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1. Introduction

Asian options, whose payoff is based on the arithmetic average
R T
0 Sudu

T
of the

underlying equity price St over a given period of time (0, T ), have known a very large

success over the past years. Although the valuation of these options in the Black and

Scholes framework has triggered the interest of financial mathematicians for over a

decade in an intricate interplay between theoretical ( Yor [40], Geman and Yor [41],

Schröder [36], Milevsky and Posner [28], [32], Dufresne [16], etc. ) and computational (

Caverhill and Clewlow [6], Fu et al [18], Rogers and Shi [34], Zvan [42], Vecer [38], etc.

) approaches, the pricing of such options under alternative models has not been much

explored so far, with the noticeable exception of Andreasen [1] for jump-diffusions and

Vecer and Xu [39], very recently, for a general treatment of semi-martingale models in

terms of integro-differential equations. The square-root process offers a very tractable

mathematical structure, which enables simple pricing of important exotic options in

explicit form. This has, for example, been highlighted by Lo et al [26] in the case of

barrier options (analysis extended by Davydov and Linetsky [13] and [14] for constant

elasticity of variance models). In the case of Asian options, although little attention has

been paid to this in the literature, the additivity property of the square-root process

makes it a specially well-suited model for pricing options on arithmetic averages. We

show in this paper that the square-root process leads to simple explicit expressions for

Asian options prices, unlike in the Black and Scholes framework.

The popularity of the square-root process in all main branches of financial modeling

can be explained by its desirable property of positivity and its richness of behaviour. As

a result, it has been used to model equities ( Cox-Ross [10] alternative process), interest

rates ( CIR [9] interest rate model and its time-inhomogeneous [27], multivariate [7] and

other derivatives) , stochastic volatility ( Heston [22] model and its various extensions

[2], [15], [30]) and other financial quantities. In this paper, we will focus on the Cox-Ross

form of the process used for modelling equities

dSt = rStdt+ σ
√
StdWt (1)

and on its temporal integral Yt =
∫ t

0
Sudu. The corresponding analysis for the mean-

reverting form

dXt = (a− bXt)dt+ σ
√
XtdWt (2)

and its temporal integral can be found in our companion paper [12] although some of

the results presented here are valid+ for both forms (2) and (1). The Cox-Ross model

was first proposed as an alternative to the Black-Scholes model, exhibiting a specific

stochastic volatility. The instantaneous variance of the percentage price change σ2

St
is an

inverse function of the stock price. Along with the square-root model, Cox and Ross

( [10] and [8]) also introduced a class of processes, the constant elasticity of variance

+ Results valid for both forms will be quoted in terms of X whereas results specific to the equity form

(1) will be quoted in terms of S.



processes, sharing similar properties. Numerous subsequent studies proved the empi-

rical adequacy of these models to stock prices movements as well as to the pricing of

European ( Beckers [4], Schröder [35]) and exotic ( Boyle and Tian [5], Davydov and

Linetsky [13] ) derivatives. The square-root equity model on its own has raised the

interest of researchers ( see Lo et al [26], Hauser and Lauterbach [21]).

In order to evaluate Asian derivatives, we first study the distributional properties

of the process. After recalling some important properties of the square-root process in

the second section, we proceed to derive the joint moments of (XT , YT ) in the third

one. By solving a triangular set of partial differential equations, we prove that these

moments take a simple explicit form, which can be practical. Those moments have

indeed an important informational content, since they are proven to actually determine

the distribution of these processes and are needed for moments-base expansions of the

Laguerre type [16]. In the fourth section, we also derive the joint distribution of the

process and its integral by analytic Laplace transform inversion, using a simplifying

measure change relating the square-root process to a time-changed square Bessel process.

In the fifth section, we apply these results to the pricing of fixed-strike Asian option and

test the numerical behaviour of these results in the last and sixth section. The formulae

derived for these prices take the form of very fast converging series, which proves to be

not only faster but also more robust than numerical Laplace inversion in regions of high

maturities and volatilities. They are also more suited to systematic implementation, as

will be explained later.

2. The square-root process: some reminders

For any positive initial value S0, there is a unique strong solution to the stochastic

differential equation (1) and as S is positive, Y is positive and increasing. The

joint distribution of (ST , YT ) can be characterised by its moment generating function

E
(
e−λXte−µ

R t
0 Xudu|X0 = x0

)
(see Lamberton and Lapeyre [23] for instance) for the

general form (2)). As mentioned earlier, it is the additivity of the process which plays

a key role in the derivation of this simple MGF. Indeed, the MGF, as a function of the

time and the initial value, follows the partial differential equation

∂L̃a,x0

∂t
=
σ2

2
x
∂2L̃a,x0

∂2x2
+ (a− bx)

∂L̃a,x0

∂x
− µxL̃a,x0 (3)

subject to the initial condition

L̃a,x0(0, x) = e−λx

The additivity property, corollary of the additivity property of the square Bessel

processes ( see Revuz and Yor [33]), states that the sum of two independent square-root

processes with the coefficients a1 and a2, the initial values x1
0 and x2

0 respectively and

the same σ and b is another square-root process with the coefficient a1 + a2, the initial

value x1
0 + x2

0 and the same σ and b. This implies that L̃a,x0 = L̃0,x0L̃a,0 by convolution.

The scaling property of the process, on the other hand, leads to the form L̃0,x0 = e−aφ



and L̃0,x0 = e−x0ψ where φ and ψ are some positive functions of the others parameters.

The additivity property thus leads to the fundamental decomposition L̃a,x0 = e−x0ψ−aφ.

Using this functional form in the partial differential equation (3) transforms it into two

simple coupled ordinary differential equations, one being a Ricatti equation and the

other a direct differentiation equation. Simplifying to the equity case (1) and solving

for the Ricattti equation gives the following expressions, where we change the notation

L̃0,s0 to LS,Y (λ, µ) to emphasise the importance of the MGF arguments µ and λ.

LS,Y (λ, µ) = E
(
e−λSte−µ

R t
0 Sudu|S0 = s0

)
= e−s0ψ (4)

with

ψ =
λ((γ − b) + e−γt(γ + b)) + 2µ(1 − e−γt)

σ2λ(1 − e−γt) + (γ + b) + e−γt(γ − b)
(5)

and

γ =
√
b2 + 2µσ2 (6)

This result stemming from the additivity of the square-root process is the core from

which we will derive our new results concerning the distribution of (S, Y ). The transform

LS,Y (λ, µ) perfectly characterises the distribution. However, it is desirable to obtain

densities and moments in as simple a form as possible for practical purposes such as

parameters estimation or derivative pricing. This is the object of the following section.

3. Joint moments

The first quantities of interest when studying a random variable are its moments.

In the literature concerning stochastic volatility, the moments of the average YT

T
have

been used either to compute approximations for option prices (see Ball and Roma [3])

or to gain insight in the distribution of the stock (see Das [11]). However, only the

four first moments have been given in these texts since they were computed through

successive differentiation of the moment-generating function. Although it is theoretically

possible to obtain all these moments through repeated differentiation, this method

remains tedious and even with formal calculus packages like Mathematica or Maple,

only the first ones can be handled in this quite time-consuming way. We show here that

it is actually possible to obtain all of them analytically, since it turns out that they have

a relatively simple form.

In the case of the square-root process and its integral, moments convey total

information since they determine the joint distribution. Indeed, the function equal

to the joint MGF for positive λ and µ, i.e. the rightmost part of equation (4), is

analytic for a range of negative values. From Beppo Levi’s theorem, the MGF, written

as the expectation of an entire series, converges monotonically to and coincides with

the analytic function in (4) inside this range of negative values. Therefore, knowing the

joint moments of (Xt, Yt) is equivalent to knowing their joint distribution.



The following results concerning the joint moments of (Xt, Yt) are general and also

valid for the mean-reverting form. For this section, we hence use the parametrisation of

(2).

Theorem 3.1. The joint moments of Xt and Yt are given by

Mm,n(t) = E(Y m
t X

n−m
t ) =

n∑

j=0

e−jbt
( I

m,n
j∑

i=1

α
m,n
j,i

ti−1

(i− 1)!

)
(7)

where

I
m,n
j = min(n + 1 − j,m + 1) (8)

The coefficients αm,nj,i can be obtained by recursion through the relations

• For j 6= n−m

α
m,n
j,i = m

I
m−1,n
j∑

i′=i

(−1)i
′−iαm−1,n

j,i′

((n−m− j)b)i′−i+1

+(n−m)
(
a + (n−m− 1)

σ2

2

) I
m,n−1
j∑

i′=i

(−1)i
′−iαm,n−1

j,i′

((n−m− j)b)i′−i+1
(9)

• For j = n−m

◦ For i = 1

α
m,n
n−m,1 = cm,n +m

n∑

j=0

I
m−1,n
n−m∑

i=1

α
m−1,n
j,i

((j − n+m)b)i

+(n−m)
(
a + (n−m− 1)

σ2

2

) n−1∑

j=0

I
m,n−1
n−m∑

i=1

α
m,n−1
j,i

((j − n +m)b)i
(10)

◦ For i > 1

α
m,n
n−m,i = mα

m−1,n
n−m,i−1 + (n−m)

(
a + (n−m− 1)

σ2

2

)
α
m,n−1
n−m,i−1 (11)

where

cm,n = rn0 1{m=0} (12)

• Initial condition

α
0,0
0,1 = 1 (13)

Proof. Assessing first the issue of existence, the joint MGF (see Lamberton and Lapeyre

[23] for the general case) is infinitely differentiable in a neighbourhood of (0, 0), implying

the joint moments of Xt and Yt exist for any positive order for any finite t.

Therefore,

dE(Y m
t X

k
t )

dt
= mE(Y m−1

t Xk+1
t ) + akE(Y m

t X
k−1
t )



−bkE(Y m
t X

k
t ) + k(k − 1)

σ2

2
E(Y m

t X
k−1
t ) (14)

It should be noticed that the computation of positive order moments does not actually

involve the moments of the reciprocals of either Xt or Yt.

Denoting M̂m,n(ζ) the Laplace transform of Mm,n(t) = E(Y m
t X

n−m
t ) with respect

to time for ζ ∈ R
+, M̂m,n(ζ) =

∫ ∞
0
e−ζtMm,n(t)dt , the ordinary differential equation

(14) becomes

M̂m,n(ζ)[ζ + b(n−m)]−Mm,n(0) = mM̂m−1,n(ζ) + d(n,m)M̂m,n−1(ζ)(15)

with

d(n,m) = (n−m)
(
a + (n−m− 1)

σ2

2

)
(16)

(7) can then be shown through induction, assuming that for a given n > 0 and for all

integers m < n, the joint moments have the form

M̂m,n =

n∑

j=0

I
m,n
j∑

i=1

α
m,n
j,i

(ζ + jb)i
(17)

The inversion then comes from the classical result∫ ∞

0

e−ζt−jbt
ti−1

(i− 1)!
dt =

1

(ζ + jb)i

The mathematical importance of those moments along with their appealing form

make them a useful tool as they allow us to state explicitly the density and other

functionals and expectations in an analytical form with methods like Laguerre series (

see Dufresne [16]).

4. Laplace transform inversion and density

The moments-based expansion methods that can be derived from the results of the

previous section remain quite general and their actual efficiency depends on the specific

distribution. In the following, we will derive a series representation for this density

by exploiting a change of measure relating the square-root process to a square-Bessel

process. Although moments-based expansions remain useful for complex payoff, this

series representation is valuable and simpler for pricing options with simple payoff like

call or put options. Just like the square-root process density is an infinite weighted

average of gamma densities (see Feller [17]), this density will be represented in a series

form.



Theorem 4.1. Under the measure Q∗ given by the Radon-Nykodim derivative dQ∗

dQ
=

L(T ), with L(t) = e
b2Yt
2σ2 +

b(Xt−x0)

σ2 −abt

σ2 , the process X(t) is a.s. proportional to a square

Bessel process

dXt = adt + σ
√
XtdW

∗
t (18)

W ∗
t being a Brownian motion under the Q∗−measure. For the equity form (1), this

translates to L(t) = e
r2Yt
2σ2 − r(St−s0)

σ2 and

dSt = σ
√
StdW

∗
t (19)

Proof. From the SDE defining X,

Lt = e
R t

0
b
σ

√
XudWu−

R t

0
b2

2σ2Xudu

Since the Novikov condition E(e
b2

2σ2 Yt) < ∞ is verified (the rightmost part of (4)

is analytic for λ = 0 and µ ≥ − b2

2σ2 ), L is an exponential martingale with mean

1. Girsanov’s theorem then implies that the process W ∗ defined by W ∗
t = Wt −∫ t

0
b
σ

√
XudWu is a Brownian motion under Q∗.

If X might also be connected with Bessel processes through other transformations,

the change of measure proposed here is a simple result, easy to manipulate and suited

to the analysis of the path-dependent integral Yt, which requires path properties to be

exploitable. For a detailed analysis of the properties of Bessel processes, please refer

to Pitman and Yor [31], Shiga and Watanabe [37] and Revuz and Yor [33] and the

references within.

Theorem 4.2. Denoting α = σ2

8
, the joint density of St and Yt, for St > 0 under Q,

for the equity process (1), is given by

fS,Y (s, y) =
s0α

2
√

2π

1

(yα)2
e−

r2y

2σ2 +
R(s−s0)

σ2

∞∑

n=0

B
(X,Y )
n (y)

n+ 1
(20)

with the terms B
(X,Y )
n (y) defined as

n∑

p=0

(
n+1
n−p

)

p!

( −s√
2yα

)p n∑

q=0

(
n+1
n−q

)

q!

( −s0√
2yα

)q
Hep+q+3

( αn√
2yα

)
e−

α2
n

4yα (21)

Hek being the kth Hermite polynomial ∂ke
−

x2

2

∂xk = (−1)kHek(x)e
−x2

2 and

αn =
x + x0 + ((n+ 1)σ2t)

2
(22)

The density of Yt conditional on St = 0 is
fY
0 (y)

PQ(St=0)
where

fY0 (y) =
e−

r2y

2σ2 −
rs0
σ2

y
√

2π

∞∑

n=0

n∑

p=0

(
n

n−p
)

p!

( −s0√
2yα

)p(
Hep+1

( βn√
2yα

)
e−

β2
n

4yα

−Hep+1

( βn+1√
2yα

)
e−

β2
n+1
4yα

)
(23)



with

βn =
s0 + ntσ2

2
(24)

and

PQ(St = 0) = e
− s0r(1+e−rT )

σ2(1−e−rT ) (25)

Proof. Under the Q∗-measure, from the previous theorem

L∗S,Y (λ, µ) = e
−s0 γ(1+e−γt)

σ2(1−e−γt)

∞∑

n=0

sn0
n!

(
4eγtγ2

σ4(1−e−γt)2

)n
(
λ+ γ(1+e−γt)

σ2(1−e−γt)

)n (26)

Inverting this MGF with respect to λ ( convergence ensured by Beppo Levi theorem)

leads to

δx(0) + I1

(2
√

4ss0eγtγ2

σ2(1 − e−γt)

)√
s0

s

2γe−s0
γt
2

σ2(1 − e−γt)
e
−(s+s0)

γ(1+e−γt)

σ2(1−e−γt)

since (26) is the sum of a constant and weighted gamma MGFs. δs(0) stands here for

the Dirac delta function which is null everywhere except at 0 where it is infinite.

For non-null s, this can be rewritten (see Gradshteyn and Ryzhik [20] ) as

s0
4γ2e−γt

σ4
e−(s+s0) γ

σ2

∞∑

n=0

n!L1
n(

2sγ
σ2 )L1

n(
2s0γ
σ2 )e−γnt

(n+ 1)!
(27)

This expression is actually an eigenfunction expansion ( see Davydov and Linetsky [14]

and [25] for applications of eigenfunction expansions in Finance and similar expansions

in Laguerre polynomials for the CIR model).

It is known that the inverse of ( 2γ
σ2 )

2κ
e−

2qγ

σ2 for q and κ positive is (see Gradshteyn

and Ryzhik [20])

α

√
2

π
(2yα)−κ−1e

− q2

8yαD2κ+1

( q√
2yα

)
(28)

and Dν, the parabolic cylinder functions of order ν, simplify to Hermite polynomials for

integer indices. Convergence of the series of inverses to the general inverse is ensured

by the presence of the factor e−(s+s0) γ

σ2 and the uniform convergence of (27).

In the case absorption occurs, treating

lim
λ→∞

L∗S,Y (λ, µ) = EQ∗

(e−µYtI{St=0}) = e
−s0 γ(1+e−γt)

σ2(1−e−γt)

in the same way leads to the result.

Remarks.

1. This series is fast-converging, as the leading term is roughly of order e−
σ2t2

2y
n2

.

2. The Hermite polynomial can be easily computed withHe0 = 1 and the recursions

Hek+1(x) = xHek(x) − kHek−1(x) (29)



3. In the mean-reverting case (2), the joint density can be derived in the same way

in terms of Dν the parabolic cylinder function of order ν,

fX,Y (x, y) =
( x√

2
)

2a

σ2 −1

2
√
π(
√
yα)

2a

σ2 +2
e−

b2y

2σ2 −
b(x−x0)

σ2 +abt

σ2

∞∑

n=0

n!α

Γ(n+ 2a
σ2 )

Nn(y) (30)

with the term Nn(y) defined as

n∑

p=0

(
n+ 2a

σ2 −1

n−p
)

p!

( −x√
2yα

)p n∑

q=0

(
n+ 2a

σ2 −1

n−q
)

q!

( −x0√
2yα

)q
Dν

( αn√
2yα

)
e−

α2
n

8yα (31)

where

αn =
x + x0 + (a+ nσ2)t

2
(32)

ν = p + q +
2a

σ2
+ 1 (33)

5. Regular and digital Asian options

The price of digital and regular Asian options as well as other related distributional

results can be derived from the following preliminary result.

Theorem 5.1. For λ ≥ µ and µ > 0, the inverse Laplace transform of the modified

MGF∗ ∂j

∂λj

E(e−(λ+µ)YT )
µi with respect to µ, MMIp(K, λ, i, j) + MMIa(K, λ, i, j) - where

MMIa(K, λ, i, j) is the component related to absorption- can be written as a sum of

elements of leading order e−
σ2t2

2y
n2

.

More precisely, for i, j = 0, 1, we will denote

MMIp(K, λ, i, j) = S0
e−

r(2S0+rK)

2σ2

2β(λ)

∞∑

n=0

mp
n(K, λ, i, j)

n + 1
(34)

and

MMIa(K, λ) =
∞∑

n=0

ma
n(K, λ, i, j)

2β(λ)

with β(λ) =
√

4r2

σ4 + 8λ
σ2 .

The expression for mp
n(K, λ, i, j) and ma

n(K, λ, i, j) for the cases needed for main

applications will be given in Appendix, the other cases can easily be computed by applying

the same methodology.

Proof. See Appendix.

The previous results permit the calculation of the following different quantities.

∗ MMI standing for Modified MGF Inverse



Theorem 5.2. The density of YT is given by

fY (y) = MMI(y, 0, 0, 0) (35)

The price of a digital put Asian option in cash, of payoff 1{YT ≤KT}, is worth

e−rTP (YT ≤ KT ) = e−rTMMI(KT, 0, 1, 0) (36)

The asset-digital put Asian option, defined by the payoff YT

T
.1{YT ≤KT}, is given by

e−rT

T
P (YT ≤ KT ) = −e

−rT

T
MMI(KT, 0, 1, 1) (37)

The regular fixed strike put Asian option, of payoff (K − YT

T
).1{YT≤K} is

Ke−rTMMI(KT, 0, 1, 0) +
e−rT

T
MMI(KT, 0, 1, 1) (38)

Remarks.

1. The corresponding call options can be retrieved from the previous results from

the call-put parity. For example, the regular call Asian option is related to the put

through

AC = AP + S0
1 − e−rT

r
− e−rT (39)

2. It would be possible to deduce the price of floating-strike options in the same

way.

6. Numerical performance

We choose to illustrate this series method for the joint density with an adaptation of

the textbook Black-Scholes regular example SBS
0 = 100, rBS = 0.05 and σBS = 20%. A

square-root process with comparable parameters would be S0 = 100, a = 0, b = −0.05

and σ = 2. With this choice of parameters, Figure 1 draws the joint density surface of

(X1, Y1) when no absorption occurred.

For the same reference parameters values, we observe how the speed of convergence

is affected by the variation of some key-parameters. Basically, this evolution is coherent

with our previous remark highlighting that the main leading term is e−
σ2t2

2y
n2

. In the

following tables, N represents the number of terms needed for the absolute difference]

between the limit (series truncated at 50 terms) and the series truncated at N terms or

more to be less than 10−4.

We thus observe in Table 1 that N increases with y and the evolution is indeed

rather quadratic than linear in N.

For increasing volatilities (y = E(Y1) ≈ 102.54), the decrease in N is also

pronounced in Table 2.

To observe the evolution with t, a better understanding of the series behaviour can

be obtained by studying the density at the moving point y = E(Yt) = X0
ert−1
r

, which

exhibits the expected increase in speed (Table 3).

] We prefer holding the absolute difference as the stopping criteria rather than the relative difference,

since the density can reach values quite close to 0.



Joint density of the square-root process and its temporal integral

Figure 1. S0 = 100, a = 0, b = −0.05, σ = 2 and t = 1

Y 80 90 100 110 120 130 140 150 160

N 1 20 31 37 42 46 51 55 57

Table 1. Evolution with y at x = 100.

σ 2 3 4 5 6

N 31 12 6 4 1

Table 2. Evolution with σ at x = 100 and y = 102.54.

t 1 2 3 4

y = X0
ert−1
r

102.54 210.34 323.66 442.80

N 33 15 9 1

Table 3. Evolution with t at x = 100 and y = E(Yt).



To study Asian options, we prefer considering the reference cases widely used for

benchmarking in the literature ( see Geman and Eydeland [19], Dufresne [16], etc.) for

the Black-Scholes model and adapt the diffusion parameters of the geometric Brownian

motion to obtain similar levels of stock price and instantaneous local variance for the

square-root process.

Case r σ T K S0 Moment Intrinsic Option SR Option BS N

1 0.05 0.69 1 2 1.9 1.8533 0 0.1902 0.1932 4
2 0.05 0.72 1 2 2.1 2.0484 0.1459 0.3098 0.3062 5
3 0.02 0.14 1 2 2 1.9801 0.0197 0.0197 0.05606 0
4 0.18 0.42 1 2 2 1.8303 0.1598 0.2189 0.2184 11
5 0.01 0.35 2 2 2 1.9752 0.0246 0.1725 0.1723 7
6 0.05 0.71 2 2 2 1.9033 0.0936 0.3339 0.3501 3

Table 4. Fixed-strike Asian options.

Table 4 collects the moments of E(YT

T
), the intrinsic values and the prices of the

Asian call options both for the square-root process (SR) and the geometric Brownian

motion case (BS), the latter having been computing by numerical integration using the

explicit formulae derived in Linetsky [24]. N represents the number of terms needed

for the error to be inferior to 10−4. Two points spring to the eyes from this table.

Firstly, the series converges very rapidly for a broad range of cases. Secondly, the prices

obtained for the square-root process are quite close to the Black and Scholes Asian ones.

The differences between the models are to be computed in basis points rather than in

percents, except in cases 3 and 6. The greater differences appearing in these two cases

could be accounted for by the relatively greater importance of the tails there as the

synthetic parameter σ
√
T becomes very small for case 3 and quite large for case 6.

The series converges more and more rapidly as T or σ increase. This can be seen

from Table 5 and Table 6. The results were cross-tested against two numerical Laplace

inversion. We observed that these numerical inversion algorithms get strained and even

become unreliable and unstable as the volatility or the maturity increase.

r σ T K S0 Moment Intrinsic Option N

0.05 0.71 0.1 2 2 1.9950 0.0050 0.0751 30
0.05 0.71 0.5 2 2 1.9752 0.0246 0.1725 7
0.05 0.71 1 2 2 1.9508 0.0484 0.2468 5
0.05 0.71 2 2 2 1.9033 0.0936 0.3339 3
0.05 0.71 5 2 2 1.7696 0.2120 0.3733 2

Table 5. Evolution with the maturity.

r σ T K S0 Moment Intrinsic Option N

0.05 0.1 1 2 2 1.9508 0.0484 0.0484 0
0.05 0.3 1 2 2 1.9508 0.0484 0.1207 18
0.05 0.5 1 2 2 1.9508 0.0484 0.1827 7
0.05 0.7 1 2 2 1.9508 0.0484 0.2446 5

Table 6. Evolution with the volatility.



Table 4 highlighted a strange or rather unexpected behaviour of N with respect to

the volatility. The analysis of Table 6 enables us to explain it. The series converges

slowly for small σ. But for too tiny σ, as nothing can really happen for such values, the

put option is almost worthless and the series converges in one term.

We finally analyse the evolution with respect to the strike K. Table 7 shows results

in agreement with our observations concerning the series representing the joint density.

In fact, all the results obtained here corroborate the observations and comments related

to the effect of the different parameters on the speed of convergence. This is due to the

fact that the leading term remains the same.

r σ T K S0 Moment Intrinsic Option N

0.05 0.71 1 1 2 1.9508 0.9996 1.0017 2
0.05 0.71 1 1.5 2 1.9508 0.5240 0.5644 4
0.05 0.71 1 2 2 1.9508 0.0484 0.2468 5
0.05 0.71 1 2.5 2 1.9508 -0.4273 0.0822 6
0.05 0.71 1 3 2 1.9508 -0.9029 0.0210 8

Table 7. Evolution with the strike.

7. Conclusion

This paper provides simple analytical pricing formulae for fixed-strike arithmetic Asian

options under the square-root process. Before any comparison concerning the actual

numerical performance of our series representations, it should be highlighted that these

formulae have the first advantage over numerical Laplace inversion that they can be

used for systematic implementation. Indeed, the numerical Laplace inversion methods

depend sometimes critically on free parameters whose optimal values can vary according

to the problem parameters values. Moreover, analysing the numerical evaluation of this

series, we found them very rapidly convergent in general but also more specially for large

volatilities and maturities. As these formulae turn out to be simpler than in the Black

and Scholes model, this approach is not only interesting on its own as a mean to capture

the prices under this alternative model constituted by the square-root process but it can

also be used as a benchmark to test against the numerics of the Black and Scholes model.

As a final remark, it should be noticed that the valuation of floating-strike Asian options

can also be derived from our results.

Appendix

To present the formulae for ma
n(K, λ, i, j) and mp

n(K, λ, i, j), we first need to define the

following expressions.

IDefinitions and notations.

With the parameters Dξ = − r
σ2 − ξ

2
and C̃ =

√
2
π

1√
2Kα

e
(S0+(n+1)σ2T )ξ

2 , we build



two multiply-indexed series G and M , M being built from another series B̃ with the

following procedure.

• Induction rules

◦ For Mp,q,n,

Mp,q,n(ξ,K) =

√
2

π

e−ξ
2Kα

√
2Kα

p+q+3 B̃p,q−1,n(K) − ξMp,q−1,n(ξ,K) (A.1)

◦ For B̃p,q,n,

B̃p,q,n(K) =

{
1{p=0}

[
Heq+2

(S0 + (n+ 1)σ2T

2
√

2Kα

)
e−

(S0+(n+1)σ2T )2

16Kα

]

+pB̃p−1,q,n(K) +
r

σ2
B̃p,q−1,n(K)

}
2
√

2Kα (A.2)

◦ For Gp,n(ξ,K),

Gp,n(ξ,K) =

√
2

π

e−ξ
2Kα

√
2Kα

p+1Hep

(S0 + nTσ2

2
√

2Kα

)
e−

(S0+nTσ2)2

16Kα

−ξGp−1,n(ξ,K) (A.3)

◦ For DMp,q,n,

DMp,q,n(ξ,K) = −4Kα

r
Mp,q+1,n(ξ,K) − 2(p+ q + 3)

r
Mp,q−1,n(ξ,K)

+(
S0 + (n+ 1)σ2T − 4Kαξ

r
)Mp,q,n(ξ,K) +

1

r
Mp+1,q−1,n(ξ,K) (A.4)

◦ For DGp,n,

DGp,n(ξ,K) = −Gp−1,n(ξ, y)− ξ.DGp−1,n(ξ,K)

−2Kξe−ξ
2Kα

√
2

π

α
√

2Kα
p+1Hep(

S0 + nTσ2

2
√

2Kα
)e−

(S0+nTσ2)2

16Kα (A.5)

• Initialisations

◦ For Mp,−p−3,n,

∗ If ξ 6= − 2r
σ2 ,

Mp,−p−3,n(ξ,K) = p

Dξ
Mp−1,−p−2,n(ξ,K) − C̃

2Dξ
B̌p,n(Dξ, K)

M0,−3,n(ξ,K) = C̃
2Dξ

(B̌0,n(0, K) − B̌0,n(Dξ, K))
(A.6)



∗ If ξ = − 2r
σ2 ,

Mp,−p−3,n

(
− 2r

σ2
, K

)
=
C̃

2

1

p + 1
B̌p+1,n(0, K) (A.7)

◦ For B̃p,−p−3,n,

B̃p,−p−3,n(K) = −
(
S0 + (n+ 1)σ2T − 8Kα

r

σ2

)
B̃p−1,−p−2,n(K)

+8Kα
{

1{p=1}e
− (S0+(n+1)σ2T )2

16Kα + (p− 1)B̃p−2,−p−1,n(K)
}

(A.8)

and

B̃0,−3,n(K) = (2
√
πKα)erfc

(S0 + (n+ 1)σ2T − 8Kα r
σ2

4
√
Kα

)
(A.9)

◦ For the additional initialising terms B̌p,n(Dξ, K),

B̌p,n(Dξ, K) = −(S0 + (n+ 1)σ2T + 4Kα(ξ + 2Dξ))B̌p−1,n(Dξ, K)

+8Kα
{

1{p=1}e
− (S0+(n+1)σ2T+4Kαξ)2

16Kα + (p− 1)B̌p−2,n(Dξ, K)
}

(A.10)

and

B̌0,n(Dξ, K) = (2
√
πKα)erfc

(S0 + (n + 1)σ2T + 4Kα(ξ + 2Dξ)

4
√
Kα

)
(A.11)

◦ For G−1,n(ξ,K),

G−1,n(ξ,K) =
(
e

(S0+nTσ2)ξ
2

)
erfc

(S0 + nTσ2 + 4Kαξ

4
√
Kα

)
(A.12)

◦ For DMp,−p−3,n,

DMp,−p−3,n(ξ,K) =
S0 + (n+ 1)σ2T

r
Mp,−p−3,n(ξ,K)

+
1

r
Mp+1,−p−4,n(ξ,K) − 4Kα

r
C̃B̌p,n(Dξ, K) (A.13)

◦ For DG−1,n,

DG−1,n(ξ,K) =

√
2

π
e

S0+nTσ2

2
ξe−

(S0+nTσ2+4Kαξ)2

16Kα

+
S0 + nTσ2

2
(e

S0+nTσ2

2
ξ)erfc(

S0 + nTσ2 + 4Kαξ

4
√
Kα

) (A.14)

IThe actual representation.

We list below the cases needed for the valuation of the quantities given in Theorem

5.2.



� Case i = 0, j = 0 This case was actually partly treated in Theorem 4.2 for the

absorption case. For mp
n(y, 0, 0, 0), it can simply be obtained by integration of fS,Y (s, y)

against s on R
+. Direct calculation leads to the following relations and to the recursions

given above for B̃.

mp
n(y, 0, 0, 0) =

n∑

p=0

(
n+1
n−p

)

p!

( −1√
2yα

)p n∑

q=0

(
n+1
n−q

)

q!

( −S0√
2yα

)q
B̃p,q,n(y) (A.15)

and

ma
n(y, 0, 0, 0) = fY0 (y)

� Case i = 1, j = 0

The series terms are

mp
n(K, λ, 1, 0) =

n∑

p=0

(
n+1
n−p

)

p!

n∑

q=0

(
n+1
n−q

)

q!
(−S0)

q(Mp,q,n(−β(λ), K) −Mp,q,n(β(λ), K)) (A.16)

and

ma
n(K, λ, 1, 0) =

n∑

p=0

(
n

p

)
(−S0)

p

p!
(Gp,n(−β(λ), K) −Gp,n(β(λ), K)

−Gp,n+1(−β,K) +Gp,n+1(β,K)) (A.17)

♦ Sketch of the inversion

For the non-absorbed part, we want to invert the Laplace transform

e−
r2y

2σ2 −
r(S0−s)

σ2
S0

µ

4γ2e−γT

σ4
e−(s+S0) γ

σ2

∞∑

n=0

L1
n

(
2sγ
σ2

)
L1
n

(
2S0γ

σ2

)

n+ 1
e−γnt (A.18)

with

γ =
√
r2 + 2σ2(λ+ µ)

Exploiting the relation

1

µ
=

8

σ2( 2γ
σ2 − β(λ))( 2γ

σ2 + β(λ))
=

4

β(λ)σ2

(
1

2γ
σ2 − β(λ)

− 1
2γ
σ2 + β(λ)

)

we are mainly concerned about inverses of elements of the type

(2γ

σ2

)p+q+2 e−αn
2γ

σ2

2γ
σ2 + ξ

(A.19)

specialising to ξ2 = (+
−β(λ))2 = 4r2

σ4 + 8λ
σ2 . Given that the inverse of (

√
µ)ne−ν

√
µ is√

2
π

1√
2y

n+2Hen+1(
ν√
2y

)e−
ν2

4y , then it follows that the inverse of (A.19) is

∫ ∞

0

e−νξ
√

2

π

α

(
√

2yα)p+q+4
e−ξ

2yαHep+q+3

(αn + ν√
2yα

)
e
− (αn+ν)2

4yα dν (A.20)



Calculating this integral leads to the results and the recursions given above for M .

� Case i = 1, j = 1

This case is treated by differentiation with respect to λ of the expressions given for

the case i = 1, j = 0. Straightforward calculation gives

mp
n(K, 0, 1, 1) =

n∑

p=0

(
n+1
n−p

)

p!

n∑

q=0

(
n+1
n−q

)

q!
(−S0)

q(DMp,q,n(−β(λ), K)−DMp,q,n(β(λ), K))(A.21)

and

ma
n(K, 0, 1, 1) =

n∑

p=0

(
n

p

)
(−S0)

p

p!
(DGp,n(−β(λ), K) −DGp,n(β(λ), K)

−DGp,n+1(−β,K) +DGp,n+1(β,K)) (A.22)

For the detail of intermediate calculations, please refer to [29].

As a final remark, we notice that the methodology outlined to obtain these three

cases can be applied for other values of i and j.
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