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Abstract

In this paper, we apply the single barrier strategy to optimize the

dividend payment in the situation where there is a time lag d > 0 between

decision and implementation. Using a Brownian motion with drift as the

surplus process, we obtain the optimal barrier b
∗ which maximises the

expected present value of dividends. We also show that the longer the

implementation delay, the smaller the optimal barrier will be.

Keywords: Parisian implementation delay, single barrier strategy,

surplus process, Brownian motion with drift.

1 Introduction

The dividends problem was first put forward by De Finetti [12]. He considered a
discrete-time model and showed that in order to maximize the expectation of the
discounted dividends paid to the shareholders of a company, the optimal strategy
must be a barrier strategy and the level of the barrier can be determined.

As the continuous counterpart of De Finetti’s model, we consider a company
with initial surplus x > 0. If no dividends are paid, the surplus at time t is

St = x + µt + σWt, t ≥ 0, (1)

with µ > 0, σ > 0 and W being a standard Brownian motion starting from 0.
Denote the aggregate dividends paid by time t by Dt. The modified surplus at
time t is Xt − Dt. Without the Parisian implementation delay, whenever the
modified surplus reaches the level of the barrier, the ”overflow” will be paid as
dividends. Let r be the force of interest. Gerber and Shiu [14] have obtained the
optimal barrier b∗ which maximizes the expected present value of all dividends
until ruin, i.e.

E

(

∫ T

0

e−rtdDt

)

,
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where
T = inf {t ≥ 0 | Xt − Dt = 0}

is the time of ruin. Another reference for this problem is [16]. The Brownian
motion with drift is considered as an approximation of the surplus process. More
results on relevant problems can be found in [1], [4] page 168-174, [6], [15], [18],
[19], [21] and [22].

In this paper, we introduce the Parisian implementation delay to the divi-
dend paying process. We assume that there is a time lag d > 0 between the
decision and implementation. During this period, if the modified surplus keeps
staying above the barrier, a dividend of size equal to the overflow above the
barrier will be paid at the end of the period; otherwise, no dividend will be
paid. In this sense, the decision to pay a dividend is reversible. This is mo-
tivated by a similar problem solved in [7] where the authors study investment
and disinvestment decisions in situations where there is a time lag from the time
when the decision is taken to the time when the decision is implemented. Such
problems have not been studied very extensively. In addition to [7], there is a
similar idea in [13] and also in [2] but there the decision is not reversible. We
only consider the case when the initial surplus x is less then the barrier b as
is also the case in [14]. A special feature of this constrained strategy is that
dividends are not paid continuously, but they are paid as a series of discrete
payments of size equal to the amount by which the surplus is above the barrier
after the delay.

The Parisian criterion originates from the Parisian options, the prices of
which depend on the excursions of the underlying asset prices above or below
a barrier. An example is a Parisian down-and-out option, the owner of which
loses the option if the underlying asset price S reaches the level l and remains
constantly below this level for a time interval longer than d . For details and
extensions, see [5], [8], [9], [10], [11], [17] and [20].

In Section 2 we give the mathematical definitions and set out the model.
In Section 3 we calculate some expectations which will be use in Section 4 to
calculate the expected present value of dividend payment. In Section 4 the
optimal barrier b∗ is obtained. We also discuss the relationship between the
optimal barrier and the length of delay.

2 Definitions

In order to introduce the Parisian implementation delay mathematically, we will
first define the excursion. Set

gS
b,t = sup{s ≤ t | Ss = b}, dS

b,t = inf{s ≥ t | Ss = b} (2)

with the usual convention, sup{∅} = 0 and inf{∅} = ∞. The trajectory between
gS

b,t and dS
b,t is the excursion of process S either above or below b, which straddles

time t. Assuming d > 0, we now define

τS
0 = inf {t ≥ 0 | St = b} , (3)
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Figure 1: A Sample Path of the original surplus process S

the first time S hits barrier b and a series of stopping times

τS
i = inf

{

t > τS
i−1

∣

∣

∣

∣

∣

1

St>S
τS

i−1

ff

(

t − gS
S

τS
i−1

,t

)

≥ d

}

, i = 1, 2, · · · . (4)

τS
i is the first time after τS

i−1 that the length of excursion above SτS
i−1

reaches

d (see Figure 1).
The modified surplus process is

Yt = St1{0≤t≤τS
0 } +

∞
∑

i=0

(

St − SτS
i

+ b
)

1{τS
i ≤t≤τS

i+1} (5)

(see Figure 2).
Define the first time of ruin for Y to be

T = inf {t ≥ 0 | Yt ≤ 0} . (6)
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Figure 2: A Sample Path of the modified surplus process Y
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As is the case with barrier strategy, ruin is certain for the modified process, i.e.

P (T < ∞) = 1.

For any t < T , we have the aggregate dividends paid by time t

Zt = Xt − Yt

= 01{0≤t<τS
1 } +

∞
∑

i=1

(

SτS
i
− b
)

1{τS
i ≤t≤τS

i+1}

=

n
∑

i=1

(

SτS
i
− SτS

i−1

)

1{t≤τS
1 },

where n is the unique integer which satisfies τS
n ≤ t < τS

n+1. We are interested
in the present value of the total dividend payment before ruin of Y defined by

V (x, b) =

∞
∑

i=1

e−rτS
i

(

SτS
i
− SτS

i−1

)

1

inf
0≤t≤τS

i
{Yt}>0

ff. (7)

We would like to maximize its expectation E (V (x, b)).

3 Some results for τS
i and SτS

i

In this section we aim to calculate

E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

,

E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

)

,

and

E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

,

which will be used to obtain the optimal barrier in next section.
Now set

W
µ
t = µt + σWt,

with µ > 0, σ > 0 and W being a standard Brownian motion starting from 0.
Define

τ∗
0 = inf {t ≥ 0 | W

µ
t = b − x} ,

τW µ

d = inf
{

t > 0 | 1{W
µ
t >0}

(

t − gW µ

0,t

)

≥ d
}

.

According to the definitions in (3) and (4), τS
1 − τS

0 is the first time the process,
started from b, reaches an excursion above b with length d and therefore has
the same law as τW µ

d . Together with the fact that S is translation invariant,
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SτS
1
− SτS

0
has the same law as W

µ

τWµ

d

. Furthermore, the event {Yt > 0} for

0 ≤ t ≤ τS
0 is equivalent to the event {Wµ

t > −x}; and the event {Yt > 0} for

τS
0 ≤ t ≤ τS

1 is equivalent to the event
{

W
µ

t−τS
0

> −b
}

. Consequently, we have

that

E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

= E

(

e−rτ∗
0 1n

inf0≤t≤τ∗
0
{W

µ
t }>−x

o

)

, (8)

E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

= E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d

{W
µ
t }>−b

ff

)

,

(9)

E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0

≤t≤τS
1
{Yt}>−b

o

)

= E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>0

ffW
µ

τWµ

d

)

.

(10)
The expectation presented by (8) is a well known result for the first exit time
of Brownian motions with drift (see [3]):

E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

= E

(

e−rτ∗
0 1n

inf0≤t≤τ∗
0
{W

µ
t }>−x

o

)

= exp

{

µ(b − x)

σ2

} sinh

(

x
σ

√

2r + µ2

σ2

)

sinh

(

b
σ

√

2r + µ2

σ2

) .(11)

For (9) and (10), we need to use the same technique as that in [8], [9] and [10].
First of all, in order to avoid the problems caused by the peculiar properties of
Brownian motions sample paths, we introduce the perturbed Brownian motion
X(ǫ), where ǫ > 0 as follows. Define a sequence of stopping times

δ0 = 0,

σn = inf {t > δn |Wµ
t = −ǫ} ,

δn+1 = inf {t > σn |Wµ
t = 0} ,

where n = 0, 1, · · · . Now define

X
(ǫ)
t =

{

W
µ
t + ǫ, if δn ≤ t < σn

W
µ
t , if σn ≤ t < δn+1

, (see Figure 3).

By introducing the jumps to the original Brownian motion, we get this new
process X(ǫ) which has a very clear structure of excursions above and below 0,
i.e. the excursions above and below 0 alternate with the length of each excursion
greater than 0. In the Appendix we prove that the expectation of the variables
defined based on X(ǫ) converge to those based on Wµ as ǫ goes to 0. As a result,
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we can obtain the results for Wµ by carrying out the calculations for X(ǫ) and
taking the limit ǫ → 0. Hence we will focus on studying the excursions of X(ǫ).

For X(ǫ), similarly, we can define

gX
0,t = sup

{

s ≤ t | X(ǫ)
s = 0

}

, dX
0,t = inf

{

s ≥ t | X(ǫ)
s = 0

}

, (12)

τX
d = inf

{

t > 0 | 1{X(ǫ)>0}
(

t − gX
0,t

)

≥ d
}

. (13)

Furthermore, we set UX
k , k = 1, 2, · · · to be the length of the kth excursion

of X(ǫ) above 0 and V X
k , k = 1, 2, · · · to be the length of the kth excursion of

X(ǫ) below 0 before X(ǫ) ever falls below −b. Notice that UX
k k = 1, 2, · · · are

i.i.d, so are V X
k k = 1, 2, · · · and UX

k and V X
k are independent. We therefore

define the densities for UX
k and V X

k k = 1, 2, · · · :

p1(t) = lim
∆t→0

P
(

t < UX
k < t + ∆t

)

∆t
, p2(t) = lim

∆t→0

P
(

t < V X
k < t + ∆t

)

∆t
;

P1(t) = P
(

UX
k < t

)

, P2(t) = P
(

V X
k < t

)

;

P̄1(t) = P
(

UX
k > t

)

, P̄2(t) = P
(

V X
k > t

)

.

We have

Pi(t) =

∫ t

0

pi(s)ds = 1 − P̄i(t),

which is actually the probability that the process will stay above (or below) 0
for no more than time t. More precisely, according to the definition of X(ǫ), we
actually have:

p1(s) =
ǫ

σ
√

2πs3
exp

{

− (ǫ + µs)2

2σ2s

}

, (14)

p2(s) = exp

{

µǫ

σ2
− µ2t

2σ2

}

sst

(

b − ǫ

σ
,
b

σ

)

, (15)

where

sst(x, y) =

∞
∑

k=−∞

(2k + 1)y − x√
2πt3

exp

{

− ((2k + 1)y − x)
2

2t

}

.

In fact, p1(s) is the density of the first time Wµ which starts from ǫ hits 0; and
p2(s) is the density of the first time Wµ which starts from −ǫ exit the corridor
(−b, 0) from 0.

Now in order to calculate (9) we first need to calculate

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

)

.
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Let Ai denote the event that the first time the length of the excursion above
zero reaches d happens during the ith excursion above zero. Since excursions
above and below alternate, given event Ai, before the ruin of Y τX

d is comprised
of i − 1 full excursions below zero, none of which crosses level −b and i − 1
full excursions above zero with the length less than d and the last one with the
length d, i.e.

τX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

∣

∣

∣

∣

∣

Ai =

i−1
∑

k=1

(

UX
k + V X

k

)

+d

∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i−1, UX

i ≥ d.

(16)
We have therefore

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

)

=
∞
∑

i=1

E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

}
∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i − 1, UX

i ≥ d

)

P (Ai)

Since UX
k , k = 1, 2, · · · are i.i.d and so are V X

k , k = 1, 2, · · · and UX
k and V X

k

are independent, we have that

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

)

= e−rd

∞
∑

i=1

E
(

e−rUX
1

∣

∣

∣
UX

1 < d
)i−1

E
(

e−rV X
1

)i−1

P
(

UX
1 < d

)i−1
P
(

UX
i ≥ d

)

= e−rd

∞
∑

i=1

(

∫ d

0

e−rs p1(s)

P
(

UX
1 < d

)ds

)i−1
(
∫ ∞

0

e−rsp2(s)ds

)i−1

P
(

UX
1 < d

)i−1
P
(

UX
i ≥ d

)

=
e−rdP

(

UX
i ≥ d

)

1 −
∫ d

0
e−rsp1(s)ds

∫∞
0

e−rsp2(s)ds
.

We can then calculate

P
(

UX
i ≥ d

)

= N

(

µ

σ

√
d +

ǫ

σ
√

d

)

− e−2 µǫ

σ2 N

(

µ

σ

√
d − ǫ

σ
√

d

)

,

∫ d

0

e−rsp1(s)ds = exp







−

(

µ +
√

2rσ2 + µ2
)

ǫ

σ2







N

(
√

(

2r +
µ2

σ2

)

d − ǫ

σ
√

d

)

+ exp







−

(

µ −
√

2rσ2 + µ2
)

ǫ

σ2







N

(

−
√

(

2r +
µ2

σ2

)

d − ǫ

σ
√

d

)

,
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∫ ∞

0

e−rsp2(s)ds = exp
{µǫ

σ2

}

sinh

(

(b−ǫ)
σ

√

2r + µ2

σ2

)

sinh

(

b
σ

√

2r + µ2

σ2

) .

By taking the limit ǫ → 0 we have that

E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

(17)

= E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>−b

ff

)

=
e−rd

[

2µ
σ
N

(

µ
σ

√
d
)

+
√

2
πd

exp
(

−µ2d
2σ2

)]

2
q

2r+ µ2

σ2

exp

„

2 b
σ

q

2r+ µ2

σ2

«

−1
+ 2
√

2r + µ2

σ2 N

(
√

(

2r + µ2

σ2

)

d

)

+
√

2
πd

exp
{

− (2rσ2+µ2)d
2σ2

}

(we prove in the Appendix that the convergence is valid when taking the limit).

For (11), we calculate E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

)

and take the

limit ǫ → 0. Ai is defined as above. According to (16), we have

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

∣

∣

∣

∣

∣

Ai

)

= E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

}

X
(ǫ)
Pi−1

k=1(UX
k

+V X
k )+d

∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i − 1, UX

i ≥ d

)

.

By definition, we know that

X
(ǫ)
Pi−1

k=1(UX
k

+V X
k )

= ǫ.

Therefore we have

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ffX
(ǫ)

τX
d

∣

∣

∣

∣

∣

Ai

)

= E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

}

X
(ǫ)
Pi−1

k=1(UX
k

+V X
k )+d

∣

∣

∣

∣

∣

X
(ǫ)
Pi−1

k=1(UX
k

+V X
k )

= ǫ,

UX
k < d, k = 1, 2, · · · i − 1, UX

i ≥ d

)

.
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Applying the strong Markov property and transition invariance of X(ǫ) gives

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ffX
(ǫ)

τX
d

∣

∣

∣

∣

∣

Ai

)

= E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

}

X
(ǫ)
d

∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i − 1, UX

i ≥ d

)

= E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

}
∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i − 1

)

E
(

X
(ǫ)
d

∣

∣

∣
UX

i ≥ d
)

= E

(

exp

{

−r

i−1
∑

k=1

(

UX
k + V X

k

)

− rd

} ∣

∣

∣

∣

∣

UX
k < d, k = 1, 2, · · · i − 1

)

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 ≥ d
)

= E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ff

∣

∣

∣

∣

∣

Ai

)

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 ≥ d
)

.

And therefore

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ffX
(ǫ)

τX
d

)

=

∞
∑

i=1

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ff

∣

∣

∣

∣

∣

Ai

)

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 ≥ d
)

P (Ai)

= E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ff

)

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 ≥ d
)

.

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ff

)

has been obtained above. We will now

focus on E
(

X
(ǫ)
d

∣

∣

∣
UX

1 ≥ d
)

. First of all according to the definition we have

UX
1 = inf

{

t ≥ 0
∣

∣

∣
X(ǫ) ≤ 0

}

.

For X(ǫ) we have that
X

(ǫ)

UX
1 ∧d

− µ
(

UX
1 ∧ d

)

is a martingale. UX
1 ∧ d is a bounded stopping time. Hence

ǫ = E
(

X
(ǫ)

UX
1 ∧d

− µ
(

UX
1 ∧ d

)

)

= E
(

X
(ǫ)

UX
1 ∧d

)

− µE
(

UX
1 ∧ d

)

= E
(

X
(ǫ)

UX
1

∣

∣

∣
UX

1 < d
)

P
(

UX
1 < d

)

+ E
(

X
(ǫ)
d

∣

∣

∣
UX

1 > d
)

P
(

UX
1 > d

)

− µE
(

UX
1 ∧ d

)

= E
(

X
(ǫ)
d

∣

∣

∣
UX

1 > d
)

P
(

UX
1 > d

)

− µE
(

UX
1 ∧ d

)

.
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As a result,

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 > d
)

=
ǫ + µE

(

UX
1 ∧ d

)

P
(

UX
1 > d

) ,

where
E
(

UX
1 ∧ d

)

= E
(

UX
1 1{UX

1 <d}
)

+ dP
(

UX
1 > d

)

,

P
(

UX
1 > d

)

= 1−
∫ d

0

p1(t)dt = N

(

µ

σ

√
d +

ǫ

σ
√

d

)

−e−2 µǫ

σ2 N

(

µ

σ

√
d − ǫ

σ
√

d

)

,

E
(

UX
1 1{UX

1 <d}
)

=

∫ d

0

tp1(t)dt =
ǫ

µ

[

e−
2ǫµ

σ2 N

(

µ

σ

√
d − ǫ

σ
√

d

)

− N

(

−µ

σ

√
d − ǫ

σ
√

d

)]

.

Therefore

E
(

X
(ǫ)
d

∣

∣

∣
UX

1 > d
)

=
ǫN

(

µ
σ

√
d + ǫ

σ
√

d

)

+ ǫe−
2ǫµ

σ2 N

(

µ
σ

√
d − ǫ

σ
√

d

)

N

(

µ
σ

√
d + ǫ

σ
√

d

)

− e−
2ǫµ

σ2 N

(

µ
σ

√
d − ǫ

σ
√

d

) + µd.

(18)
We have therefore obtained

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>0

ffX
(ǫ)

τX
d

)

.

Taking the limit ǫ → 0 gives

E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0

≤t≤τS
1
{Yt}>−b

o

)

(19)

= E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>0

ffW
µ

τWµ

d

)

=
e−rd

{

µd
σ

[

2µ
σ
N

(

µ
σ

√
d
)

+
√

2
πd

exp
(

−µ2d
2σ2

)]

+ 2N

(

µ
σ

√
d
)}

2
q

2r+ µ2

σ2

exp

„

2 b
σ

q

2r+ µ2

σ2

«

−1
+ 2
√

2r + µ2

σ2 N

(√

(

2r + µ2

σ2

)

d

)

+
√

2
πd

exp
{

− (2rσ2+µ2)d
2σ2

}

.

Notice that here we assume µ > 0 as this is the usual assumption in practice.
The results for µ < 0 can also be calculated using the same method.

4 The optimal barrier

In this section, we show that there exists an unique barrier b∗ which maximizes
the expectation as long as x < b∗. Set V (b) to be the discounted value of the

12



total dividends payment at the first time S hits barrier b. We can then express
E (V (x, b)) in terms of E (V (b)) as follows:

E (V (x, b))

= E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

∞
∑

i=1

e−r(τS
i −τS

0 )
(

SτS
i
− SτS

i−1

)

1

inf
τS
0 ≤t≤τS

i
{Yt}>0

ff

)

.

By the strong Markov property of S, we have that

E (V (x, b))

= E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

E

( ∞
∑

i=1

e−r(τS
i −τS

0 )
(

SτS
i
− SτS

i−1

)

1

inf
τS
0 ≤t≤τS

i
{Yt}>0

ff

)

= E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

E (V (b)) .

We have obtained E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

)

in (11). For E (V (b)) we

have

E (V (b))

= E

( ∞
∑

i=1

e−r(τS
i −τS

0 )
(

SτS
i
− SτS

i−1

)

1

inf
τS
0

≤t≤τS
i
{Yt}>0

ff

)

= E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

)

+E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

∞
∑

i=2

e−r(τS
i −τS

1 )
(

SτS
i
− SτS

i−1

)

1

inf
τS
1 ≤t≤τS

i
{Yt}>0

ff

)

.

Applying the strong Markov property again, we have that

E (V (b))

= E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

+E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

E

( ∞
∑

i=2

e−r(τS
i −τS

1 )
(

SτS
i
− SτS

i−1

)

1

inf
τS
1 ≤t≤τS

i
{Yt}>0

ff

)

.

Since S is translation invariant, it follows that

E (V (b)) = E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

)

+E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

)

E (V (b)) ,

13



and therefore

E (V (b)) =

E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

)

1 − E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0

≤t≤τS
1
{Yt}>0

o

) .

As a result, we have

E (V (x, b)) = E

(

e−rτS
0 1n

inf
0≤t≤τS

0
{Yt}>0

o

) E

(

e−r(τS
1 −τS

0 )
(

SτS
1
− SτS

0

)

1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

)

1 − E

(

e−r(τS
1 −τS

0 )
1n

inf
τS
0 ≤t≤τS

1
{Yt}>0

o

) .

(20)
Substituting (11), (17) and (19) into (20) gives

E (V (x, b)) =
C1 exp

{

µ
σ2 b
}

C2 exp(αb) + C3 exp(−αb)
, (21)

where

α =
1

σ

√

2r +
µ2

σ2
,

C1 = 2 exp
{

−rd − µx

σ2

}

sinh(αx)

{

µd

σ

[

2
µ

σ
N

(µ

σ

√
d
)

+

√

2

πd
exp

(

−µ2d

2σ2

)

]

+ 2N

(µ

σ

√
d
)

}

,

C2 = 2ασN

(

ασ
√

d
)

− 2
µ

σ
e−rd

N

(µ

σ

√
d
)

,

C3 = 2ασN

(

−ασ
√

d
)

+ 2
µ

σ
e−rd

N

(µ

σ

√
d
)

.

In order to maximize this expectation, we need to solve

d

db
E (V (x, b)) = 0,

which gives

b∗ =
1

2α
ln

(

ασ2 + µ
)

C3

(ασ2 − µ) C2
. (22)

Furthermore at b∗
d2

db2
E (V (x, b)) < 0.

Therefore E (V (x, b)) is maximized at b∗.
Setting d = 0 gives the result for the special case when there is no imple-

mentation delay

b∗ =
σ

√

2r + µ2

σ2

ln

√

2rσ + µ2 + µσ
√

2rσ + µ2 − µσ
. (23)
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This is the result obtained in [14].
For the case with implementation delay, b∗ is a function of d and we can

actually calculate that

db∗

dd
= −4ασre−rd

{

1√
2πd

e−
µ2d

2σ2 +
µ

σ
N

(µ

σ

√
d
)

}

< 0,

i.e. b∗ is a decreasing function of d. Furthermore, when d → ∞, b∗ → −∞. We
therefore need to put a constrain on d since the barrier have to be greater than
0. Solving

b∗ > 0

gives
d < d̄, (24)

where d̄ is the unique solution of

ασ2 + µ − 2ασ2
N

(

ασ
√

d
)

+ µe−rd
N

(µ

σ

√
d
)

= 0.

5 Appendix

We show in this section that we can take limits ǫ → 0 as we did earlier. First
of all, we consider two processes Wµ and Wµ = Wµ − ǫ. According to the
definitions, X(ǫ) satisfies

lim
ǫ→0

X
(ǫ)
t = W

µ
t , a.s. for all t,

W
µ
t ≤ X

(ǫ)
t ≤ W

µ
t for all t,

and gX
0,t always lies between gW µ

0,t and g
W µ

0,t . Since

lim
ǫ→0

g
W µ

0,t = lim
ǫ→0

gW µ

ǫ,t = gW µ

0,t ,

we have that
lim
ǫ→0

gX
0,t = gW µ

0,t , a.s.

and therefore

lim
ǫ→0

1n

X
(ǫ)
t >0

o

(

t − gX
0,t

)

= 1{W
µ
t >0}

(

t − gW µ

0,t

)

a.s.

From the definition of τS
d we have that

{

τW µ

d < t
}

=

{

sup
0≤s≤t

{

1{W
µ
s >0}

(

s − gW µ

0,s

)}

≥ d

}

= lim
ǫ→0

{

sup
0≤s≤t

{

1n

X
(ǫ)
s >0

o

(

t − gX
0,s

)

}

≥ d

}

= lim
ǫ→0

{

τX
d < t

}

.

15



Consequently,

lim
ǫ→0

τX
d = τW µ

d a.s. and lim
ǫ→0

X
(ǫ)

τX
d

= W
µ

τWµ

d

a.s.

Therefore for any given non-negative constants r,

lim
ǫ→0

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff = e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>−b

ff a.s.

lim
ǫ→0

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

= e−rτWµ

d 1

inf
0≤t≤τW µ

d

{W
µ
t }>−b

ffW
µ

τWµ

d

a.s.

Since τX
d ≥ 0, we also have,

∣

∣

∣

∣

∣

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

∣

∣

∣

∣

∣

< 1,

and
∣

∣

∣

∣

∣

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

∣

∣

∣

∣

∣

< X
(ǫ)

τX
d

,

where we have shown in (18) that

E
(∣

∣

∣
X

(ǫ)

τX
d

∣

∣

∣

)

= E
(

X
(ǫ)

τX
d

)

= E
(

X
(ǫ)
d

∣

∣

∣
UX

1 > d
)

< ∞.

We can then applying the Dominated Convergence Theorem which gives

E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>−b

ff

)

= E

(

lim
ǫ→0

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

)

= lim
ǫ→0

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ff

)

.

E

(

e−rτWµ

d 1

inf
0≤t≤τW µ

d
{W

µ
t }>−b

ffW
µ

τWµ

d

)

= E

(

lim
ǫ→0

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

)

= lim
ǫ→0

E

(

e−rτX
d 1

inf
0≤t≤τX

d

n

X
(ǫ)
t

o

>−b

ffX
(ǫ)

τX
d

)

.
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