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The purpose of this note is to obtain a representation of the distribu-
tion of the a-quantile of a process with stationary and independent
increments as the sum of the supremum and the infimum of two rescaled
independent copies of the process. This representation has already been
proved for a Brownian motion. The proof is based on already known
discrete time results.

1. Introduction. Let (X(¢), ¢ > 0) be a process with stationary and
independent increments with X(0) = 0 and consider the version with paths
in D[0, ») (see [2], page 306). For 0 < a < 1, define the a-quantile of (X(s),
0<s<t)hy

M(a,t) = inf{x: /tl(X(s) <x)ds> at}.
0
Our main result is the following theorem

THEOREM 1. Let XV(t) and X®(t) be independent copies of X(t). Then,

sup XP(s) + inf X®(s
(M(a,t)) _ Ossspat () 0<s<(l-a) ) (inlaw).
X(2) XO(at) + XO((1 - a)t)

This result was obtained for the special case when X(¢) is a Brownian
motion by Dassios [4] and Embrechts, Rogers and Yor [5]. Using this result,
one could calculate an expression for the joint probability density of M(a,t)
and X(¢#). The motivation for these calculations was a problem in mathemati-
cal finance, the pricing of the so-called a-quantile (a-percentile) options. For
the pricing of these options, see [1, 4, 6]. '

To prove our theorem, we will use a similar discrete time result, obtained
some time ago by Wendel [9] and Port [7].

2. Discrete time results. Consider the sequence x = (x,, x,, X5,...).
For integers 0 < j < n, define the (j, n)th quantile of x for j = 0,1,2,...,n by
M, ,(x) = inflz: £]_,1(x; < 2) > j}.
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In particular, M, ,(x) = min;_,, (x,) and M, () =max;_,, . fx;}
This definition coincides with the one in [7].

The following result is due to Wendel [9].

ProOPOSITION 1. Let Y,,Y,,... be a sequence of i.i.d. random variables.

Define X = (X,, X,,...) by X, =0 and X, = 'Y, forn = 1,2,... . Let X

and X® be two independent copies of X. Then,

(2.1) M; (X)) _ [ M, (XD) + My, (XP)
X X9+ X2,

n

(in law).

Wendel actually states this result in characteristic function form. An
extension of this result, involving the time the quantile is achieved, was
obtained by Port [7]. A careful reading of Port’s proof can persuade the reader
that the result is actually true where Y,,Y,,...,Y, are exchangeable random
variables, with X® replaced by (0,X;,...,X;) and X® by (0,X;,, -
X,...,X, - X).

3. Proof of Theorem 1. Define the occupation time L(x,t) = [{ 1(X(s)
< x) ds. We have that

(8.1) Pr(M(a,t) <x,X(t) <a)=Pr(L(x,t) > at, X(t) <a).

Similarly for the discrete time process X define L,(x) = L7 (1(x; < x). We
then have

(3.2) Pr(M; (X) <x, X, <a) =Pr(L,(x) >j, X, <a).

Without loss of generality, we will prove Theorem 1 for ¢ = 1. Let (X(s),
0 < s < 1) be as in the Introduction, and for r = 0,1,...,n set X, = X(r/n).
The process (X[, 0 <s < 1) converges weakly to (X(s), 0 < s < 1). Since
J41(X(s) < x) ds is a continuous functional of (X(s), 0 < s < 1), we conclude
that for all 0 < a < 1 such that Pr(L(x, t) > a, X(¢) < a) is continuous,

(3.3) li_I)I:OPr(Ln(x) >[nal, X, <a) =Pr(L(x,1) > a, X(1) < a).

Take X® =X(r/n) for r=0,1,...,[nal, and X® = X(r + [nal/n) -
X(nal/n)for r =0,1,...,n — [nal. Then (M, /XD, X ,,.,) converges
in distribution to (sup,.,., X(s), X(a)) and (M, ,_,,X®), X, — X}
converges in distribution to (inf,_,_,_,(X(s + a) — X(a)), X(1) — X(a)).
We note that X® and X® are independent and so from (2.1), (3.1), (3.2) and
(3.3) we conclude

M(a,l)
X(1)
(3-4) ( sup X(s) + _inf (X(a+s)-X(a))

o<s<a O<s<(l-a

X(a) +X(1) —X(a)

(in law).



SAMPLE QUANTILES OF STOCHASTIC PROCESSES 1043

Taking X®(s) = X(s) and X®(s) = X(a + s) — X(a) completes the proof of
the theorem.

Equation (3.4) is also true if (X(¢), ¢ > 0) is a process with exchangeable
increments. If (X(¢), ¢t > 0) is defined on a probability space (Q,%,Pr),
according to [8], Theorem 1, page 202, there exists a nontrivial o-algebra
& €& such that (X(¢), ¢ > 0) has stationary and independent increments
with respect to &. This was first proved by Bithlman [3]. Conditioning on &
and taking expectations, we obtain (3.4).

Acknowledgment. The author thanks the referee for pointing out impor-
tant references.
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