Pricing Asian options in the CIR model: Distributional results and option pricing

Pricing

Asian options

in

the CIR model

Angelos DASSIOS
Jayalaxshmi NAGARADJASARMA
Statistics Department
Pricing Asian options in the CIR model: Distributional results and option pricing

OUTLINE

I. Introduction

II. Distributional results

III. Option pricing

IV. Numerical examples

V. Conclusion
INTRODUCTION:
DIFFERENT KINDS OF ASIAN OPTIONS

- Type of average: \(T_0 < T_1 < \ldots < T_n = T \)
 - Discrete arithmetic: \(Y_T = \frac{1}{N+1} \sum_{n=0}^{N} X_{T_n} \)
 - Discrete geometric: \(Y_T = \left(\prod_{n=0}^{N} X_{T_n} \right)^{\frac{1}{N+1}} \)
 - Continuous arithmetic: \(Y_T = \frac{1}{T-T_0} \int_{T_0}^{T} X_u du \)
 - Continuous geometric: \(Y_T = e^{\frac{1}{T-T_0} \int_{T_0}^{T} \ln(X_u) du} \)

- Type of strike:
 - Fixed: payoff = \((Y_T - K)^+ \)
 - Floating: payoff = \((Y_T - S_T)^+ \)

- Average starting time:
 - Forward-starting: \(T_0 > t \)
 - Starting: \(T_0 = t \)
 - Backward-started: \(T_0 < t \)
INTRODUCTION:
LITERATURE REVIEW FOR ASIAN OPTIONS

• Different approaches:

 ➣ (Semi-)Analytical approaches and Laplace transform analysis

 ➣ Pseudo-analytical approximations

 ➣ Numerical PDE solutions

 ➣ Monte Carlo simulation

 ➣ Miscellaneous numerical methods
Introduction: Numerical Analytical Laplace Transform Inversion

- "(Numerical) Laplace transform inversion is still more an art than a science" Davies and Martin (79).

- Numerical inversion methods:
 - Plethora of algorithms
 - Most of those have a number of free-parameters.

- Analytical inversion:
 - Generic technique: the Bromwich integral
 \[
 F(x) = \mathcal{L}^{-1}(L(\mu)) = \lim_{R \to \infty} \frac{1}{2i\pi} \int_{c-iR}^{c+iR} L(\mu)e^{x\mu}d\mu \tag{1}
 \]
 \(c\) at the right of all singularities.
 - Specific relation with known inverses.
INTRODUCTION:
THE SQUARE-ROOT PROCESS

• Unique solution to the SDE:

\[dX_t = (a - bX_t)dt + \sigma \sqrt{X_t}dW_t \tag{2} \]

with the constraints: \(a \geq 0, \ b \in \mathbb{R} \) and \(\sigma > 0 \).

• The two most common forms in Finance:

enguish form with \(a > 0 \) and \(b > 0 \):

→ Mean-Reversion level: \(\frac{a}{b} \)
→ Mean: \(E(X_t) = \frac{a}{b} + (X_0 - \frac{a}{b})e^{-bt} \)

• Exploding form with \(a = 0 \) and \(b \leq 0 \):

\[dS_t = rS_t dt + \sigma \sqrt{S_t}dW_t \tag{3} \]

→ \(r = -b \)
→ Mean: \(E(S_t) = S_0e^{rt} \)
→ Probability of reaching the origin in finite time:

\[P(\tau_0 < \infty) \in [0, 1] \]
DISTRIBUTIONAL RESULTS:
IMPORTANCE OF THE ADDITIVITY PROPERTY

• The additivity property

\[
\text{SR}(a^1, b, \sigma, x^1_0) + \text{SR}(a^2, b, \sigma, x^2_0) \\
\sim \text{SR}(a^1 + a^2, b, \sigma, x^1_0 + x^2_0)
\] (4)

• Application: functional form of the MGF

porate definition

\[
\mathcal{L}^{a,x_0,b,\sigma}(\lambda, \mu) = E(e^{-\lambda X_t - \mu Y_t}), \quad \lambda \geq 0, \quad \mu \geq 0
\] (5)

\[
Y_t = \int_0^t X_s ds
\] (6)

• Additivity implies

\[
\mathcal{L}^{a,x_0}(\lambda, \mu) = \mathcal{L}^{0,x_0}(\lambda, \mu) \mathcal{L}^{a,0}(\lambda, \mu)
\]

• Scaling implies

\[
\mathcal{L}^{a,x_0}(\lambda, \mu) = e^{-x_0 \psi} e^{-a \phi}
\]
Pricing Asian options in the CIR model: Distributional results and option pricing

DISTRIBUTIONAL RESULTS:

JOINT MOMENT GENERATING FUNCTION

- Notation

\[
\gamma = \sqrt{b^2 + 2\sigma^2 \mu} \quad (7)
\]

- The joint MGF of \((X_t, Y_t)\) is given by (See Lamberton-Lapeyre):

\[
\mathcal{L}(\lambda, \mu) = E(e^{-\lambda X_t - \mu Y_t}) = e^{-X_0 \psi(t) - a \phi(t)} \quad (8)
\]

\[
\begin{align*}
\psi(t) &= \frac{\lambda((\gamma-b)+e^{-\gamma t}(\gamma+b)) + 2\mu(1-e^{-\gamma t})}{\sigma^2 \lambda(1-e^{-\gamma t})(\gamma+b)+e^{-\gamma t}(\gamma-b)} \\
\phi(t) &= \frac{-2}{\sigma^2} \ln \left(\frac{2\gamma e^{\frac{(b-\gamma)t}{2}}}{\sigma^2 \lambda(1-e^{-\gamma t})(\gamma+b)+e^{-\gamma t}(\gamma-b)} \right) \quad (9)
\end{align*}
\]
Pricing Asian options in the CIR model: Distributional results and option pricing

DISTRIBUTIONAL RESULTS: JOINT MOMENTS

- **System of ODE**

\[
\frac{dE(Y_t^m X_t^k)}{dt} = mE(Y_t^{m-1} X_t^{k+1}) + a k E(Y_t^m X_t^{k-1})
- bk E(Y_t^m X_t^k) + k(k - 1) \frac{\sigma^2}{2} E(Y_t^m X_t^{k-1})
\]

(10)

- **Laplace transform**

\[
\hat{M}_{m,n} = \sum_{j=0}^{n} \sum_{i=1}^{I_{j}^{m,n}} \frac{\alpha_{j,i}^{m,n}}{(\zeta + jb)^i}
\]

(11)

- **Explicit simple form**

\[
M_{m,n}(t) = E(Y_t^m X_t^{n-m}) = \sum_{j=0}^{n} e^{-jbt} \left(\sum_{i=1}^{I_{j}^{m,n}} \alpha_{j,i}^{m,n} \frac{t^{i-1}}{(i-1)!} \right)
\]

(12)

\[
I_{j}^{m,n} = \min(n + 1 - j, m + 1)
\]

(13)
DISTRIBUTIONAL RESULTS:
MOMENTS-BASED EXPANSIONS FOR THE INTEGRATED PROCESS

• Joint distribution determined by its moments

• Edgeworth-type expansions

• Laguerre expansions: Dufresne (00)

\[
\frac{1}{2} [f(y^+) + f(y^-)] = y^b e^{-dx} \sum_{n=0}^{\infty} c_n L_n^a(x) \tag{14}
\]

under some regularity and integrability conditions, where

\[
L_n^a(x) = \sum_{m=0}^{n} (-1)^m \binom{n + a}{n - m} \frac{x^m}{m!} \tag{15}
\]
DISTRIBUTIONAL RESULTS: A SIMPLIFYING CHANGE OF MEASURE

- The following process

\[
L(t) = e^{\frac{b^2 Y_t}{2} + \frac{b(X_t - X_0)}{\sigma^2} - \frac{abt}{\sigma^2}}
\]

(16)

is an exponential martingale and \(E(L(T)) = 1 \).

- Defining \(T \) the time horizon and \(Q^* \) the measure constructed with the Radon-Nykodim derivative

\[
\frac{dQ^*}{dQ} = L(T)
\]

(17)

the process \(X_t \) is a **time-changed squared Bessel process** under \(Q^* \)

\[
dX_t = adt + \sigma \sqrt{X_t} dW^*_t
\]

(18)

and has the simplified MGF

\[
L^*(\lambda, \mu) = e^{-x_0 \frac{\lambda(1 + e^{-\gamma t}) + 2\mu(1 - e^{-\gamma t})}{\sigma^2 \lambda(1 - e^{-\gamma t}) + \gamma(1 + e^{-\gamma t})}}
\]

(19)
DISTRIBUTIONAL RESULTS:

J OINT DENSITY FOR THE EQUITY CASE

- The non-absorbed part

- Noting:

\[\alpha_n = \frac{s + s_0 + (n+1)\sigma^2 t}{2} \]

- \(B_n(y) \): a sequence of functions defined by

\[
\sum_{p=0}^{n} \frac{(n-p)}{p!} \left(\frac{-s}{\sqrt{2y\alpha}} \right)^p \sum_{q=0}^{n} \frac{(n-q)}{q!} \left(\frac{-s_0}{\sqrt{2y\alpha}} \right)^q H e_{p+q+3} \left(\frac{\alpha_n}{\sqrt{2y\alpha}} \right) e^{-\frac{\alpha_n^2}{4y\alpha}} \] (20)

where

\[
H e_k(x) = \sum_{s=0}^{[\frac{k}{2}]} (-1)^s x^{k-2s} 2^s \frac{k!}{(k-2s)!s!} \] (21)

- Joint density of \((S_t, Y_t)\) under \(Q\) for \(X_t > 0\)

\[
f_{S,Y}(s, y) = \frac{s_0\alpha}{2\sqrt{2\pi}(y\alpha)^2} e^{-\frac{r^2 y^2}{2\sigma^2} + \frac{r(s-s_0)}{\sigma^2}} \sum_{n=0}^{\infty} \frac{B_n(y)}{n+1} \] (22)

- Leading term

\[
e^{-\frac{\sigma^2 t^2}{2y} n^2} \] (23)
DISTRIBUTIONAL RESULTS: INTEREST-RATE CASE

• The marginal density of the integral Y_t

$$f^Y(y) = \sum_{k=0}^{\infty} f^Y_k(y)$$

• Involves
 ➤ Hermite polynomial $H e_k(x)$
 ➤ Complementary error function $erfc(x)$

• Useful quantities
 ➤ $\mathcal{L}^{-1}\left(\frac{E(e^{-(\lambda+\mu)Y_t})}{\mu}\right) = \mathcal{G}_{a,b,\sigma}(y, \lambda)$
 ➤ $\mathcal{L}^{-1}\left(\frac{E(Y_t e^{-(\lambda+\mu)Y_t})}{\mu}\right) = \mathcal{\hat{G}}_{a,b,\sigma}(y, \lambda)$
OPTION PRICES:

• Guaranteed endowment call options of payoff $$(1 - Ke^{Y_T})^+$$

$$E(e^{-Y_T} - K)^+ = G_{a,b,\sigma}(-\ln K, 1) - KG_{a,b,\sigma}(-\ln K, 0)$$

• Cash binary Asian floor of payoff $$1_{\{Y_T \leq K\}}$$

$$CBA_f(K, T) = G_{a,b,\sigma}(K, 1)$$

• Rate binary Asian floor of payoff $$Y_T1_{\{Y_T \leq K\}}$$

$$RBA_f(K, T) = \wedge G_{a,b,\sigma}(K, 1)$$

• Regular Asian Asian floor of payoff $$(Y_T - K)1_{\{Y_T \leq K\}}$$

$$AO_f(K, T) = K.CBA(K, T) - RBA(K, T)$$

• Call options from Call-Put parity
Pricing Asian options in the CIR model:
Distributional results and option pricing

Numerical Examples

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Type</th>
<th>Strike 0.08</th>
<th>Strike 0.09</th>
<th>Strike 0.10</th>
<th>Strike 0.11</th>
<th>Strike 0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>P</td>
<td>0.1061</td>
<td>0.2936</td>
<td>0.5337</td>
<td>0.7427</td>
<td>0.8790</td>
</tr>
<tr>
<td></td>
<td>CBA^c</td>
<td>0.9631</td>
<td>0.8104</td>
<td>0.4812</td>
<td>0.1763</td>
<td>0.0387</td>
</tr>
<tr>
<td></td>
<td>TM^c</td>
<td>0.0098</td>
<td>0.0085</td>
<td>0.0053</td>
<td>0.0021</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>RBA^c</td>
<td>0.0097</td>
<td>0.0084</td>
<td>0.0052</td>
<td>0.0021</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>AO^c</td>
<td>0.0199</td>
<td>0.0109</td>
<td>0.0043</td>
<td>0.0011</td>
<td>0.0002</td>
</tr>
<tr>
<td>0.5</td>
<td>P</td>
<td>0.1549</td>
<td>0.3261</td>
<td>0.5280</td>
<td>0.7107</td>
<td>0.8441</td>
</tr>
<tr>
<td></td>
<td>CBA^c</td>
<td>0.8018</td>
<td>0.6377</td>
<td>0.4452</td>
<td>0.2718</td>
<td>0.1459</td>
</tr>
<tr>
<td></td>
<td>TM^c</td>
<td>0.0444</td>
<td>0.0285</td>
<td>0.0275</td>
<td>0.0180</td>
<td>0.0103</td>
</tr>
<tr>
<td></td>
<td>RBA^c</td>
<td>0.0421</td>
<td>0.0351</td>
<td>0.0260</td>
<td>0.0169</td>
<td>0.0097</td>
</tr>
<tr>
<td></td>
<td>AO^c</td>
<td>0.0201</td>
<td>0.0128</td>
<td>0.0074</td>
<td>0.0039</td>
<td>0.0018</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>0.1878</td>
<td>0.3535</td>
<td>0.5354</td>
<td>0.6979</td>
<td>0.8209</td>
</tr>
<tr>
<td></td>
<td>CBA^c</td>
<td>0.7301</td>
<td>0.5779</td>
<td>0.4125</td>
<td>0.2662</td>
<td>0.1565</td>
</tr>
<tr>
<td></td>
<td>TM^c</td>
<td>0.0867</td>
<td>0.0726</td>
<td>0.0553</td>
<td>0.0383</td>
<td>0.0242</td>
</tr>
<tr>
<td></td>
<td>RBA^c</td>
<td>0.0777</td>
<td>0.0647</td>
<td>0.0490</td>
<td>0.0337</td>
<td>0.0211</td>
</tr>
<tr>
<td></td>
<td>AO^c</td>
<td>0.0193</td>
<td>0.0127</td>
<td>0.0078</td>
<td>0.0044</td>
<td>0.0023</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>0.1789</td>
<td>0.3509</td>
<td>0.5395</td>
<td>0.7050</td>
<td>0.8276</td>
</tr>
<tr>
<td></td>
<td>CBA^c</td>
<td>0.6644</td>
<td>0.5193</td>
<td>0.3633</td>
<td>0.2291</td>
<td>0.1317</td>
</tr>
<tr>
<td></td>
<td>TM^c</td>
<td>0.1744</td>
<td>0.1451</td>
<td>0.1093</td>
<td>0.0746</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td>RBA^c</td>
<td>0.1402</td>
<td>0.1155</td>
<td>0.0859</td>
<td>0.0578</td>
<td>0.0354</td>
</tr>
<tr>
<td></td>
<td>AO^c</td>
<td>0.0170</td>
<td>0.0110</td>
<td>0.0066</td>
<td>0.0037</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

Table 1: Evolution with T, Chacko and Das parameters.
Numerical Examples

<table>
<thead>
<tr>
<th>Type</th>
<th>T</th>
<th>.08</th>
<th>.09</th>
<th>.10</th>
<th>.11</th>
<th>.12</th>
<th>T</th>
<th>.08</th>
<th>.09</th>
<th>.10</th>
<th>.11</th>
<th>.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_0)</td>
<td>.1</td>
<td>50</td>
<td>51</td>
<td>54</td>
<td>57</td>
<td>59</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>(G_1)</td>
<td>.1</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>56</td>
<td>53</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>(\hat{G}_0)</td>
<td>.1</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>57</td>
<td>53</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>(\hat{G}_1)</td>
<td>.1</td>
<td>50</td>
<td>51</td>
<td>54</td>
<td>57</td>
<td>59</td>
<td>16</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>(G_0)</td>
<td>1</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(G_1)</td>
<td>1</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(\hat{G}_0)</td>
<td>1</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(\hat{G}_1)</td>
<td>1</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(G_0)</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(G_1)</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>(\hat{G}_0)</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(\hat{G}_1)</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2: Evolution of the speed of convergence with T.
NUMERICAL EXAMPLES

Evolution of the Abate and Whitt inverse with A

![Graph showing the evolution of the Abate and Whitt inverse with A.]

Figure 1: *Parameters: $r_0 = 0.1$, $a = 0.15$, $b = 1.5$, $\sigma = 0.2$ and $T = 10$*

- **Abate-Whitt**

\[
F_{AB}^{AB}(t) = \frac{e^{\frac{A}{2t}}}{t} \text{Re}(f(\frac{A}{2t})) + \frac{e^{\frac{A}{2t}}}{t} \sum_{k=1}^{\infty} \text{Re}(f(\frac{A + 2k\pi i}{2t}))
\]
CONCLUSION

• Explicit analytical formulae
 ➔ Systematic implementation
 ➔ Regions of high maturity and volatility

• Square-root equity Asian options
 ➔ As alternative equity model
 ➔ For benchmarking, cross-testing

• Importance of square-root process in Financial modelling ➔ various applications