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Short Description.

Content.
Within the last few years the markets for commodities, in particular energy-related commodities,
has changed substantially. New regulations and products have resulted in a spectacular growth in
spot and derivative trading. In particular, electricity markets have changed fundamentally over
the last couple of years. Due to deregulation energy companies are now allowed to trade not only
the commodity electricity, but also various derivatives on electricity on several Energy Exchanges
(such as the EEX).

Specific topics

1. Basic Principles of Commodity Markets, models for forwards and futures.

2. Stylized facts of electricity markets; statistical analysis of spot and futures markets.

3. Spot and Forward Market Models for Electricity, mathematical models based on Lévy
processes (including a short intro to such processes).

4. Special derivatives for the Electricity markets.

Literature.

– Eydeland, A. Wolyniec, K.: Energy and Power Risk Management, Wiley 2003

– Geman, H.: Commodities and Commodity Derivatives, Wiley 2005.

course webpage.
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Chapter 1

Fundamentals

1.1 Markets and Price Processes

Since the deregulation of electricity markets in the end of the 1990s, power can be traded at
exchanges like the Nordpool or the European Energy Exchange (EEX). All exchanges have estab-
lished spot and futures markets.
The spot market usually is organised as an auction, which manages the distribution of power
in the near future, i. e. one day ahead. Empirical studies, such as Knittel and Roberts (2001)
using hourly prices in the California power market, show that spot prices exhibit seasonalities on
different time scales, a strong mean-reversion and are very volatile and spiky in nature. Because
of inherent properties of electricity as an almost non-storable commodity such a price behaviour
has to be expected, see Geman (2005).
Due to the volatile behaviour of the spot market and to ensure that power plants can be deployed
optimally, power forwards and futures are traded. Power exchanges established the trade of
forwards and futures early on and by now large volumes are traded. A power forward contract is
characterized by a fixed delivery price per MWh, a delivery period and the total amount of energy
to deliver. Especially the length of the delivery period and the exact time of delivery determine the
value and statistical characteristics of the contract vitally. One can observe, that contracts with
a long delivery period show less volatile prices than those with short delivery. These facts give
rise to a a term structure of volatility in most power forward markets, which has to be modelled
accurately in order to be able to price options on futures. Figure 1.1 gives an example of such a
term structure for futures traded at the EEX. Additionally, seasonalities can be observed in the
forward curve within a year. Monthly contracts during winter months show higher prices than
comparable contracts during the summer (cp. Figure 1.2).
Aside from spot and forward markets, valuing options is an issue for market participants. While
some research has been done on the valuation of options on spot power, hardly any results can be
found on options on forwards and futures. Both types impose different problems for the valuation.
Spot options fail most of the arbitrage and replication arguments, since power is almost non-
storable. Some authors take the position to find a realistic model to describe the prices of spot
prices and then value options via risk-neutral expectations (cp. de Jong and Huisman (2002),
Benth, Dahl, and Karlsen (2004), Burger, Klar, Müller, and Schindlmayr (2004)). Other ideas
explicitly take care of the special situation in the electricity production and use power plants to
replicate certain contingent claims (cp. Geman and Eydeland (1999)).
Forward and futures options are heavily influenced by the length of their delivery period and
their time to maturity. In Clewlow and Strickland (1999), for example, a one-factor model is
presented, that tries to fit the term structure of volatility, but that does not incorporate a delivery
period, since it is constructed for oil and gas markets.
As an example let us have a look at the EEX spot market. Here we have the following structure

• the EEX spot market is a day-ahead auction for single hours of the following day
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Figure 1.1: Implied volatilities of futures with different maturities and delivery periods, Sep. 14

Figure 1.2: Forward prices of futures with different maturities and delivery periods, Feb. 18
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Figure 1.3: Bloomberg screen for energy spot prices

• participants submit their price offer/bit curves, the EEX system prices are equilibrium prices
that clear the market.

• EEX day prices are the average of the 24-single hours.

• on fridays the hours for the whole weekend are auctioned.

• similar structures can be found on other power exchanges(Nord Pool, APX, etc.).

The following are examples of price processe
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To analyse seasonalities one can preform a regression analysis. This can be done by standard
methods assuming a model for the mean, e. g.

St = β1 · 1(if t ∈ Mondays) + . . .+ β7 · 1(if t ∈ Sundays)
+ other calendar day effects
+β8 · t for long term linear trend

+β9 sin(
2π
365

(t− c)) for summer/winter seasonality

+ . . .

The unknown parameters β1, . . . , βp can be estimated easily by Least-Squares-Methods.
We also observe spikes
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Spikes are often modelled by jumps. The process of jumps is often modelled by a compound
poisson process

CPt :=
Nt∑
i=1

Ji

Nt is a Poisson process with intensity λ, which randomly jumps by 1 unit, so it counts how many
jumps occurred up to time t. Ji is the random jump size of the ith jump.



CHAPTER 1. FUNDAMENTALS 11

1.2 Basic Products and Structures

We mostly have been dealing so far with derivatives based on underlying assets – stock – existing,
and available for trading, now. It frequently happens, however, that the underlying assets relevant
in a particular market will instead be available at some time in the future, and need not even exist
now. Obvious examples include crop commodities – wheat, sugar, coffee etc. – which might not
yet be planted, or be still growing, and so whose eventual price remains uncertain – for instance,
because of the uncertainty of future weather. The principal factors determining yield of crops such
as cereals, for instance, are rainfall and hours of sunshine during the growing season. Oil, gas,
coals are another example of a commodity widely traded in the future, and here the uncertainty is
more a result of political factors, shipping costs etc. Our focus here will be on electricity later on.
Financial assets, such as currencies, bonds and stock indexes, may also be traded in the future,
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on exchanges such as the London International Financial Futures and Options Exchange (LIFFE)
and the Tokyo International Financial Futures Exchange (TIFFE), and we shall restrict attention
to financial futures for simplicity.
We thus have the existence of two parallel markets in some asset – the spot market, for assets
traded in the present, and the futures market, for assets to be realized in the future. We may also
consider the combined spot-futures market.
We now want briefly look at the most important products.

1.2.1 Forwards

A forward contract is an agreement to buy or sell an asset S at a certain future date T for a certain
price K. The agent who agrees to buy the underlying asset is said to have a long position, the
other agent assumes a short position. The settlement date is called delivery date and the specified
price is referred to as delivery price. The forward price F (t, T ) is the delivery price which would
make the contract have zero value at time t. At the time the contract is set up, t = 0, the forward
price therefore equals the delivery price, hence F (0, T ) = K. The forward prices F (t, T ) need not
(and will not) necessarily be equal to the delivery price K during the life-time of the contract.
The payoff from a long position in a forward contract on one unit of an asset with price S(T ) at
the maturity of the contract is

S(T )−K.

Compared with a call option with the same maturity and strike price K we see that the investor
now faces a downside risk, too. He has the obligation to buy the asset for price K.

1.2.2 Futures Markets

Futures prices, like spot prices, are determined on the floor of the exchange by supply and demand,
and are quoted in the financial press. Futures contracts, however – contracts on assets traded in
the futures markets – have various special characteristics. Parties to futures contracts are subject
to a daily settlement procedure known as marking to market. The initial deposit, paid when the
contract is entered into, is adjusted daily by margin payments reflecting the daily movement in
futures prices. The underlying asset and price are specified in the contract, as is the delivery date.
Futures contracts are highly liquid – and indeed, are intended more for trading than for delivery.
Being assets, futures contracts may be the subject of futures options.
We shall as before write t = 0 for the time when a contract, or option, is written, t for the present
time, T for the expiry time of the option, and T ∗ for the delivery time specified in the futures (or
forward) contract. We will have T ∗ ≥ T , and in general T ∗ > T ; beyond this, T ∗ will not affect
the pricing of options with expiry T .

Swaps

A swap is an agreement whereby two parties undertake to exchange, at known dates in the future,
various financial assets (or cash flows) according to a prearranged formula that depends on the
value of one or more underlying assets. Examples are currency swaps (exchange currencies) and
interest-rate swaps (exchange of fixed for floating set of interest payments).

1.3 Basic Pricing Relations

1.3.1 Storage, Inventory and Convenience Yield

The theory of storage aims to explain the differences between spot and Futures (Forward) prices
by analyzing why agents hold inventories. Inventories allow to meet unexpected demand, avoid
the cost of frequent revisions in the production schedule and eliminate manufacturing disruption.
This motivates the concept of convenience yield as a benefit, that accrues to the owner of the
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physical commodity but not to the holder of a forward contract. Thus the convenience yield is
comparable to the dividend yield for stocks. A modern view is to view storage (inventory) as a
timing option, that allows to put the commodity to the market when prices are high and hold it
when the prices are low.
We will model the convenience yield y

• expressed as a rate, meaning that the benefit in a monetary amount for the holder of the
commodity will be equal to S(t)ydt over the interval (t, t + dt), if S(t) is the spot price at
time t;

• defined as the difference between the positive gain attached to the physical commodity minus
the cost of storage. Hence the convenience yield may be positive or negative depending on
the period, commodity and cost of storage.

In recent literature the convenience yield is often modelled as a random variable, which allows to
explain various shapes of forward curves over time.

1.3.2 Futures Prices and Expectation of Future Spot Prices

The rational expectation hypothesis (REH) (mainly used in the context of interest rates) states
that the current futures price f(t, T ) for a commodity (interest rate) with delivery a time T > t
is the best estimator for the price S(T ) of the commodity. In mathematical terms

f(t, T ) = IE[S(T )|Ft]. (1.1)

where Ft represents the information available at time t. The REH has been statistically tested in
many studies for a wide range of commodities (resulting most of the time in a rejection).
When equality in (1.1) does not hold futures prices are biased estimators of future spot prices. If

> holds, then f(t, T ) is an up-ward biased estimate, then risk-aversion among market partic-
ipants is such that buyers are willing to pay more than the expected spot price in order to
secure access to the commodity at time T (political unrest);

< holds, then f(t, T ) is an down-ward biased estimate, this may reflect a perception of excess
supply in the future.

No general theory for the bias has been developed. It may depend on the specific commodity,
the actual forecast of the future spot price by market participant, and on the risk aversion of the
participants.

1.3.3 Spot-Forward Relationship in Commodity Markets

Under the no-arbitrage assumption we have

F (t, T ) = S(t)e(r−y)(T−t) (1.2)

where r is the interest rate at time t for maturity T and y is the convenience yield. We start by
proving this relationship for stocks as underlying

Non-dividend paying stocks

Consider the portfolio

t T
buy stock −S(t) delivery
borrow to finance S(t) −S(t)er(T−t)

sell forward on S F(t,T)

All quantities are known at t, the time t cash-flow is zero, so the cash-flow at T needs to be zero
so we have

F (t, T ) = S(t)er(T−t) (1.3)
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dividend paying stocks

Assume a continuous dividend κ, so we have a dividend rate of κS(t)dt, which is immediately
reinvested in the stock. We thus have a growth rate of eg(T−t) over the period of the quantity of
stocks detained. Thus we only have to buy e−g(T−t) shares of stock S at time time. Replace in
the above portfolio and obtain

F (t, T ) = S(t)e(r−g)(T−t) (1.4)

storable commodity

Here the convenience yield plays the role of the dividend an we obtain (??).
In case of a linear rate this relationship is of the form

F (t, T ) = S(t) {1 + (r − y)(T − t)} .

With the decomposition y = y1 − c with y1 the benefit from the physical commodity and c the
storage cost we have

F (t, T ) = S(t) {1 + r(T − t) + c(T − t)− y1(T − t)} .

Observe that (??) implies

(i) spot and forward are redundant (one can replace the other) and form a linear relationship
(unlike options)

(ii) with two forward prices we can derive the value of S(t) and y

(iii) knowledge of S(t) and y allows us to construct the whole forward curve

(iv) for r − y < 0 we have backwardation; for y − r > 0 we have contango.

1.3.4 Futures Pricing Relations

The value Vf (t) of a futures contract entered in at 0 at time t is

Vf (t) = e−r(T−t)(f(t, T )− f(0, T )) (1.5)

Despite their fundamental differences, futures prices fS(t, T ) – on a stock S at time t with expiry
T – and the corresponding forward prices FS(t, T ), are closely linked. We use the notation p(t, T )
for the bond price process.

Proposition 1.3.1. If the bond price process p(t, T ) is predictable, the combined spot-futures
market is arbitrage-free if and only if the futures and forward prices agree: for every underlying S
and every t ≤ T ,

fS(t, T ) = FS(t, T ).

In the important special case of the futures analogue of the Black-Scholes model, to which we turn
below, the bond price process – or interest-rates process – is deterministic, so predictable.

1.4 Pricing Formulae for Options

1.4.1 Black-Scholes Formula

The Model

We concentrate on the classical Black-Scholes model

dB(t) = rB(t)dt, B(0) = 1,
dS(t) = S(t) (bdt+ σdW (t)), S(0) = p ∈ (0,∞),
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with constant coefficients b ∈ IR, r, σ ∈ IR+. We write as usual S̃(t) = S(t)/B(t) for the discounted
stock price process (with the bank account being the natural numéraire), and get from Itô’s formula

dS̃(t) = S̃(t) {(b− r)dt+ σdW (t)}.

Equivalent Martingale Measure

Because we use the Brownian filtration any pair of equivalent probability measures IP ∼ QQ on FT
is a Girsanov pair, i.e.

dQQ

dIP

∣∣∣∣
Ft

= L(t)

with

L(t) = exp

−
t∫

0

γ(s)dW (s)− 1
2

t∫
0

γ(s)2ds

,
and (γ(t) : 0 ≤ t ≤ T ) a measurable, adapted d-dimensional process with

∫ T
0
γ(t)2dt < ∞ a.s..

By Girsanov’s theorem A.1.4 we have

dW (t) = dW̃ (t)− γ(t)dt,

where W̃ is a QQ-Wiener process. Thus the QQ-dynamics for S̃ are

dS̃(t) = S̃(t)
{

(b− r − σγ(t))dt+ σdW̃ (t)
}
.

Since S̃ has to be a martingale under QQ we must have

b− r − σγ(t) = 0 t ∈ [0, T ],

and so we must choose
γ(t) ≡ γ =

b− r

σ
,

(the ’market price of risk’). Indeed, this argument leads to a unique martingale measure, and we
will make use of this fact later on. Using the product rule, we find the QQ-dynamics of S as

dS(t) = S(t)
{
rdt+ σdW̃

}
.

We see that the appreciation rate b is replaced by the interest rate r, hence the terminology
risk-neutral (or yield-equating) martingale measure.
We also know that we have a unique martingale measure IP ∗ (recall γ = (b − r)/σ in Girsanov’s
transformation).

Pricing and Hedging Contingent Claims

Recall that a contingent claim X is a FT -measurable random variable such that X/B(T ) ∈
L1(Ω,FT , IP ∗). (We write IE∗ for IEIP∗ in this section.) By the risk-neutral valuation princi-
ple the price of a contingent claim X is given by

ΠX(t) = e{−r(T−t)}IE∗ [X| Ft],

with IE∗ given via the Girsanov density

L(t) = exp

{
−

(
b− r

σ

)
W (t)− 1

2

(
b− r

σ

)2

t

}
.

Now consider a European call with strike K and maturity T on the stock S (so Φ(T ) = (S(T )−
K)+), we can evaluate the above expected value (which is easier than solving the Black-Scholes
partial differential equation) and obtain:
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Proposition 1.4.1 (Black-Scholes Formula). The Black-Scholes price
process of a European call is given by

C(t) = S(t)Φ(d1(S(t), T − t))−Ke−r(T−t)Φ(d2(S(t), T − t)). (1.6)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√
t

,

d2(s, t) = d1(s, t)− σ
√
t =

log(s/K) + (r − σ2

2 )t
σ
√
t

Proposition 1.4.2. The replicating strategy in the classical Black-Scholes model is given by

ϕ0 =
F (t, S(t))− Fs(t, S(t))S(t)

B(t)
,

ϕ1 = Fs(t, S(t)).

We can also use an arbitrage approach to derive the Black-Scholes formula. For this consider a
self-financing portfolio which has dynamics

dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)dS(t) = (ϕ0(t)rB(t) + ϕ1(t)µS(t))dt+ ϕ1(t)σS(t)dW (t).

Assume that the portfolio value can be written as

Vϕ(t) = V (t) = f(t, S(t))

for a suitable function f ∈ C1,2. Then by Itô’s formula

dV (t) = (ft(t, St) + fx(t, St)Stµ+
1
2
S2
t σ

2fxx(t, St))dt+ fx(t, St)σStdWt.

Now we match the coefficients and find

ϕ1(t) = fx(t, St)

and
ϕ0(t) =

1
rB(t)

(ft(t, St) +
1
2
σ2S2

t fxx(t, St)).

Then looking at the total portfolio value we find that f(t, x) must satisfy the Black-Scholes partial
differential equation

ft(t, x) + rxfx(t, x) +
1
2
σ2x2fxx(t, x)− rf(t, x) = 0 (1.7)

and initial condition f(T, x) = (x−K)+.

1.4.2 Options on Dividend-paying Stocks

1.4.3 Black’s Futures Options Formula

We turn now to the problem of extending our option pricing theory from spot markets to futures
markets. We assume that the stock-price dynamics S are given by geometric Brownian motion

dS(t) = bS(t)dt+ σS(t)dW (t),
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and that interest rates are deterministic. We know that there exists a unique equivalent martingale
measure, IP ∗ (for the discounted stock price processes), with expectation IE∗. Write

f(t) := fS(t, T ∗)

for the futures price f(t) corresponding to the spot price S(t). Then risk-neutral valuation gives

f(t) = IE∗(S(T ∗)|Ft) (t ∈ [0, T ∗]),

while forward prices are given in terms of bond prices by

F (t) = S(t)/B(t, T ∗) (t ∈ [0, T ∗]).

So by Proposition 1.3.1
f(t) = F (t) = S(t)er(T

∗−t) (t ∈ [0, T ∗]).

So we can use the product rule (??) to determine the dynamics of the futures price

df(t) = (b− r)f(t)dt+ σf(t)dW (t), f(0) = S(0)erT
∗
.

We know that the unique equivalent martingale measure in this setting is given by means of a
Girsanov density

L(t) = exp{−b− r

σ
W (t)− 1

2
(
b− r

σ
)2t},

so the IP ∗-dynamics of the futures price are df(t) = σf(t)dW̃ (t) with W̃ a IP ∗-Brownian motion,
so f is a IP ∗-martingale. Observe that our derivation depends critically on the fact that interest
rates are deterministic; for a more extended treatment, we refer to Musiela and Rutkowski (1997),
§6.1.
We turn briefly now to the futures analogue of the Black-Scholes formula, due to Black (1976). We
and use the same notation - strike K, expiry T as in the spot case, and write N for the standard
normal distribution function.

Theorem 1.4.1. The arbitrage price C of a European futures call option is

C(t) = c(f(t), T − t),

where c(f, t) is given by Black’s futures options formula:

c(f, t) := e−rt(fN(d1(f, t))−KN(d2(f, t))),

where

d1,2(f, t) :=
log(f/K)± 1

2σ
2t

σ
√
t

.

Proof. By risk-neutral valuation,

C(t) = B(t)IE∗
[
(f(T )−K)+/B(T )|Ft

]
,

with B(t) = ert. For simplicity, we work with t = 0; the extension to the general case is immediate.
Thus

C(0) = IE∗
[
(f(T )−K)+/B(T )

]
= IE∗

[
e−rT f(T )1D

]
− IE∗

[
e−rTK1D

]
= 11 − 12

say, where
D := {f(T ) > K}.
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Thus
12 = e−rTKIP ∗(f(T ) > K)

= e−rTKIP ∗
(
f(0) exp

{
σW̃ (T )− 1

2
σ2T

}
> K

)
,

where W̃ is a standard Brownian motion under IP ∗. Now ξ := −W̃ (T )/
√
T is standard normal,

with law N under IP ∗, so

12 = e−rTKIP ∗
(
ξ <

log(f(0)/K)− 1
2σ

2

σ
√
T

)
= e−rTKN

(
log(f(0)/K)− 1

2σ
2

σ
√
T

)
= e−rTKd2(f(0), T ).

A similar calculation, also proceeding as in the spot-market case, gives

11 = e−rT f(0)d1(f(0), T ).

Observe that the quantities d1 and d2 do not depend on the interest rate r. This is intuitively
clear from the classical Black approach: one sets up a replicating risk-free portfolio consisting of
a position in futures options and an offsetting position in the underlying futures contract. The
portfolio requires no initial investment and therefore should not earn any interest.



Appendix A

Continuous-time Financial Market
Models

A.1 The Stock Price Process and its Stochastic Calculus

A.1.1 Continuous-time Stochastic Processes

A stochastic process X = (X(t))t≥0 is a family of random variables defined on (Ω,F , IP, IF ). We
say X is adapted if X(t) ∈ Ft (i.e. X(t) is Ft-measurable) for each t: thus X(t) is known when
Ft is known, at time t.
The martingale property in continuous time is just that suggested by the discrete-time case:

Definition A.1.1. A stochastic process X = (X(t))0≤t<∞ is a martingale relative to (IF, IP ) if

(i) X is adapted, and IE |X(t)| <∞ for all ≤ t <∞;

(ii) IE[X(t)|Fs] = X(s) IP − a.s. (0 ≤ s ≤ t),

and similarly for sub- and supermartingales.

There are regularisation results, under which one can take X(t) RCLL in t (basically t→ IEX(t)
has to be right-continuous). Then the analogues of the results for discrete-time martingales hold
true.
Interpretation. Martingales model fair games. Submartingales model favourable games. Super-
martingales model unfavourable games.
Brownian motion originates in work of the botanist Robert Brown in 1828. It was introduced into
finance by Louis Bachelier in 1900, and developed in physics by Albert Einstein in 1905.

Definition A.1.2. A stochastic process X = (X(t))t≥0 is a standard (one-dimensional) Brownian
motion, BM or BM(IR), on some probability space (Ω,F , IP ), if

(i) X(0) = 0 a.s.,

(ii) X has independent increments: X(t+u)−X(t) is independent of σ(X(s) : s ≤ t) for u ≥ 0,

(iii) X has stationary increments: the law of X(t+ u)−X(t) depends only on u,

(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed with mean 0 and
variance u, X(t+ u)−X(t) ∼ N(0, u),

(v) X has continuous paths: X(t) is a continuous function of t, i.e. t → X(t, ω) is continuous
in t for all ω ∈ Ω.

19
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We shall henceforth denote standard Brownian motion BM(IR) by W = (W (t)) (W for Wiener),
though B = (B(t)) (B for Brown) is also common. Standard Brownian motion BM(IRd) in d
dimensions is defined by W (t) := (W1(t), . . . ,Wd(t)), where W1, . . . ,Wd are independent standard
Brownian motions in one dimension (independent copies of BM(IR)).
We have Wiener’s theorem:

Theorem A.1.1 (Wiener). Brownian motion exists.

For further background, see any measure-theoretic text on stochastic processes. A treatment
starting directly from our main reference of measure-theoretic results, Williams Williams (1991),
is Rogers and Williams Rogers and Williams (1994), Chapter 1. The classic is Doob’s book, Doob
(1953), VIII.2. Excellent modern texts include ? (see particularly Karatzas and Shreve (1991),
§2.2-4 for construction).

A.1.2 Stochastic Analysis

Stochastic integration was introduced by K. Itô in 1944, hence its name Itô calculus. It gives a
meaning to

t∫
0

XdY =

t∫
0

X(s, ω)dY (s, ω),

for suitable stochastic processes X and Y , the integrand and the integrator. We shall confine our
attention here mainly to the basic case with integrator Brownian motion: Y = W . Much greater
generality is possible: for Y a continuous martingale, see Karatzas and Shreve (1991) or Revuz
and Yor (1991); for a systematic general treatment, see Protter (2004).
The first thing to note is that stochastic integrals with respect to Brownian motion, if they exist,
must be quite different from the measure-theoretic integral. For, the Lebesgue-Stieltjes integrals
described there have as integrators the difference of two monotone (increasing) functions, which
are locally of bounded variation. But we know that Brownian motion is of infinite (unbounded)
variation on every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamentally different.
In view of the above, it is quite surprising that Itô integrals can be defined at all. But if we take
for granted Itô’s fundamental insight that they can be, it is obvious how to begin and clear enough
how to proceed. We begin with the simplest possible integrands X, and extend successively in
much the same way that we extended the measure-theoretic integral.

Indicators.

If X(t, ω) = 1[a,b](t), there is exactly one plausible way to define
∫
XdW :

t∫
0

X(s, ω)dW (s, ω) :=

 0 if t ≤ a,
W (t)−W (a) if a ≤ t ≤ b,
W (b)−W (a) if t ≥ b.

Simple Functions.

Extend by linearity: if X is a linear combination of indicators, X =
∑n
i=1 ci1[ai,bi], we should

define
t∫

0

XdW :=
n∑
i=1

ci

t∫
0

1[ai,bi]dW.

Already one wonders how to extend this from constants ci to suitable random variables, and one
seeks to simplify the obvious but clumsy three-line expressions above.
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We begin again, this time calling a stochastic process X simple if there is a partition 0 = t0 <
t1 < . . . < tn = T <∞ and uniformly bounded Ftn -measurable random variables ξk (|ξk| ≤ C for
all k = 0, . . . , n and ω, for some C) and if X(t, ω) can be written in the form

X(t, ω) = ξ0(ω)1{0}(t) +
n∑
i=0

ξi(ω)1(ti,ti+1](t) (0 ≤ t ≤ T, ω ∈ Ω).

Then if tk ≤ t < tk+1,

It(X) :=

t∫
0

XdW =
k−1∑
i=0

ξi(W (ti+1)−W (ti)) + ξk(W (t)−W (tk))

=
n∑
i=0

ξi(W (t ∧ ti+1)−W (t ∧ ti)).

Note that by definition I0(X) = 0 IP −a.s. . We collect some properties of the stochastic integral
defined so far:

Lemma A.1.1. (i) It(aX + bY ) = aIt(X) + bIt(Y ).
(ii) IE(It(X)|Fs) = Is(X) IP − a.s. (0 ≤ s < t <∞), hence It(X) is a continuous martingale.

The stochastic integral for simple integrands is essentially a martingale transform, and the above
is essentially the proof that martingale transforms are martingales.
We pause to note a property of square-integrable martingales which we shall need below. Call
M(t) − M(s) the increment of M over (s, t]. Then for a martingale M , the product of the
increments over disjoint intervals has zero mean. For, if s < t ≤ u < v,

IE [(M(v)−M(u))(M(t)−M(s))]

= IE [IE((M(v)−M(u))(M(t)−M(s))|Fu)]

= IE [(M(t)−M(s))IE((M(v)−M(u))|Fu)] ,

taking out what is known (as s, t ≤ u). The inner expectation is zero by the martingale property,
so the left-hand side is zero, as required.
We now can add further properties of the stochastic integral for simple functions.

Lemma A.1.2. (i) We have the Itô isometry

IE
(
(It(X))2

)
= IE

 t∫
0

X(s)2ds

.
(ii)IE

(
(It(X)− Is(X))2|Fs

)
= IE

(∫ t
s
X(u)2du

)
IP − a.s.

The Itô isometry above suggests that
∫ t
0
XdW should be defined only for processes with

t∫
0

IE
(
X(u)2

)
du <∞ for all t.

We then can transfer convergence on a suitable L2-space of stochastic processes to a suitable L2-
space of martingales. This gives us an L2-theory of stochastic integration, for which Hilbert-space
methods are available.
For the financial applications we have in mind, there is a fixed time-interval - [0, T ] say - on which
we work (e.g., an option is written at time t = 0, with expiry time t = T ). Then the above
becomes

T∫
0

IE(X(u)2)du <∞.
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Approximation.

We seek a class of integrands suitably approximable by simple integrands. It turns out that:

(i) The suitable class of integrands is the class of (B([0,∞)) ⊗ F)-measurable, (Ft)- adapted
processes X with

∫ t
0
IE

(
X(u)2

)
du <∞ for all t > 0.

(ii) Each such X may be approximated by a sequence of simple integrands Xn so that the sto-
chastic integral It(X) =

∫ t
0
XdW may be defined as the limit of It(Xn) =

∫ t
0
XndW .

(iii) The properties from both lemmas above remain true for the stochastic integral
∫ t
0
XdW de-

fined by (i) and (ii).

Example.

We calculate
∫
W (u)dW (u). We start by approximating the integrand by a sequence of simple

functions.

Xn(u) =


W (0) = 0 if 0 ≤ u ≤ t/n,
W (t/n) if t/n < u ≤ 2t/n,
...

...
W

(
(n−1)t
n

)
if (n− 1)t/n < u ≤ t.

By definition,

t∫
0

W (u)dW (u) = lim
n→∞

n−1∑
k=0

W

(
kt

n

) (
W

(
(k + 1)t

n

)
−W

(
kt

n

))
.

Rearranging terms, we obtain for the sum on the right

n−1∑
k=0

W

(
kt

n

) (
W

(
(k + 1)t

n

)
−W

(
kt

n

))

=
1
2
W (t)2 − 1

2

[
n−1∑
k=0

(
W

(
(k + 1)t

n

)
−W

(
kt

n

))2
]
.

Since the second term approximates the quadratic variation of W and hence tends to t for n→∞,
we find

t∫
0

W (u)dW (u) =
1
2
W (t)2 − 1

2
t. (A.1)

Note the contrast with ordinary (Newton-Leibniz) calculus! Itô calculus requires the second term
on the right – the Itô correction term – which arises from the quadratic variation of W .

One can construct a closely analogous theory for stochastic integrals with the Brownian integrator
W above replaced by a square-integrable martingale integrator M . The properties above hold,
with (i) in Lemma replaced by

IE


 t∫

0

X(u)dM(u)

2
 = IE

 t∫
0

X(u)2d〈M〉(u)

.
Quadratic Variation, Quadratic Covariation.

We shall need to extend quadratic variation and quadratic covariation to stochastic integrals. The
quadratic variation of It(X) =

∫ t
0
X(u)dW (u) is

∫ t
0
X(u)2du. This is proved in the same way as the
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case X ≡ 1, that W has quadratic variation process t. More generally, if Z(t) =
∫ t
0
X(u)dM(u)

for a continuous martingale integrator M , then 〈Z〉 (t) =
∫ t
0
X2(u)d 〈M〉 (u). Similarly (or by

polarisation), if Zi(t) =
∫ t
0
Xi(u)dMi(u) (i = 1, 2), 〈Z1, Z2〉 (t) =

∫ t
0
X1(u)X2(u)d 〈M1,M2〉 (u).

A.1.3 Itô’s Lemma

Suppose that b is adapted and locally integrable (so
∫ t
0
b(s)ds is defined as an ordinary integral),

and σ is adapted and measurable with
∫ t
0
IE

(
σ(u)2

)
du <∞ for all t (so

∫ t
0
σ(s)dW (s) is defined

as a stochastic integral). Then

X(t) := x0 +

t∫
0

b(s)ds+

t∫
0

σ(s)dW (s)

defines a stochastic process X with X(0) = x0. It is customary, and convenient, to express such
an equation symbolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt+ σ(t)dW (t), X(0) = x0. (A.2)

Now suppose f : IR→ IR is of class C2. The question arises of giving a meaning to the stochastic
differential df(X(t)) of the process f(X(t)), and finding it. Given a partition P of [0, t], i.e.
0 = t0 < t1 < . . . < tn = t, we can use Taylor’s formula to obtain

f(X(t))− f(X(0)) =
n−1∑
k=0

f(X(tk+1))− f(X(tk))

=
n−1∑
k=0

f ′(X(tk))∆X(tk)

+
1
2

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2

with 0 < θk < 1. We know that
∑

(∆X(tk))2 → 〈X〉 (t) in probability (so, taking a subsequence,
with probability one), and with a little more effort one can prove

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2 →
t∫

0

f ′′(X(u))d 〈X〉 (u).

The first sum is easily recognized as an approximating sequence of a stochastic integral; indeed,
we find

n−1∑
k=0

f ′(X(tk))∆X(tk) →
t∫

0

f ′(X(u))dX(u).

So we have

Theorem A.1.2 (Basic Itô formula). If X has stochastic differential given by A.2 and f ∈ C2,
then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d 〈X〉 (t),

or writing out the integrals,

f(X(t)) = f(x0) +

t∫
0

f ′(X(u))dX(u) +
1
2

t∫
0

f ′′(X(u))d 〈X〉 (u).
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More generally, suppose that f : IR2 → IR is a function, continuously differentiable once in its
first argument (which will denote time), and twice in its second argument (space): f ∈ C1,2. By
the Taylor expansion of a smooth function of several variables we get for t close to t0 (we use
subscripts to denote partial derivatives: ft := ∂f/∂t, ftx := ∂2f/∂t∂x):

f(t,X(t)) = f(t0, X(t0))

+(t− t0)ft(t0, X(t0)) + (X(t)−X(t0))fx(t0, X(t0))

+
1
2
(t− t0)2ftt(t0, X(t0)) +

1
2
(X(t)−X(t0))2fxx(t0, X(t0))

+(t− t0)(X(t)−X(t0))ftx(t0, X(t0)) + . . . ,

which may be written symbolically as

df = ftdt+ fxdX +
1
2
ftt(dt)2 + ftxdtdX +

1
2
fxx(dX)2 + . . . .

In this, we substitute dX(t) = b(t)dt+ σ(t)dW (t) from above, to obtain

df = ftdt+ fx(bdt+ σdW )

+
1
2
ftt(dt)2 + ftxdt(bdt+ σdW ) +

1
2
fxx(bdt+ σdW )2 + . . .

Now using the formal multiplication rules dt · dt = 0, dt · dW = 0, dW · dW = dt (which are just
shorthand for the corresponding properties of the quadratic variations, we expand

(bdt+ σdW )2 = σ2dt+ 2bσdtdW + b2(dt)2 = σ2dt+ higher-order terms

to get finally

df =
(
ft + bfx +

1
2
σ2fxx

)
dt+ σfxdW + higher-order terms.

As above the higher-order terms are irrelevant, and summarising, we obtain Itô’s lemma, the
analogue for the Itô or stochastic calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem A.1.3 (Itô’s Lemma). If X(t) has stochastic differential given by A.2, then f =
f(t,X(t)) has stochastic differential

df =
(
ft + bfx +

1
2
σ2fxx

)
dt+ σfxdW.

That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +

t∫
0

(ft + bfx +
1
2
σ2fxx)dt+

t∫
0

σfxdW.

We will make good use of:

Corollary A.1.1. IE (f(t,X(t))) = f0 +
∫ t
0
IE

(
ft + bfx + 1

2σ
2fxx

)
dt.

Proof.
∫ t
0
σf2dW is a stochastic integral, so a martingale, so its expectation is constant (= 0, as

it starts at 0).
The differential equation (A.3) above has the unique solution

S(t) = S(0) exp
{(

µ− 1
2
σ2

)
t+ σdW (t)

}
.
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For, writing

f(t, x) := exp
{(

µ− 1
2
σ2

)
t+ σx

}
,

we have

ft =
(
µ− 1

2
σ2

)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has
dx = dW (t), (dx)2 = dt.

Thus Itô’s lemma gives

df(t,W (t)) = ftdt+ fxdW (t) +
1
2
fxx(dW (t))2

= f

((
µ− 1

2
σ2

)
dt+ σdW (t) +

1
2
σ2dt

)
= f(µdt+ σdW (t)),

so f(t,W (t)) is a solution of the stochastic differential equation, and the initial condition f(0,W (0)) =
S(0) as W (0) = 0, giving existence.

Geometric Brownian Motion

Now that we have both Brownian motion W and Itô’s Lemma to hand, we can introduce the most
important stochastic process for us, a relative of Brownian motion - geometric (or exponential, or
economic) Brownian motion.
Suppose we wish to model the time evolution of a stock price S(t) (as we will, in the Black-Scholes
theory). Consider how S will change in some small time-interval from the present time t to a time
t + dt in the near future. Writing dS(t) for the change S(t + dt) − S(t) in S, the return on S in
this interval is dS(t)/S(t). It is economically reasonable to expect this return to decompose into
two components, a systematic part and a random part. The systematic part could plausibly be
modelled by µdt, where µ is some parameter representing the mean rate of return of the stock.
The random part could plausibly be modelled by σdW (t), where dW (t) represents the noise term
driving the stock price dynamics, and σ is a second parameter describing how much effect this
noise has - how much the stock price fluctuates. Thus σ governs how volatile the price is, and is
called the volatility of the stock. The role of the driving noise term is to represent the random
buffeting effect of the multiplicity of factors at work in the economic environment in which the
stock price is determined by supply and demand.
Putting this together, we have the stochastic differential equation

dS(t) = S(t)(µdt+ σdW (t)), S(0) > 0, (A.3)

due to Itô in 1944. This corrects Bachelier’s earlier attempt of 1900 (he did not have the factor
S(t) on the right - missing the interpretation in terms of returns, and leading to negative stock
prices!) Incidentally, Bachelier’s work served as Itô’s motivation in introducing Itô calculus. The
mathematical importance of Itô’s work was recognised early, and led on to the work of Doob (1953),
Meyer (1976) and many others (see the memorial volume Ikeda, Watanabe, M., and Kunita (1996)
in honour of Itô’s eightieth birthday in 1995). The economic importance of geometric Brownian
motion was recognised by Paul A. Samuelson in his work from 1965 on (Samuelson (1965)), for
which Samuelson received the Nobel Prize in Economics in 1970, and by Robert Merton (see
Merton (1990) for a full bibliography), in work for which he was similarly honoured in 1997.
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A.1.4 Girsanov’s Theorem

Consider first independent N(0, 1) random variables Z1, . . . , Zn on a probability space (Ω,F , IP ).
Given a vector γ = (γ1, . . . , γn), consider a new probability measure ĨP on (Ω,F) defined by

ĨP (dω) = exp

{
n∑
i=1

γiZi(ω)− 1
2

n∑
i=1

γ2
i

}
IP (dω).

As exp{.} > 0 and integrates to 1, as
∫

exp{γiZi}dIP = exp{ 1
2γ

2
i }, this is a probability measure.

It is also equivalent to IP (has the same null sets), again as the exponential term is positive. Also

ĨP (Zi ∈ dzi, i = 1, . . . , n)

= exp

{
n∑
i=1

γiZi −
1
2

n∑
i=1

γ2
i

}
IP (Zi ∈ dzi, i = 1, . . . , n)

= (2π)−
n
2 exp

{
n∑
i=1

γizi −
1
2

n∑
i=1

γ2
i −

1
2

n∑
i=1

z2
i

}
n∏
i=1

dzi

= (2π)−
n
2 exp

{
−1

2

n∑
i=1

(zi − γi)2
}
dz1 . . . dzn.

This says that if the Zi are independent N(0, 1) under IP , they are independent N(γi, 1) under ĨP .
Thus the effect of the change of measure IP → ĨP , from the original measure IP to the equivalent
measure ĨP , is to change the mean, from 0 = (0, . . . , 0) to γ = (γ1, . . . , γn).
This result extends to infinitely many dimensions - i.e., from random vectors to stochastic processes,
indeed with random rather than deterministic means. Let W = (W1, . . .Wd) be a d-dimensional
Brownian motion defined on a filtered probability space (Ω,F , IP, IF ) with the filtration IF satis-
fying the usual conditions. Let (γ(t) : 0 ≤ t ≤ T ) be a measurable, adapted d-dimensional process
with

∫ T
0
γi(t)2dt <∞ a.s., i = 1, . . . , d, and define the process (L(t) : 0 ≤ t ≤ T ) by

L(t) = exp

−
t∫

0

γ(s)′dW (s)− 1
2

t∫
0

‖γ(s)‖2 ds

. (A.4)

Then L is continuous, and, being the stochastic exponential of −
∫ t
0
γ(s)′dW (s), is a local martin-

gale. Given sufficient integrability on the process γ, L will in fact be a (continuous) martingale.
For this, Novikov’s condition suffices:

IE

exp

1
2

T∫
0

‖γ(s)‖2 ds


 <∞. (A.5)

We are now in the position to state a version of Girsanov’s theorem, which will be one of our main
tools in studying continuous-time financial market models.

Theorem A.1.4 (Girsanov). Let γ be as above and satisfy Novikov’s condition; let L be the
corresponding continuous martingale. Define the processes W̃i, i = 1, . . . , d by

W̃i(t) := Wi(t) +

t∫
0

γi(s)ds, (0 ≤ t ≤ T ), i = 1, . . . , d.

Then under the equivalent probability measure ĨP (defined on (Ω,FT )) with Radon-Nikodým deriv-
ative

dĨP

dIP
= L(T ),

the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.
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In particular, for γ(t) constant (= γ), change of measure by introducing the Radon-Nikodým
derivative exp

{
−γW (t)− 1

2γ
2t

}
corresponds to a change of drift from c to c− γ. If IF = (Ft) is

the Brownian filtration (basically Ft = σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual
conditions) any pair of equivalent probability measures QQ ∼ IP on F = FT is a Girsanov pair, i.e.

dQ̃Q

dIP

∣∣∣∣∣
Ft

= L(t)

with L defined as above. Girsanov’s theorem (or the Cameron-Martin-Girsanov theorem) is for-
mulated in varying degrees of generality, discussed and proved, e.g. in Karatzas and Shreve (1991),
§3.5, Protter (2004), III.6, Revuz and Yor (1991), VIII, Dothan (1990), §5.4 (discrete time), §11.6
(continuous time).

A.2 Financial Market Models

A.2.1 The Financial Market Model

We start with a general model of a frictionless (compare Chapter 1) security market where investors
are allowed to trade continuously up to some fixed finite planning horizon T . Uncertainty in the
financial market is modelled by a probability space (Ω,F , IP ) and a filtration IF = (Ft)0≤t≤T
satisfying the usual conditions of right-continuity and completeness. We assume that the σ-field
F0 is trivial, i.e. for every A ∈ F0 either IP (A) = 0 or IP (A) = 1, and that FT = F .
There are d + 1 primary traded assets, whose price processes are given by stochastic processes
S0, . . . , Sd. We assume that the processes S0, . . . , Sd represent the prices of some traded assets
(stocks, bonds, or options).
We have not emphasised so far that there was an implicit numéraire behind the prices S0, . . . , Sd; it
is the numéraire relevant for domestic transactions at time t. The formal definition of a numéraire
is very much as in the discrete setting.

Definition A.2.1. A numéraire is a price process X(t) almost surely strictly positive for each
t ∈ [0, T ].

We assume now that S0(t) is a non-dividend paying asset, which is (almost surely) strictly positive
and use S0 as numéraire. ‘Historically’ (see Harrison and Pliska (1981)) the money market account
B(t), given by B(t) = er(t) with a positive deterministic process r(t) and r(0) = 0, was used as a
numéraire, and the reader may think of S0(t) as being B(t).
Our principal task will be the pricing and hedging of contingent claims, which we model as FT -
measurable random variables. This implies that the contingent claims specify a stochastic cash-flow
at time T and that they may depend on the whole path of the underlying in [0, T ] - because FT
contains all that information. We will often have to impose further integrability conditions on
the contingent claims under consideration. The fundamental concept in (arbitrage) pricing and
hedging contingent claims is the interplay of self-financing replicating portfolios and risk-neutral
probabilities. Although the current setting is on a much higher level of sophistication, the key
ideas remain the same.
We call an IRd+1-valued predictable process

ϕ(t) = (ϕ0(t), . . . , ϕd(t)), t ∈ [0, T ]

with
∫ T
0
IE(ϕ0(t))dt < ∞,

∑d
i=0

∫ T
0
IE(ϕ2

i (t))dt < ∞ a trading strategy (or dynamic portfolio
process). Here ϕi(t) denotes the number of shares of asset i held in the portfolio at time t - to
be determined on the basis of information available before time t; i.e. the investor selects his time
t portfolio after observing the prices S(t−). The components ϕi(t) may assume negative as well
as positive values, reflecting the fact that we allow short sales and assume that the assets are
perfectly divisible.
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Definition A.2.2. (i) The value of the portfolio ϕ at time t is given by the scalar product

Vϕ(t) := ϕ(t) · S(t) =
d∑
i=0

ϕi(t)Si(t), t ∈ [0, T ].

The process Vϕ(t) is called the value process, or wealth process, of the trading strategy ϕ.
(ii) The gains process Gϕ(t) is defined by

Gϕ(t) :=

t∫
0

ϕ(u)dS(u) =
d∑
i=0

t∫
0

ϕi(u)dSi(u).

(iii) A trading strategy ϕ is called self-financing if the wealth process Vϕ(t) satisfies

Vϕ(t) = Vϕ(0) +Gϕ(t) for all t ∈ [0, T ].

Remark A.2.1. (i) The financial implications of the above equations are that all changes in the
wealth of the portfolio are due to capital gains, as opposed to withdrawals of cash or injections of
new funds.
(ii) The definition of a trading strategy includes regularity assumptions in order to ensure the
existence of stochastic integrals.

Using the special numéraire S0(t) we consider the discounted price process

S̃(t) :=
S(t)
S0(t)

= (1, S̃1(t), . . . S̃d(t))

with S̃i(t) = Si(t)/S0(t), i = 1, 2, . . . , d. Furthermore, the discounted wealth process Ṽϕ(t) is
given by

Ṽϕ(t) :=
Vϕ(t)
S0(t)

= ϕ0(t) +
d∑
i=1

ϕi(t)S̃i(t)

and the discounted gains process G̃ϕ(t) is

G̃ϕ(t) :=
d∑
i=1

t∫
0

ϕi(t)dS̃i(t).

Observe that G̃ϕ(t) does not depend on the numéraire component ϕ0.
It is convenient to reformulate the self-financing condition in terms of the discounted processes:

Proposition A.2.1. Let ϕ be a trading strategy. Then ϕ if self-financing if and only if

Ṽϕ(t) = Ṽϕ(0) + G̃ϕ(t).

Of course, Vϕ(t) ≥ 0 if and only if Ṽϕ(t) ≥ 0.

The proof follows by the numéraire invariance theorem using S0 as numéraire.

Remark A.2.2. The above result shows that a self-financing strategy is completely determined by
its initial value and the components ϕ1, . . . , ϕd. In other words, any set of predictable processes
ϕ1, . . . , ϕd such that the stochastic integrals

∫
ϕidS̃i, i = 1, . . . , d exist can be uniquely extended to

a self-financing strategy ϕ with specified initial value Ṽϕ(0) = v by setting the cash holding as

ϕ0(t) = v +
d∑
i=1

t∫
0

ϕi(u)dS̃i(u)−
d∑
i=1

ϕi(t)S̃i(t), t ∈ [0, T ].
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A.2.2 Equivalent Martingale Measures

We develop a relative pricing theory for contingent claims. Again the underlying concept is the
link between the no-arbitrage condition and certain probability measures. We begin with:

Definition A.2.3. A self-financing trading strategy ϕ is called an arbitrage opportunity if the
wealth process Vϕ satisfies the following set of conditions:

Vϕ(0) = 0, IP (Vϕ(T ) ≥ 0) = 1, and IP (Vϕ(T ) > 0) > 0.

Arbitrage opportunities represent the limitless creation of wealth through risk-free profit and thus
should not be present in a well-functioning market.
The main tool in investigating arbitrage opportunities is the concept of equivalent martingale
measures:

Definition A.2.4. We say that a probability measure QQ defined on (Ω,F) is an equivalent mar-
tingale measure if:

(i) QQ is equivalent to IP ,
(ii) the discounted price process S̃ is a QQ martingale.

We denote the set of martingale measures by P.

A useful criterion in determining whether a given equivalent measure is indeed a martingale mea-
sure is the observation that the growth rates relative to the numéraire of all given primary assets
under the measure in question must coincide. For example, in the case S0(t) = B(t) we have:

Lemma A.2.1. Assume S0(t) = B(t) = er(t), then QQ ∼ IP is a martingale measure if and only
if every asset price process Si has price dynamics under QQ of the form

dSi(t) = r(t)Si(t)dt+ dMi(t),

where Mi is a QQ-martingale.

The proof is an application of Itô’s formula.
In order to proceed we have to impose further restrictions on the set of trading strategies.

Definition A.2.5. A self-financing trading strategy ϕ is called tame (relative to the numéraire
S0) if

Ṽϕ(t) ≥ 0 for all t ∈ [0, T ].
We use the notation Φ for the set of tame trading strategies.

We next analyse the value process under equivalent martingale measures for such strategies.

Proposition A.2.2. For ϕ ∈ Φ Ṽϕ(t) is a martingale under each QQ ∈ P.

This observation is the key to our first central result:

Theorem A.2.1. Assume P 6= ∅. Then the market model contains no arbitrage opportunities in
Φ.

Proof. For any ϕ ∈ Φ and under any QQ ∈ P Ṽϕ(t) is a martingale. That is,

IEQQ

(
Ṽϕ(t)|Fu

)
= Ṽϕ(u), for all u ≤ t ≤ T.

For ϕ ∈ Φ to be an arbitrage opportunity we must have Ṽϕ(0) = Vϕ(0) = 0. Now

IEQQ

(
Ṽϕ(t)

)
= 0, for all 0 ≤ t ≤ T.

Now ϕ is tame, so Ṽϕ(t) ≥ 0, 0 ≤ t ≤ T , implying IEQQ
(
Ṽϕ(t)

)
= 0, 0 ≤ t ≤ T , and in particular

IEQQ

(
Ṽϕ(T )

)
= 0. But an arbitrage opportunity ϕ also has to satisfy IP (Vϕ(T ) ≥ 0) = 1, and

since QQ ∼ IP , this means QQ (Vϕ(T ) ≥ 0) = 1. Both together yield

QQ (Vϕ(T ) > 0) = IP (Vϕ(T ) > 0) = 0,

and hence the result follows.
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A.2.3 Risk-neutral Pricing

We now assume that there exists an equivalent martingale measure IP ∗ which implies that there
are no arbitrage opportunities with respect to Φ in the financial market model. Until further notice
we use IP ∗ as our reference measure, and when using the term martingale we always assume that
the underlying probability measure is IP ∗. In particular, we restrict our attention to contingent
claims X such that X/S0(T ) ∈ L1(F , IP ∗).
We now define a further subclass of trading strategies:

Definition A.2.6. A self-financing trading strategy ϕ is called (IP ∗-) admissible if the relative
gains process

G̃ϕ(t) =

t∫
0

ϕ(u)dS̃(u)

is a (IP ∗-) martingale. The class of all (IP ∗-) admissible trading strategies is denoted Φ(IP ∗).

By definition S̃ is a martingale, and G̃ is the stochastic integral with respect to S̃. We see that
any sufficiently integrable processes ϕ1, . . . , ϕd give rise to IP ∗-admissible trading strategies.
We can repeat the above argument to obtain

Theorem A.2.2. The financial market model M contains no arbitrage opportunities in Φ(IP ∗).

Under the assumption that no arbitrage opportunities exist, the question of pricing and hedging a
contingent claim reduces to the existence of replicating self-financing trading strategies. Formally:

Definition A.2.7. (i) A contingent claim X is called attainable if there exists at least one ad-
missible trading strategy such that

Vϕ(T ) = X.

We call such a trading strategy ϕ a replicating strategy for X.
(ii) The financial market model M is said to be complete if any contingent claim is attainable.

Again we emphasise that this depends on the class of trading strategies. On the other hand, it
does not depend on the numéraire: it is an easy exercise in the continuous asset-price process case
to show that if a contingent claim is attainable in a given numéraire it is also attainable in any
other numéraire and the replicating strategies are the same.
If a contingent claim X is attainable, X can be replicated by a portfolio ϕ ∈ Φ(IP ∗). This means
that holding the portfolio and holding the contingent claim are equivalent from a financial point
of view. In the absence of arbitrage the (arbitrage) price process ΠX(t) of the contingent claim
must therefore satisfy

ΠX(t) = Vϕ(t).

Of course the questions arise of what will happen if X can be replicated by more than one portfolio,
and what the relation of the price process to the equivalent martingale measure(s) is. The following
central theorem is the key to answering these questions:

Theorem A.2.3 (Risk-Neutral Valuation Formula). The arbitrage price process of any attainable
claim is given by the risk-neutral valuation formula

ΠX(t) = S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft] . (A.6)

The uniqueness question is immediate from the above theorem:

Corollary A.2.1. For any two replicating portfolios ϕ,ψ ∈ Φ(IP ∗) we have

Vϕ(t) = Vψ(t).
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Proof of Theorem A.2.3 Since X is attainable, there exists a replicating strategy ϕ ∈ Φ(IP ∗) such
that Vϕ(T ) = X and ΠX(t) = Vϕ(t). Since ϕ ∈ Φ(IP ∗) the discounted value process Ṽϕ(t) is a
martingale, and hence

ΠX(t) = Vϕ(t) = S0(t)Ṽϕ(t)

= S0(t)IEIP∗

[
Ṽϕ(T )

∣∣∣Ft] = S0(t)IEIP∗

[
Vϕ(T )
S0(T )

∣∣∣∣Ft]
= S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft].
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