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Abstract

The distribution of the a-quantile of a Brownian motion on an
interval [0,¢] has been obtained motivated by a problem in financial
mathematics. In this paper we generalise these results by calculating
an explicit expression for the joint density of the a-quantile of a stan-
dard Brownian motion, its first and last hitting times and the value
of the process at time t. Our results can be easily generalised for a
Brownian motion with drift. It is shown that the first and last hitting
times follow a transformed arcsine law.

1 Introduction

Let (X (s),s > 0) be a real valued stochastic process on a probability space
(Q,F,Pr).For 0 < a < 1, define the a—quantile of the path of (X (s),s > 0)
up to a fixed time t by

MX(a,t):inf{x:/otl(X(s)gx)ds>at}. (1)

The study of the quantiles of various stochastic processes has been recently
undertaken as a response to a problem arising in the field of mathemati-
cal finance, the pricing of a particular path-dependent financial option; see
Miura [6], Akahori [1] and Dassios [2]. This involves calculating quantities
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such as E (h (Mx (,t))), where h(z) = (e* — b)" or some other appropri-
ate function. This requires obtaining the distribution of X (¢). In the case
where (X (s),s > 0) is a Lévy process (having stationary and independent
increments) the following result was obtained:

Let X (s) and X® (s) be independent copies of X (s). Then,

Mx (a,t) \ (taw) [ 0<s < atsupXP (s) +0 < s < (1—a)tinfX? (s)
( X () ) B ( X0 (at) + X ((1 - a)t) )
(2)

When (X (s),s > 0) is a Brownian motion, we can use this result and
obtain an explicit formula for the joint density of Mx («,t) and X (¢). This
result was first proved for a Brownian motion with drift; see Dassios [2] and
Embrechts, Rogers and Yor [4] and for Lévy processes by Dassios [3]. There
is also a similar result for discrete time random walks first proved by Wendel
[7].

We now let
Lx (a,t) =inf{s € [0,t] : X (s) = Mx (a, 1)}
be the first, and
Kx (o t) =sup {s € [0,] : X (s) = Mx (a, 1)},

the last time the process hits Mx («,t). One can now introduce a ‘barrier’
element to the financial application by making the option worthless if the
quantile is hit too early or too late. For example, this can involve calculating
quantities such as E (h (Mx (o, t)) 1 (Lx (a,t) > v, Kx (a,t) < u)).

For the rest of the paper we assume that (X (s),s > 0) is a standard
Brownian motion. We will derive the joint density of Mx («a,t), Lx (o, t), Kx («,t)
and X (t). If we denote this density by f (y,z,u,v), our results can be
generalised for a Brownian motion with drift m, using a Cameron-Martin-
Girsanov transformation. The corresponding density will be f (y, x,u,v) exp (mx —m?t/ 2) .

Before we obtain the density of (Mx (a,t), Lx (a,t), Kx (a,t), X (1)),
we will first show that the law of Ly (a,t) (and Kx (a,t)) is a transformed
arcsine law.

2 An arcsine law for Ly («,1).

Let Sx (t) = supg<s<; {X (5)} and Ox (t) =sup{s € [0,] : X (s) = Sx (t)}.
We prove the following theorem:



For u > 0,
Pr(Lx (a,t) >u) =Pr(u<fx(t) <oat)+Pru<fx(t) <(l—a)t) (3)

and Lw<at)+1(u<(1—a)t)

m/u (t — u)

Furthermore, Kx (a,t) has the same distribution as ¢t — Ly (a,t).
Proof We will first prove that

Pr(Lx (o, t) € du) = du. (4)

Pr(Mx (a,t) > 0,Lx (a,t) >u) =Pr(u < 0x (t) < at). (5)
We observe that

Pr(Mx (a,t) > 0, Lx (o, t) > u) = Pr (Mx (o, t) > Sx (u)) =
Pr (/0 1(X (s) <Sx(u))ds <at> =

t

Pr(/l(X(s)X(U)SSX(U)X(U))dS<at>. (6)
Let X*(s) =X (u+s)—X (u). (X*(s),s > 0) is a standard Brownian mo-
tion which is independent of (X (s),0 < s < u). We condition on Sx (u) —
X (u) =c,and set 7. =inf {s > 0: X*(s) = c} and X*™ (s) = X* (1. + s) —
c. (X** (s),s>0) is a standard Brownian motion which is independent of
both (X (s),0 < s <wu)and (X*(s),0 < s < 7.). We have that

Pr(/otul(X*(s)gc)ds<at—u> —

at—u t—u—r
/ Pr(%Edr)Pr(/ 1(X**(s)§0)ds<at—u—r>
0 0

and since fg_u_r 1 (X™** (s) <0)ds has the same (arcsine) law as Ox« (t —u — 1),
this is equal to

at—u
/ Pr(r. €dr)Pr(0x«~ (t—u—r)<at—u—r)=
0

at—u
/ Pr (7. € dr)Pr < sup X (s) > sup X (s)) =
0

0<s<at—u—r at—u—r<s<t—u—r



Pr( sup X*(s)> sup X*(s), sup X*(s)>c)

0<s<at—u at—u<s<t—u 0<s<at—u
and so (6) is equal to

Pr < SupugsgatX (S) -X (u) > SupatSSStX (S) - X (u) ’ >
SupugsgatX (5) -X (u) > SuPogsguX (S) -X (u)

Pr(u < 6x (t) < at).

Since (—X (s),s > 0) is also a standard Brownian motion and M_x («,t) =
—Mx (1 — a,t) almost surely, we use —X (s) instead of X (s) and we get

Pr(Mx (a,t) < 0,Lx (a,t) >u) =Pr(u<fx (t) <(1—-—a)t). (7)

Adding (5) and (7) we get (3), and since fx (t) has an arcsine law, (4) follows.
To see that Kx (a,t) has the same distribution as Ly (a,t), set X (s) =
X (t—s)—X (t). Clearly (X' (s),0<s< t) is a standard Brownian motion
and we can easily see that Mg (o, t) = Mx (o, t) — X (t) and K¢ (a,t) =
t—Lx (a,t).0
We can also extend our result and obtain the joint distribution of (Mx (o, t), Lx (a,t))
(also of (Mx (a,t) — X (t),t — Kx (a,t)).
For b >0,

Pr(Mx (o, t) € db, Lx (o, t) € du) = Pr(Sx (t) € db,0x (t) € du) 1 (0 < u < at),
(8)

and for b < 0,

Pr(Mx (o, t) € db,Lx (o, t) € du) =Pr(Sx (t) € d|b],0x (1) €du) 1 (0 <u < (1 —a)t).
9)

Furthermore (Mx (a,t), Lx (,t)) and (Mx (a,t) — X (t) ,t — Kx («a,t)) have

the same distribution.

Proof Let b > 0 and v < at. We then have that

Pr(Mx (a,t) > b,Lx (a,t) > u) = Pr(Sx (u) < Mx (o, t), Mx (o, t) > b) =

Pr(b < Sx (u) < Mx (a,t)) + Pr(Sx (u) < b < Mx (o, 1)) . (10)

Let 7, =inf{s > 0: X (s) =b} and X*(s) = X (1, +s) —c. (X*(s),5s>0)
is a standard Brownian motion which is independent of (X (s),0 <s < 7).
Using theorem 1, we have

Pr(b < Sx (u) < Mx (a,t)) =



/OuPr(Tb € dr)Pr </0t_T1(X* (5) < Se (u— 1) <at_r> _

“ t— t—
/ Pr (7, € dr)Pr (MX* <a T,t—r) >0, Lx« <a r7t_r> >u—r> —
0 t—r t—r

/uPr(Tbedr)Pr(u—r<6x* (t—r)<at—r)=Pr(u<bx(t) <at,Sx (u) >b).
0
(11)

Furthermore,

Pr(Sx (u) <b< Mx (a,t)) =Pr <SX(u)<b,/0t1(X(s)<b)ds<at> =

/umsPr(Tz,Ealr)Pr (/Ot_rl(X*(S) <0) <at—r>

at
:/ Pr(medr)Pr(Ox«(t—7r)<at—r)=

Pr (u <0Ox (t) <at,Sx (u) <b, sup X (s)> b) : (12)

u<s<at

Adding (11) and (12) together, we see that (10) is equal to

Pr<u<9X(t)<at, sup X(s)>b>:Pr(u<9X(t)<at,SX(t)>b)

u<s<at

which leads to (8).

Since (—X (s),s > 0) is also a standard Brownian motion and M_x (o, t) =
—Mx (1 — a,t) almost surely, we use — X (s) instead of X (s) and we get that
for b < 0,

Pr (My (a,t) < b, Ly (a,£) > u) = Pr(u < fx (1) < (1 — a)t,Sx (t) > |b]),

which leads to (9).
To see that (t — Kx (a,t), Mx (a,t) — X (t)) has the same distribution
as (Lx (a,t), My (a,t)), set again X (s) = X (t — s)—X (¢). Clearly (X (s),0<s < t)
is a standard Brownian motion and we can easily see that Mg (o, t) =
Mx (a,t) — X (t), (and so Mg (a,t) — X (t) = Mx (. t) ) and K (a,t) =
t—Lx (a,t).0
Remarks



1. The distribution of (6x (t),Sx (t)) is well known (see for example
Karatzas and Shreve [5], page 102. From this and theorem 2, we
can deduce the density of (Lx (a,t), Mx (a,t)). This is given by

Pr(Mx (a,t) € db, Lx (o, t) € du) =

|b| ( b2>
——————exp(—— |1 0<u<at,b>0)+1(0<u<(1—a)t,b<0)]dbdu.
o (o) 0 )10 <u<(1-a)tb<0)

(13)

2. Theorem 2 also leads to an alternative expression for the distribution
of Mx (o, t); that is

Pr(Mx (a,t) € db) = Pr(Sx (t) € db,0 < Ox (t) < at),
for b > 0 and
Pr(Mx (a,t) € db) = Pr (Sx (t) € d]b],0 < O0x (t) < (1 —a)t),
for b < 0.

3. Using the argument at the end of the proof, we can generalise the last
assertion of the theorem and observe that (Kx («a,t), Mx (a,t) — X (t), —X (t))
has the same law as (¢t — Lx (o, t), Mx (a,t), X (t)) and so we see that
(KX (a7 t) » Mx (av t) X (t)) and (t — Lx (a’ t) » Mx (a’ t) - X (t) ;=X (t)) )
have the same distribution, a fact we will use in the following section.

3 The joint law of (Lx (a,t), Kx (a,t), Mx (a,t), X (1)) .

From now on we will denote the density of 7, by & (-, ) ; that is for v > 0,

20| b?
Pr(m € dv) = k (v,b) dv = exp | —o- dv. (14)
v

We will also denote the joint density of (MX (%, t) , X (t)) by g (,-,-,-); that
is for 0 < v < ¢,

Pr (MX (%t) cdb, X () e da) — ¢ (b, a,v,t) dbda.

We can calculate g (+,-,-,-) by using the proposition in the introduction.
(Mx (%,t), X (t)) has the same distribution as (Sx, (v) — Sx, (t —v), X1 (v) — X2 (t — v)),



where (X1 (s),0 < s <w)and (X2(s),0 < s <t—wv) are independent stan-
dard Brownian motions. The density of (Sx (t), X (¢)) is given by

Pr(Sx (t) € db, X (t) € da) = 2@b—a) exp (—W) 1(b>0,b> a)dadb

V2rt3 2t
(15)
(see Karatzas and Shreve [5], p.95). We observe that since (15) is bounded,
g (+,++,-)is a bounded density. For our results, we need to calculate g (0,0, v,t).

This is the same as the value of the density of (Mx (2,t), Mx (%,t) — X (¢))
at (0,0). From (15) we see that

Pr(Sx (t) € dy,Sx (t) — X (t) € dz) = %exp <_(y+x)2) 1(y >0,z >0)dydx

and it is a simple exercise to verify that

*2(y+1) (y+2)°\ 2(y+u) (y+=)°
g(0,0,v,t) // o p(— 7 ) 27r<t_v)3exp<—2<t_v)>dxdy

v(t—v)
e s (1)
We will now obtain a preliminary result.
For any u and v, such that 0 < u < v < t, we have that

Pr(Lx (o, t) > u, Mx (a,t) € db, X (t) € da, Kx (a,t) > v) =
Pr(m > u, Mx (o, t) € db, X (t) € da, Kx (a,t) > v). (18)

Proof Since M_x (a,t) = —Mx (1 — o, t) , it suffices to prove (18) for b > 0.
We have to prove that

5 1(1)m O5€{Pr(LX(a t) > u, Mx (o, t) € (b,b+6],X (t) € (a,a+¢], Kx (a,t) >v) —

Pr(m > u, Mx (a,t) € (b,b+6],X (t) € (a,a+¢],Kx (a,t) >v)} =0.
(19)
Let X*(s) = X (s +u) — X (u). We then have that
Pr(Lx (a,t) > u, Mx (a,t) € (b,b+0],X (t) € (a,a+¢€|,Kx (a,t) >v)—

Pr(m > u, Mx (o, t) € (b,b+ 6], X (t) € (a,a+ €|, Kx (a,t) >v) =



Pr(b < Sx (u) < Mx (a,t) <b+6,X (t) € (a,a+¢],Kx (a,t) >v) <
Pr(b < Sx (u) < Mx (a,t) <b+6,X (t) € (a,a+¢]) =

b< Sx (u) <b+ 4,
Pr| Sx(u) < Mx+(at —u,t —u)+ X (u) <b+4, |. (20)
X*(t—u)+ X (u) € (a,a+¢]

that there is a constant K, such that

y < Mx+ (at —u,t —u)+x <b+74,
< —-v).
Pr( X*(t—u)+x € (a,a+¢] < Ke(b+o-y)
We therefore conclude that (20) is bounded by
KeE((b4+0—Sx(u)1(b<Sx (u) <b+9)) <KedPr(b< Sx (u) <b+)9)

and by the continuity of the distribution of Sx (u), we see that the limit in
(19) is zero. O
As a corollary we will obtain the distribution of (Lx («,t), Mx (o, t), X (t)) .
The law of (Lx (a,t), Mx (a,t), X (t)) is given by

Pr(Lx (o, t) € du, Mx (o, t) € db, X (t) € da) =

{ k(b,u)g(0,a—b,at —u,t —u)1(0 <u < at)dudbda b >0 (21)

k(b,u)g(0,a—b,at,t —u)1(0 <u < at)dudbda  b<0

Proof For b > 0, since (X (s + 1) — X (1) ,0 < s <t — 1) is independent
of (X (s),0<s <), we have that

Pr(m, > v, Mx (a,t) € (b,b+ 0], X (t) € (a,a+¢)) =

at
/ Pr (7, € du) Pr (Mx (ot — u,t —u) € (0,0], X (t) € (a —b,a—b+¢)).
For b < 0, we use that M_x (a,t) = Mx (1 — a,t)andso g (0,b —a, (1 —a)t —u,t —u) =

g(0,a —b,at,t —u).O
We can now obtain the law of (Lx («,t), Kx (a,t), Mx (a,t), X (t)).

Pr(Lx (o, t) € du, Kx (a,t) € dv, Mx (o, t) € db, X (t) € da) =



21b| |b — a| dudvdbda ( b2 (b—a)2>

ﬂg(v—u)%/ui*(t—v)?’ex 2

2u  2(t—v)
Vi—u—(1-a)t)I-a)tl(u>0,u+(1—a)t<v<t) b>0,b>a

Vit—uw)(v—at)l(0<u<at<v<t) b>0,b<a
(v—u—at)atl (u>0,u+at <v<t) b<0,b>a
Vd-a)t—-uw)(v-1-a)t)l(0<u<(l—a)t<v<t) b<0,?<)a
22

Proof We start with the case b > 0,b > a. Using (18), and choosing ¢ such
that a + & < b, we need to look at

Pr(m <r, Kx (a,t) <v,Mx (a,t) € (b,b+ ], X (t) € (a,a+¢]) =

Pr <Tb <r,Mx (a,t) € (b,b+9],X (t) € (a,a+¢], Mx (a,t) < sup X(s)) =
v<s<t

" Mx (at —u,t —u) € (0,0],X (t —u) € (a—b,a—b+¢],
/0 Pr(n € du) Pr( Mx (at —u,t —u) < supvfugsgtqu(s)

" Mx (at —u,t —u) € (0,0], X (t —u) € (a—b,a—b+¢],
/OPr(TbEdu)Pr( Kx (ot —u,t—u) <v—u .
(23)
Using the last remark of the previous section, we then see that

Pr Mx (at —u,t —u) € (0,0],X (t —u) € (a—b,a—b+¢],
Kx (ot —u,t—u)<v—u

Pr< Mx (ot —u,t —u) — X (t —u) € (0,9],—X (t —u) € (a—b,a—b+¢], )
Lx (at —u,t—u) >t—v '
(24)
From the previous theorem we see that the density of

(Lx (at —u,t —u), Mx (ot —u,t —u) — X (t —u),—X (t —u))
at (t —v,0,a—0b) is
E(b—a,t—v)g(0,0,v—u—(1—a)t,v—u)1(0<t—v<at—u).

Combining this with (23) we get that (Lx (a,t), Kx (o, t), Mx (e, t) , X (2))
has a continuous density at (u,v, b, a) that is given by

k(b,u)k(b—a,t—v)g(0,0,v—u—(1—a)t,v—u)l(u>0u+(l—a)t<v<t).
(25)



We now look at the case b > 0,b < a. Using (18), and choosing § such that
b+ 6 < a, we need to look at

Pr(m <r Kx (a,t) > v, Mx (a,t) € (b,b+ 6], X (t) € (a,a+¢]) =

Pr <Tb <r,Mx (a,t) € (b,b+9],X (t) € (a,a+¢], Mx (a,t) < i<ni;tX(s)) =

" Mx (at —u,t —u) € (0,0],X (t —u) € (a—b,a—b+¢],
/0 Pr(n, € du) Pr( Mx (at —u,t —u) < inf,_y<s<t—u X (5)

" Mx (at —u,t —u) € (0,0], X (t —u) € (a—ba—b+¢],
/OPr(TbEdu)Pr< Ky (af —ut—u) <v—1u )
(26)
Using (24) and the previous theorem we see that the density of

(Lx (at —u,t —u),Mx (at —u,t —u) — X (t —u),—X (t —u))
at (t—v,0,a—0) is
kE(b—a,t—v)g(0,0,at —u,v—u)l(at <v).

Combining this with (23) we get that (Lx (a,t), Kx (o, t), Mx (e, t) , X (2))
has a continuous density at (u,v,b,a) that is given by

kE(b,u)k(b—a,t—v)g(0,0,at —u,v—u)l1(0<u<at<v<t). (27)

Substituting (14) and (17) into (25) and (27), we get the first two legs
of (22). Considering (—X (s),0 < s <t) and observing that M_x (a,t) =
—Mx (1—a,t), L_x (a,t) = Lx (1 —a,t) and K_x (a,t) = Kx (1 — a,t)
yields the rest of (22). O
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