual under the risk neutral measure the drift term disappears

(unlike in the interest market Forwards are traded).
So we consider only

dF (t, T ) =
∑
j

σj(t, T, F (t, T ))dW j
t .

We now consider as an Example the two-factor forward curve dynamics model introduced by
(Schwartz and Smith 2000). Here

log(F (t, T )) = e−κ(T−t)Xt + ξt +A(T − t),

where the variables Xt and ξt are linked to the spot with

log(St) = Xt + ξt

and

dXt = (−κXt − λx)dt+ σxdW
x
t

dξt = (µξ − λξ)dt+ σξdW
ξ
t

IE(dWX
t dW

ξ
t ) = ρx,ξdt

with

A(τ) = µξτ − (1− e−κτ )
λx
κ

+
1
2

[
(1− e−2κτ )

σ2
x

2κ
+ σ2

ξτ + 2(1− e−κτ )
ρxξσxσξ

κ

]
.

Parameters (κ, σx, µξ, σξ, ρx,ξ) have their usual meaning and λx, λξ are risk premia introduced for
proper risk-adjustment.

ξt characterizes the long term behavior of spot prices
Xt represents the short-term deviation of spot prices from long-term levels.

A related approach is to use
dF (t, T )
F (t, T )

=
∑
j

σj(t, T )dW j
τ

42
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to obtain a log-normal structure.
We find that

F (t, T ) = F (0, T ) · exp

∑
j

1
2

t∫
0

σ2
j (u, T )du+

t∫
0

σj(u, T )dW j
u

 .

A widely used model of this type is the (Schwartz 1997) model with

σ1(t, T ) = σ1 − ρσ2
1− e−κ(T−t)

κ

σ2(t, T ) = σ2

√
1− ρ2

1− e−κ(T−t)

κ
.

It is obvious that as soon as σi are chosen a correlation structure between different contracts of
the curve is introduced. E.g. in case of j = 2 the correlation of logF (t, T1) and logF (t, T2) is

ρ(t, T1, T2) =
σ1(t, T1)σ1(t, T2) + σ2(t, T1) · σ2(t, T2)√
σ2

1(t, T1) + σ2
2(t, T1)

√
σ2

1(t, T2) + σ2
2(t, T2)

.

4.2 Market Models

Due to the lack of sufficient historical data some modelling approaches try to enhance the available
data set by adding to it forward-looking market data. This leads to market models, where we only
consider tradable contracts. the dynamics are described by

dFt,k =
∑
j

σj(t, j, Ft,k)dW
j
t , 0 ≤ t ≤ T, k = 1, . . . ,K

where Ft,k ≡ Ft,Tk
is the k-th tradable forward contract. In case the volatilities are assumed to

be linear functions of the forward prices we have

dFt,k
Ft,k

=
J∑
j=1

ηj,k(t)dW
j
t , k = 1, . . .K (W 1

t , . . . ,W
J
t ) uncorrelated.

If the number of common factors J equals the number of tradable contracts K, then we can
represent the dynamics of the forward curve by using K-correlated contract-specific factors

dFt,k
Ft,k

= vk(t)dW̃t,k k = 1, . . .K

where we have the correlation condition

Corr(W̃t,k, W̃t,j) = ρ(t, k, j).

We now apply the market model approach to a multi-commodity case. Assume we have N com-
modities (Gas, Oil, Coal, Electricity,...). For the i-th commodity the evolution of monthly forward
prices F it,k, with k being the index of the forward, is given by

dF it,k = σik(t, T, Ft,k)dW̃
i
t,k, t ≥ 0, i = 1, . . . , N k = 1, . . .K,

where W̃ i
t,k are correlated BMs. Typically the volatility is σik(t, T )F it,k, so that we obtain a log-

normal distribution. Observe that these equations also imply the evolution of the spot prices via
Sit = F it,t. As initial conditions we use the current forward curve for the commodity i, i = 1, . . . , N ;
F i0,k.
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Thus we have IE(F it,k) = F i0,k for every t ≥ 0. We can also calibrate the model to any option
prices we observe

CiM = CB(F i0,k;Fk, X
i
k, rk, σ

i
N ),

where CiM is the quoted option price of the i-th commodity, F i0,k is the current price of the
forward with settlement date Tk, Xi

k is the strike, rk is the risk-free rate, and σiM is the volatility
of the monthly forward prices. The option value is then computed using Black’s formula. Finally
we can try to match correlations between logreturns for different forward contracts of the same
commodity, as well as the correlation between different commodities.
Thus we need to have

IE(d log(F it , T1) · d log(F jt , T2))√
Var(d log(F it,T1

))
√

Var(d log(F jt,T2
))

= ρi,j(t, T1, T2).

For the case of log-normal specifications

dF it,Tk

F it,Tk

= σi(t, Tk)dW̃t,k, t ≥ 0, i = 1, . . . , N, k = 1, . . .K.

1. Matching current forward prices IE(F it,Tk
) = F i0,Tk

as above.

2. Option prices. We need to find σi(t, Tk) such that

1
Tk − t

Tk∫
t

[σi(S, Tk)]2ds = σiM (t, Tk)2,

where σiM (t, Tk) is the implied volatility (from Black’s formula).

Therefore
[σi(t, TK)]2 = − ∂

∂t
{Tk − t[σiM (t, Tk)]2}.

3. The correlation structure can be matched as above.



Appendix A

Continuous-time Financial Market
Models

A.1 The Stock Price Process and its Stochastic Calculus

A.1.1 Continuous-time Stochastic Processes

A stochastic process X = (X(t))t≥0 is a family of random variables defined on (Ω,F , IP, IF ). We
say X is adapted if X(t) ∈ Ft (i.e. X(t) is Ft-measurable) for each t: thus X(t) is known when
Ft is known, at time t.
The martingale property in continuous time is just that suggested by the discrete-time case:

Definition A.1.1. A stochastic process X = (X(t))0≤t<∞ is a martingale relative to (IF, IP ) if

(i) X is adapted, and IE |X(t)| <∞ for all ≤ t <∞;

(ii) IE[X(t)|Fs] = X(s) IP − a.s. (0 ≤ s ≤ t),

and similarly for sub- and supermartingales.

There are regularisation results, under which one can take X(t) RCLL in t (basically t→ IEX(t)
has to be right-continuous). Then the analogues of the results for discrete-time martingales hold
true.
Interpretation. Martingales model fair games. Submartingales model favourable games. Super-
martingales model unfavourable games.
Brownian motion originates in work of the botanist Robert Brown in 1828. It was introduced into
finance by Louis Bachelier in 1900, and developed in physics by Albert Einstein in 1905.

Definition A.1.2. A stochastic process X = (X(t))t≥0 is a standard (one-dimensional) Brownian
motion, BM or BM(IR), on some probability space (Ω,F , IP ), if

(i) X(0) = 0 a.s.,

(ii) X has independent increments: X(t+u)−X(t) is independent of σ(X(s) : s ≤ t) for u ≥ 0,

(iii) X has stationary increments: the law of X(t+ u)−X(t) depends only on u,

(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed with mean 0 and
variance u, X(t+ u)−X(t) ∼ N(0, u),

(v) X has continuous paths: X(t) is a continuous function of t, i.e. t → X(t, ω) is continuous
in t for all ω ∈ Ω.
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We shall henceforth denote standard Brownian motion BM(IR) by W = (W (t)) (W for Wiener),
though B = (B(t)) (B for Brown) is also common. Standard Brownian motion BM(IRd) in d
dimensions is defined by W (t) := (W1(t), . . . ,Wd(t)), where W1, . . . ,Wd are independent standard
Brownian motions in one dimension (independent copies of BM(IR)).
We have Wiener’s theorem:

Theorem A.1.1 (Wiener). Brownian motion exists.

For further background, see any measure-theoretic text on stochastic processes. A treatment
starting directly from our main reference of measure-theoretic results, Williams Williams (1991),
is Rogers and Williams Rogers and Williams (1994), Chapter 1. The classic is Doob’s book, Doob
(1953), VIII.2. Excellent modern texts include ? (see particularly Karatzas and Shreve (1991),
§2.2-4 for construction).

A.1.2 Stochastic Analysis

Stochastic integration was introduced by K. Itô in 1944, hence its name Itô calculus. It gives a
meaning to

t∫
0

XdY =

t∫
0

X(s, ω)dY (s, ω),

for suitable stochastic processes X and Y , the integrand and the integrator. We shall confine our
attention here mainly to the basic case with integrator Brownian motion: Y = W . Much greater
generality is possible: for Y a continuous martingale, see Karatzas and Shreve (1991) or Revuz
and Yor (1991); for a systematic general treatment, see Protter (2004).
Suppose that b is adapted and locally integrable (so

∫ t
0
b(s)ds is defined as an ordinary integral),

and σ is adapted and measurable with
∫ t
0
IE

(
σ(u)2

)
du <∞ for all t (so

∫ t
0
σ(s)dW (s) is defined

as a stochastic integral). Then

X(t) := x0 +

t∫
0

b(s)ds+

t∫
0

σ(s)dW (s)

defines a stochastic process X with X(0) = x0. It is customary, and convenient, to express such
an equation symbolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt+ σ(t)dW (t), X(0) = x0. (A.1)

Now suppose f : IR→ IR is of class C2. The question arises of giving a meaning to the stochastic
differential df(X(t)) of the process f(X(t)), and finding it. Given a partition P of [0, t], i.e.
0 = t0 < t1 < . . . < tn = t, we can use Taylor’s formula to obtain

f(X(t))− f(X(0)) =
n−1∑
k=0

f(X(tk+1))− f(X(tk))

=
n−1∑
k=0

f ′(X(tk))∆X(tk)

+
1
2

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2

with 0 < θk < 1. We know that
∑

(∆X(tk))2 → 〈X〉 (t) in probability (so, taking a subsequence,
with probability one), and with a little more effort one can prove

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2 →
t∫

0

f ′′(X(u))d 〈X〉 (u).
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The first sum is easily recognized as an approximating sequence of a stochastic integral; indeed,
we find

n−1∑
k=0

f ′(X(tk))∆X(tk) →
t∫

0

f ′(X(u))dX(u).

So we have

Theorem A.1.2 (Basic Itô formula). If X has stochastic differential given by A.1 and f ∈ C2,
then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d 〈X〉 (t),

or writing out the integrals,

f(X(t)) = f(x0) +

t∫
0

f ′(X(u))dX(u) +
1
2

t∫
0

f ′′(X(u))d 〈X〉 (u).

More generally, suppose that f : IR2 → IR is a function, continuously differentiable once in its
first argument (which will denote time), and twice in its second argument (space): f ∈ C1,2. By
the Taylor expansion of a smooth function of several variables we get for t close to t0 (we use
subscripts to denote partial derivatives: ft := ∂f/∂t, ftx := ∂2f/∂t∂x):

f(t,X(t)) = f(t0, X(t0))

+(t− t0)ft(t0, X(t0)) + (X(t)−X(t0))fx(t0, X(t0))

+
1
2
(t− t0)2ftt(t0, X(t0)) +

1
2
(X(t)−X(t0))2fxx(t0, X(t0))

+(t− t0)(X(t)−X(t0))ftx(t0, X(t0)) + . . . ,

which may be written symbolically as

df = ftdt+ fxdX +
1
2
ftt(dt)2 + ftxdtdX +

1
2
fxx(dX)2 + . . . .

In this, we substitute dX(t) = b(t)dt+ σ(t)dW (t) from above, to obtain

df = ftdt+ fx(bdt+ σdW )

+
1
2
ftt(dt)2 + ftxdt(bdt+ σdW ) +

1
2
fxx(bdt+ σdW )2 + . . .

Now using the formal multiplication rules dt · dt = 0, dt · dW = 0, dW · dW = dt (which are just
shorthand for the corresponding properties of the quadratic variations, we expand

(bdt+ σdW )2 = σ2dt+ 2bσdtdW + b2(dt)2 = σ2dt+ higher-order terms

to get finally

df =
(
ft + bfx +

1
2
σ2fxx

)
dt+ σfxdW + higher-order terms.

As above the higher-order terms are irrelevant, and summarising, we obtain Itô’s lemma, the
analogue for the Itô or stochastic calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem A.1.3 (Itô’s Lemma). If X(t) has stochastic differential given by A.1, then f =
f(t,X(t)) has stochastic differential

df =
(
ft + bfx +

1
2
σ2fxx

)
dt+ σfxdW.
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That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +

t∫
0

(ft + bfx +
1
2
σ2fxx)dt+

t∫
0

σfxdW.

We will make good use of:

Corollary A.1.1. IE (f(t,X(t))) = f0 +
∫ t
0
IE

(
ft + bfx + 1

2σ
2fxx

)
dt.

Proof.
∫ t
0
σf2dW is a stochastic integral, so a martingale, so its expectation is constant (= 0, as

it starts at 0).

Geometric Brownian Motion

Now that we have both Brownian motion W and Itô’s Lemma to hand, we can introduce the most
important stochastic process for us, a relative of Brownian motion - geometric (or exponential, or
economic) Brownian motion.
Suppose we wish to model the time evolution of a stock price S(t) (as we will, in the Black-Scholes
theory). Consider how S will change in some small time-interval from the present time t to a time
t + dt in the near future. Writing dS(t) for the change S(t + dt) − S(t) in S, the return on S in
this interval is dS(t)/S(t). It is economically reasonable to expect this return to decompose into
two components, a systematic part and a random part. The systematic part could plausibly be
modelled by µdt, where µ is some parameter representing the mean rate of return of the stock.
The random part could plausibly be modelled by σdW (t), where dW (t) represents the noise term
driving the stock price dynamics, and σ is a second parameter describing how much effect this
noise has - how much the stock price fluctuates. Thus σ governs how volatile the price is, and is
called the volatility of the stock. The role of the driving noise term is to represent the random
buffeting effect of the multiplicity of factors at work in the economic environment in which the
stock price is determined by supply and demand.
Putting this together, we have the stochastic differential equation

dS(t) = S(t)(µdt+ σdW (t)), S(0) > 0, (A.2)

due to Itô in 1944. This corrects Bachelier’s earlier attempt of 1900 (he did not have the factor
S(t) on the right - missing the interpretation in terms of returns, and leading to negative stock
prices!) Incidentally, Bachelier’s work served as Itô’s motivation in introducing Itô calculus. The
mathematical importance of Itô’s work was recognised early, and led on to the work of Doob (1953),
Meyer (1976) and many others (see the memorial volume Ikeda, Watanabe, M., and Kunita (1996)
in honour of Itô’s eightieth birthday in 1995). The economic importance of geometric Brownian
motion was recognised by Paul A. Samuelson in his work from 1965 on (Samuelson (1965)), for
which Samuelson received the Nobel Prize in Economics in 1970, and by Robert Merton (see
Merton (1990) for a full bibliography), in work for which he was similarly honoured in 1997.
The differential equation (A.2) above has the unique solution

S(t) = S(0) exp
{(

µ− 1
2
σ2

)
t+ σdW (t)

}
.

For, writing

f(t, x) := exp
{(

µ− 1
2
σ2

)
t+ σx

}
,

we have

ft =
(
µ− 1

2
σ2

)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has
dx = dW (t), (dx)2 = dt.



APPENDIX A. CONTINUOUS-TIME FINANCIAL MARKET MODELS 49

Thus Itô’s lemma gives

df(t,W (t)) = ftdt+ fxdW (t) +
1
2
fxx(dW (t))2

= f

((
µ− 1

2
σ2

)
dt+ σdW (t) +

1
2
σ2dt

)
= f(µdt+ σdW (t)),

so f(t,W (t)) is a solution of the stochastic differential equation, and the initial condition f(0,W (0)) =
S(0) as W (0) = 0, giving existence.

A.1.3 Girsanov’s Theorem

Consider first independent N(0, 1) random variables Z1, . . . , Zn on a probability space (Ω,F , IP ).
Given a vector γ = (γ1, . . . , γn), consider a new probability measure ĨP on (Ω,F) defined by

ĨP (dω) = exp

{
n∑
i=1

γiZi(ω)− 1
2

n∑
i=1

γ2
i

}
IP (dω).

As exp{.} > 0 and integrates to 1, as
∫

exp{γiZi}dIP = exp{ 1
2γ

2
i }, this is a probability measure.

It is also equivalent to IP (has the same null sets), again as the exponential term is positive. Also

ĨP (Zi ∈ dzi, i = 1, . . . , n)

= exp

{
n∑
i=1

γiZi −
1
2

n∑
i=1

γ2
i

}
IP (Zi ∈ dzi, i = 1, . . . , n)

= (2π)−
n
2 exp

{
n∑
i=1

γizi −
1
2

n∑
i=1

γ2
i −

1
2

n∑
i=1

z2
i

}
n∏
i=1

dzi

= (2π)−
n
2 exp

{
−1

2

n∑
i=1

(zi − γi)2
}
dz1 . . . dzn.

This says that if the Zi are independent N(0, 1) under IP , they are independent N(γi, 1) under ĨP .
Thus the effect of the change of measure IP → ĨP , from the original measure IP to the equivalent
measure ĨP , is to change the mean, from 0 = (0, . . . , 0) to γ = (γ1, . . . , γn).
This result extends to infinitely many dimensions - i.e., from random vectors to stochastic processes,
indeed with random rather than deterministic means. Let W = (W1, . . .Wd) be a d-dimensional
Brownian motion defined on a filtered probability space (Ω,F , IP, IF ) with the filtration IF satis-
fying the usual conditions. Let (γ(t) : 0 ≤ t ≤ T ) be a measurable, adapted d-dimensional process
with

∫ T
0
γi(t)2dt <∞ a.s., i = 1, . . . , d, and define the process (L(t) : 0 ≤ t ≤ T ) by

L(t) = exp

−
t∫

0

γ(s)′dW (s)− 1
2

t∫
0

‖γ(s)‖2 ds

. (A.3)

Then L is continuous, and, being the stochastic exponential of −
∫ t
0
γ(s)′dW (s), is a local martin-

gale. Given sufficient integrability on the process γ, L will in fact be a (continuous) martingale.
For this, Novikov’s condition suffices:

IE

exp

1
2

T∫
0

‖γ(s)‖2 ds


 <∞. (A.4)

We are now in the position to state a version of Girsanov’s theorem, which will be one of our main
tools in studying continuous-time financial market models.



APPENDIX A. CONTINUOUS-TIME FINANCIAL MARKET MODELS 50

Theorem A.1.4 (Girsanov). Let γ be as above and satisfy Novikov’s condition; let L be the
corresponding continuous martingale. Define the processes W̃i, i = 1, . . . , d by

W̃i(t) := Wi(t) +

t∫
0

γi(s)ds, (0 ≤ t ≤ T ), i = 1, . . . , d.

Then under the equivalent probability measure ĨP (defined on (Ω,FT )) with Radon-Nikodým deriv-
ative

dĨP

dIP
= L(T ),

the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.

In particular, for γ(t) constant (= γ), change of measure by introducing the Radon-Nikodým
derivative exp

{
−γW (t)− 1

2γ
2t

}
corresponds to a change of drift from c to c− γ. If IF = (Ft) is

the Brownian filtration (basically Ft = σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual
conditions) any pair of equivalent probability measures QQ ∼ IP on F = FT is a Girsanov pair, i.e.

dQ̃Q

dIP

∣∣∣∣∣
Ft

= L(t)

with L defined as above. Girsanov’s theorem (or the Cameron-Martin-Girsanov theorem) is for-
mulated in varying degrees of generality, discussed and proved, e.g. in Karatzas and Shreve (1991),
§3.5, Protter (2004), III.6, Revuz and Yor (1991), VIII, Dothan (1990), §5.4 (discrete time), §11.6
(continuous time).

A.2 Financial Market Models

A.2.1 The Financial Market Model

We start with a general model of a frictionless (compare Chapter 1) security market where investors
are allowed to trade continuously up to some fixed finite planning horizon T . Uncertainty in the
financial market is modelled by a probability space (Ω,F , IP ) and a filtration IF = (Ft)0≤t≤T
satisfying the usual conditions of right-continuity and completeness. We assume that the σ-field
F0 is trivial, i.e. for every A ∈ F0 either IP (A) = 0 or IP (A) = 1, and that FT = F .
There are d + 1 primary traded assets, whose price processes are given by stochastic processes
S0, . . . , Sd. We assume that the processes S0, . . . , Sd represent the prices of some traded assets
(stocks, bonds, or options).
We have not emphasised so far that there was an implicit numéraire behind the prices S0, . . . , Sd; it
is the numéraire relevant for domestic transactions at time t. The formal definition of a numéraire
is very much as in the discrete setting.

Definition A.2.1. A numéraire is a price process X(t) almost surely strictly positive for each
t ∈ [0, T ].

We assume now that S0(t) is a non-dividend paying asset, which is (almost surely) strictly positive
and use S0 as numéraire. ‘Historically’ (see Harrison and Pliska (1981)) the money market account
B(t), given by B(t) = er(t) with a positive deterministic process r(t) and r(0) = 0, was used as a
numéraire, and the reader may think of S0(t) as being B(t).
Our principal task will be the pricing and hedging of contingent claims, which we model as FT -
measurable random variables. This implies that the contingent claims specify a stochastic cash-flow
at time T and that they may depend on the whole path of the underlying in [0, T ] - because FT
contains all that information. We will often have to impose further integrability conditions on
the contingent claims under consideration. The fundamental concept in (arbitrage) pricing and
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hedging contingent claims is the interplay of self-financing replicating portfolios and risk-neutral
probabilities. Although the current setting is on a much higher level of sophistication, the key
ideas remain the same.
We call an IRd+1-valued predictable process

ϕ(t) = (ϕ0(t), . . . , ϕd(t)), t ∈ [0, T ]

with
∫ T
0
IE(ϕ0(t))dt < ∞,

∑d
i=0

∫ T
0
IE(ϕ2

i (t))dt < ∞ a trading strategy (or dynamic portfolio
process). Here ϕi(t) denotes the number of shares of asset i held in the portfolio at time t - to
be determined on the basis of information available before time t; i.e. the investor selects his time
t portfolio after observing the prices S(t−). The components ϕi(t) may assume negative as well
as positive values, reflecting the fact that we allow short sales and assume that the assets are
perfectly divisible.

Definition A.2.2. (i) The value of the portfolio ϕ at time t is given by the scalar product

Vϕ(t) := ϕ(t) · S(t) =
d∑
i=0

ϕi(t)Si(t), t ∈ [0, T ].

The process Vϕ(t) is called the value process, or wealth process, of the trading strategy ϕ.
(ii) The gains process Gϕ(t) is defined by

Gϕ(t) :=

t∫
0

ϕ(u)dS(u) =
d∑
i=0

t∫
0

ϕi(u)dSi(u).

(iii) A trading strategy ϕ is called self-financing if the wealth process Vϕ(t) satisfies

Vϕ(t) = Vϕ(0) +Gϕ(t) for all t ∈ [0, T ].

Remark A.2.1. (i) The financial implications of the above equations are that all changes in the
wealth of the portfolio are due to capital gains, as opposed to withdrawals of cash or injections of
new funds.
(ii) The definition of a trading strategy includes regularity assumptions in order to ensure the
existence of stochastic integrals.

Using the special numéraire S0(t) we consider the discounted price process

S̃(t) :=
S(t)
S0(t)

= (1, S̃1(t), . . . S̃d(t))

with S̃i(t) = Si(t)/S0(t), i = 1, 2, . . . , d. Furthermore, the discounted wealth process Ṽϕ(t) is
given by

Ṽϕ(t) :=
Vϕ(t)
S0(t)

= ϕ0(t) +
d∑
i=1

ϕi(t)S̃i(t)

and the discounted gains process G̃ϕ(t) is

G̃ϕ(t) :=
d∑
i=1

t∫
0

ϕi(t)dS̃i(t).

Observe that G̃ϕ(t) does not depend on the numéraire component ϕ0.
It is convenient to reformulate the self-financing condition in terms of the discounted processes:
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Proposition A.2.1. Let ϕ be a trading strategy. Then ϕ if self-financing if and only if

Ṽϕ(t) = Ṽϕ(0) + G̃ϕ(t).

Of course, Vϕ(t) ≥ 0 if and only if Ṽϕ(t) ≥ 0.

The proof follows by the numéraire invariance theorem using S0 as numéraire.

Remark A.2.2. The above result shows that a self-financing strategy is completely determined by
its initial value and the components ϕ1, . . . , ϕd. In other words, any set of predictable processes
ϕ1, . . . , ϕd such that the stochastic integrals

∫
ϕidS̃i, i = 1, . . . , d exist can be uniquely extended to

a self-financing strategy ϕ with specified initial value Ṽϕ(0) = v by setting the cash holding as

ϕ0(t) = v +
d∑
i=1

t∫
0

ϕi(u)dS̃i(u)−
d∑
i=1

ϕi(t)S̃i(t), t ∈ [0, T ].

A.2.2 Equivalent Martingale Measures

We develop a relative pricing theory for contingent claims. Again the underlying concept is the
link between the no-arbitrage condition and certain probability measures. We begin with:

Definition A.2.3. A self-financing trading strategy ϕ is called an arbitrage opportunity if the
wealth process Vϕ satisfies the following set of conditions:

Vϕ(0) = 0, IP (Vϕ(T ) ≥ 0) = 1, and IP (Vϕ(T ) > 0) > 0.

Arbitrage opportunities represent the limitless creation of wealth through risk-free profit and thus
should not be present in a well-functioning market.
The main tool in investigating arbitrage opportunities is the concept of equivalent martingale
measures:

Definition A.2.4. We say that a probability measure QQ defined on (Ω,F) is an equivalent mar-
tingale measure if:

(i) QQ is equivalent to IP ,
(ii) the discounted price process S̃ is a QQ martingale.

We denote the set of martingale measures by P.

A useful criterion in determining whether a given equivalent measure is indeed a martingale mea-
sure is the observation that the growth rates relative to the numéraire of all given primary assets
under the measure in question must coincide. For example, in the case S0(t) = B(t) we have:

Lemma A.2.1. Assume S0(t) = B(t) = er(t), then QQ ∼ IP is a martingale measure if and only
if every asset price process Si has price dynamics under QQ of the form

dSi(t) = r(t)Si(t)dt+ dMi(t),

where Mi is a QQ-martingale.

The proof is an application of Itô’s formula.
In order to proceed we have to impose further restrictions on the set of trading strategies.

Definition A.2.5. A self-financing trading strategy ϕ is called tame (relative to the numéraire
S0) if

Ṽϕ(t) ≥ 0 for all t ∈ [0, T ].

We use the notation Φ for the set of tame trading strategies.
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We next analyse the value process under equivalent martingale measures for such strategies.

Proposition A.2.2. For ϕ ∈ Φ Ṽϕ(t) is a martingale under each QQ ∈ P.

This observation is the key to our first central result:

Theorem A.2.1. Assume P 6= ∅. Then the market model contains no arbitrage opportunities in
Φ.

Proof. For any ϕ ∈ Φ and under any QQ ∈ P Ṽϕ(t) is a martingale. That is,

IEQQ

(
Ṽϕ(t)|Fu

)
= Ṽϕ(u), for all u ≤ t ≤ T.

For ϕ ∈ Φ to be an arbitrage opportunity we must have Ṽϕ(0) = Vϕ(0) = 0. Now

IEQQ

(
Ṽϕ(t)

)
= 0, for all 0 ≤ t ≤ T.

Now ϕ is tame, so Ṽϕ(t) ≥ 0, 0 ≤ t ≤ T , implying IEQQ
(
Ṽϕ(t)

)
= 0, 0 ≤ t ≤ T , and in particular

IEQQ

(
Ṽϕ(T )

)
= 0. But an arbitrage opportunity ϕ also has to satisfy IP (Vϕ(T ) ≥ 0) = 1, and

since QQ ∼ IP , this means QQ (Vϕ(T ) ≥ 0) = 1. Both together yield

QQ (Vϕ(T ) > 0) = IP (Vϕ(T ) > 0) = 0,

and hence the result follows.

A.2.3 Risk-neutral Pricing

We now assume that there exists an equivalent martingale measure IP ∗ which implies that there
are no arbitrage opportunities with respect to Φ in the financial market model. Until further notice
we use IP ∗ as our reference measure, and when using the term martingale we always assume that
the underlying probability measure is IP ∗. In particular, we restrict our attention to contingent
claims X such that X/S0(T ) ∈ L1(F , IP ∗).
We now define a further subclass of trading strategies:

Definition A.2.6. A self-financing trading strategy ϕ is called (IP ∗-) admissible if the relative
gains process

G̃ϕ(t) =

t∫
0

ϕ(u)dS̃(u)

is a (IP ∗-) martingale. The class of all (IP ∗-) admissible trading strategies is denoted Φ(IP ∗).

By definition S̃ is a martingale, and G̃ is the stochastic integral with respect to S̃. We see that
any sufficiently integrable processes ϕ1, . . . , ϕd give rise to IP ∗-admissible trading strategies.
We can repeat the above argument to obtain

Theorem A.2.2. The financial market model M contains no arbitrage opportunities in Φ(IP ∗).

Under the assumption that no arbitrage opportunities exist, the question of pricing and hedging a
contingent claim reduces to the existence of replicating self-financing trading strategies. Formally:

Definition A.2.7. (i) A contingent claim X is called attainable if there exists at least one ad-
missible trading strategy such that

Vϕ(T ) = X.

We call such a trading strategy ϕ a replicating strategy for X.
(ii) The financial market model M is said to be complete if any contingent claim is attainable.
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Again we emphasise that this depends on the class of trading strategies. On the other hand, it
does not depend on the numéraire: it is an easy exercise in the continuous asset-price process case
to show that if a contingent claim is attainable in a given numéraire it is also attainable in any
other numéraire and the replicating strategies are the same.
If a contingent claim X is attainable, X can be replicated by a portfolio ϕ ∈ Φ(IP ∗). This means
that holding the portfolio and holding the contingent claim are equivalent from a financial point
of view. In the absence of arbitrage the (arbitrage) price process ΠX(t) of the contingent claim
must therefore satisfy

ΠX(t) = Vϕ(t).

Of course the questions arise of what will happen if X can be replicated by more than one portfolio,
and what the relation of the price process to the equivalent martingale measure(s) is. The following
central theorem is the key to answering these questions:

Theorem A.2.3 (Risk-Neutral Valuation Formula). The arbitrage price process of any attainable
claim is given by the risk-neutral valuation formula

ΠX(t) = S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft] . (A.5)

The uniqueness question is immediate from the above theorem:

Corollary A.2.1. For any two replicating portfolios ϕ,ψ ∈ Φ(IP ∗) we have

Vϕ(t) = Vψ(t).

Proof of Theorem A.2.3 Since X is attainable, there exists a replicating strategy ϕ ∈ Φ(IP ∗) such
that Vϕ(T ) = X and ΠX(t) = Vϕ(t). Since ϕ ∈ Φ(IP ∗) the discounted value process Ṽϕ(t) is a
martingale, and hence

ΠX(t) = Vϕ(t) = S0(t)Ṽϕ(t)

= S0(t)IEIP∗

[
Ṽϕ(T )

∣∣∣Ft] = S0(t)IEIP∗

[
Vϕ(T )
S0(T )

∣∣∣∣Ft]
= S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft].
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