On the quantiles of the Brownian motion and their hitting times.

Angelos Dassios
London School of Economics

May 2003

Abstract

The distribution of the α-quantile of a Brownian motion on an interval $[0, t]$ has been obtained motivated by a problem in financial mathematics. In this paper we generalise these results by calculating an explicit expression for the joint density of the α-quantile of a standard Brownian motion, its first and last hitting times and the value of the process at time t. Our results can be easily generalised for a Brownian motion with drift. It is shown that the first and last hitting times follow a transformed arcsine law.

1 Introduction

Let $(X(s), s \geq 0)$ be a real valued stochastic process on a probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$. For $0<\alpha<1$, define the $\alpha-$ quantile of the path of $(X(s), s \geq 0)$ up to a fixed time t by

$$
\begin{equation*}
M_{X}(\alpha, t)=\inf \left\{x: \int_{0}^{t} \mathbf{1}(X(s) \leq x) d s>\alpha t\right\} \tag{1}
\end{equation*}
$$

The study of the quantiles of various stochastic processes has been recently undertaken as a response to a problem arising in the field of mathematical finance, the pricing of a particular path-dependent financial option; see Miura [7], Akahori [1] and Dassios [3]. This involves calculating quantities such as $E\left(h\left(M_{X}(\alpha, t)\right)\right)$, where $h(x)=\left(e^{x}-b\right)^{+}$or some other appropriate function. This requires obtaining the distribution of $X(t)$. In the case where $(X(s), s \geq 0)$ is a Lévy process (having stationary and independent increments) the following result was obtained:

Proposition 1 Let $X^{(1)}(s)$ and $X^{(2)}(s)$ be independent copies of $X(s)$. Then,

$$
\begin{equation*}
\binom{M_{X}(\alpha, t)}{X(t)} \stackrel{(\text { law })}{=}\binom{\sup _{0 \leq s \leq \alpha t} X^{(1)}(s)+\inf _{0 \leq s \leq(1-\alpha) t} X^{(2)}(s)}{X^{(1)}(\alpha t)+X^{(2)}((1-\alpha) t)} \tag{2}
\end{equation*}
$$

When $(X(s), s \geq 0)$ is a Brownian motion, we can use this result and obtain an explicit formula for the joint density of $M_{X}(\alpha, t)$ and $X(t)$. This result was first proved for a Brownian motion with drift; see Dassios [3] and Embrechts, Rogers and Yor [5] and for Lévy processes by Dassios [4]. There is also a similar result for discrete time random walks first proved by Wendel [8].

We now let

$$
L_{X}(\alpha, t)=\inf \left\{s \in[0, t]: X(s)=M_{X}(\alpha, t)\right\}
$$

be the first, and

$$
K_{X}(\alpha, t)=\sup \left\{s \in[0, t]: X(s)=M_{X}(\alpha, t)\right\}
$$

the last time the process hits $M_{X}(\alpha, t)$. One can now introduce a 'barrier' element to the financial application by making the option worthless if the quantile is hit too early or too late. For example, this can involve calculating quantities such as $E\left(h\left(M_{X}(\alpha, t)\right) \mathbf{1}\left(L_{X}(\alpha, t)>v, K_{X}(\alpha, t)<u\right)\right)$.

The first study of these quantities can be found in Chaumont [2]. By using combinatorial arguments he derives of the same type as Proposition 1 that are extensions to Wendel's results in discrete time. In the case where the random walk steps can only take the values +1 or -1 , a represenation for the analogues of $L_{X}(\alpha, t)$ and $K_{X}(\alpha, t)$ is obtained. Finally he derives a continuous time representation for the triple law of $M_{X}(\alpha, t), L_{X}(\alpha, t)$ and $X(t)$, extending Proposition 1 when $X(t)$ is a Brownian motion. We will adopt a direct approach that seems better suited to obtaining explicit expressions for the densities involved. We will also derive alternative representations and prove a remarkable arc-sine law.

For the rest of the paper we assume that $(X(s), s \geq 0)$ is a standard Brownian motion. We will derive the joint density of $M_{X}(\alpha, t), L_{X}(\alpha, t)$, $K_{X}(\alpha, t)$ and $X(t)$. If we denote this density by $f(y, x, u, v)$, our results can be generalised for a Brownian motion with drift m, using a Cameron-Martin-Girsanov transformation. The corresponding density will be

$$
f(y, x, u, v) \exp \left(m x-m^{2} t / 2\right)
$$

Before we obtain the density of $\left(M_{X}(\alpha, t), L_{X}(\alpha, t), K_{X}(\alpha, t), X(t)\right)$, we will first show that the law of $L_{X}(\alpha, t)$ (and $K_{X}(\alpha, t)$) is a transformed arcsine law.

2 An arcsine law for $L_{X}(\alpha, t)$.

Let $S_{X}(t)=\sup _{0 \leq s \leq t}\{X(s)\}$ and $\theta_{X}(t)=\sup \left\{s \in[0, t]: X(s)=S_{X}(t)\right\}$. We prove the following theorem:

Theorem 1 For $u>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(u<\theta_{X}(t) \leq \alpha t\right)+\operatorname{Pr}\left(u<\theta_{X}(t) \leq(1-\alpha) t\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left(L_{X}(\alpha, t) \in d u\right)=\frac{\mathbf{1}(u \leq \alpha t)+\mathbf{1}(u \leq(1-\alpha) t)}{\pi \sqrt{u(t-u)}} d u . \tag{4}
\end{equation*}
$$

Furthermore, $K_{X}(\alpha, t)$ has the same distribution as $t-L_{X}(\alpha, t)$.
Proof We will first prove that

$$
\begin{equation*}
\operatorname{Pr}\left(M_{X}(\alpha, t)>0, L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(u<\theta_{X}(t) \leq \alpha t\right) . \tag{5}
\end{equation*}
$$

We observe that

$$
\begin{gather*}
\operatorname{Pr}\left(M_{X}(\alpha, t)>0, L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(M_{X}(\alpha, t)>S_{X}(u)\right)= \\
\operatorname{Pr}\left(\int_{0}^{t} \mathbf{1}\left(X(s) \leq S_{X}(u)\right) d s<\alpha t\right)= \\
\operatorname{Pr}\left(\int_{u}^{t} \mathbf{1}\left(X(s)-X(u) \leq S_{X}(u)-X(u)\right) d s<\alpha t\right) . \tag{6}
\end{gather*}
$$

Let $X^{*}(s)=X(u+s)-X(u) \cdot\left(X^{*}(s), s \geq 0\right)$ is a standard Brownian motion which is independent of $(X(s), 0 \leq s \leq u)$. We condition on $S_{X}(u)-$ $X(u)=c$, and set $\tau_{c}=\inf \left\{s>0: X^{*}(s)=c\right\}$ and $X^{* *}(s)=X^{*}\left(\tau_{c}+s\right)-$ c. $\left(X^{* *}(s), s \geq 0\right)$ is a standard Brownian motion which is independent of both $(X(s), 0 \leq s \leq u)$ and ($\left.X^{*}(s), 0 \leq s \leq \tau_{c}\right)$. We have that

$$
\begin{gathered}
\operatorname{Pr}\left(\int_{0}^{t-u} \mathbf{1}\left(X^{*}(s) \leq c\right) d s<\alpha t-u\right)= \\
\int_{0}^{\alpha t-u} \operatorname{Pr}\left(\tau_{c} \in d r\right) \operatorname{Pr}\left(\int_{0}^{t-u-r} \mathbf{1}\left(X^{* *}(s) \leq 0\right) d s<\alpha t-u-r\right)
\end{gathered}
$$

and since $\int_{0}^{t-u-r} \mathbf{1}\left(X^{* *}(s) \leq 0\right) d s$ has the same (arcsine) law as $\theta_{X^{* *}}(t-u-r)$, this is equal to

$$
\int_{0}^{\alpha t-u} \operatorname{Pr}\left(\tau_{c} \in d r\right) \operatorname{Pr}\left(\theta_{X^{* *}}(t-u-r)<\alpha t-u-r\right)=
$$

$$
\begin{aligned}
& \int_{0}^{\alpha t-u} \operatorname{Pr}\left(\tau_{c} \in d r\right) \operatorname{Pr}\left(\sup _{0 \leq s \leq \alpha t-u-r} X^{* *}(s)>\sup _{\alpha t-u-r \leq s \leq t-u-r} X^{* *}(s)\right)= \\
& \\
& P \operatorname{Pr}\left(\sup _{0 \leq s \leq \alpha t-u} X^{*}(s)>\sup _{\alpha t-u \leq s \leq t-u} X^{*}(s), \sup _{0 \leq s \leq \alpha t-u} X^{*}(s)>c\right)
\end{aligned}
$$

and so (6) is equal to

$$
\begin{gathered}
\operatorname{Pr}\binom{\sup _{u \leq s \leq \alpha t} X(s)-X(u)>\sup _{\alpha t \leq s \leq t} X(s)-X(u),}{\sup _{u \leq s \leq \alpha t} X(s)-X(u)>\sup _{0 \leq s \leq u} X(s)-X(u)}= \\
\operatorname{Pr}\left(u<\theta_{X}(t) \leq \alpha t\right)
\end{gathered}
$$

Since $(-X(s), s \geq 0)$ is also a standard Brownian motion and $M_{-X}(\alpha, t)=$ $-M_{X}(1-\alpha, t)$ almost surely, we use $-X(s)$ instead of $X(s)$ and we get

$$
\begin{equation*}
\operatorname{Pr}\left(M_{X}(\alpha, t)<0, L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(u<\theta_{X}(t) \leq(1-\alpha) t\right) \tag{7}
\end{equation*}
$$

Adding (5) and (7) we get (3), and since $\theta_{X}(t)$ has an arcsine law, (4) follows. To see that $K_{X}(\alpha, t)$ has the same distribution as $L_{X}(\alpha, t)$, set $\tilde{X}(s)=$ $X(t-s)-X(t)$. Clearly $(\tilde{X}(s), 0 \leq s \leq t)$ is a standard Brownian motion and we can easily see that $M_{\tilde{X}}(\alpha, t)=M_{X}(\alpha, t)-X(t)$ and $K_{\tilde{X}}(\alpha, t)=$ $t-L_{X}(\alpha, t)$.

We can also extend our result and obtain the joint distribution of

$$
\left(M_{X}(\alpha, t), L_{X}(\alpha, t)\right)
$$

(also of $\left(M_{X}(\alpha, t)-X(t), t-K_{X}(\alpha, t)\right)$.
Theorem 2 For $b>0$,

$$
\begin{gather*}
\operatorname{Pr}\left(M_{X}(\alpha, t) \in d b, L_{X}(\alpha, t) \in d u\right)= \tag{8}\\
\operatorname{Pr}\left(S_{X}(t) \in d b, \theta_{X}(t) \in d u\right) \mathbf{1}(0<u<\alpha t), \tag{9}
\end{gather*}
$$

and for $b<0$,

$$
\begin{gather*}
\operatorname{Pr}\left(M_{X}(\alpha, t) \in d b, L_{X}(\alpha, t) \in d u\right)= \tag{10}\\
\operatorname{Pr}\left(S_{X}(t) \in d|b|, \theta_{X}(t) \in d u\right) \mathbf{1}(0<u<(1-\alpha) t) \tag{11}
\end{gather*}
$$

Furthermore $\left(M_{X}(\alpha, t), L_{X}(\alpha, t)\right)$ and $\left(M_{X}(\alpha, t)-X(t), t-K_{X}(\alpha, t)\right)$ have the same distribution.

Proof Let $b>0$ and $u<\alpha t$. We then have that

$$
\begin{gather*}
\operatorname{Pr}\left(M_{X}(\alpha, t)>b, L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(S_{X}(u)<M_{X}(\alpha, t), M_{X}(\alpha, t)>b\right)= \\
\operatorname{Pr}\left(b<S_{X}(u)<M_{X}(\alpha, t)\right)+\operatorname{Pr}\left(S_{X}(u)<b<M_{X}(\alpha, t)\right) \tag{12}
\end{gather*}
$$

Let $\tau_{b}=\inf \{s>0: X(s)=b\}$ and $X^{*}(s)=X\left(\tau_{b}+s\right)-c .\left(X^{*}(s), s \geq 0\right)$ is a standard Brownian motion which is independent of $\left(X(s), 0 \leq s \leq \tau_{c}\right)$. Using theorem 1, we have

$$
\begin{gather*}
\operatorname{Pr}\left(b<S_{X}(u)<M_{X}(\alpha, t)\right)= \\
\int_{0}^{u} \operatorname{Pr}\left(\tau_{b} \in d r\right) \operatorname{Pr}\left(\int_{0}^{t-r} \mathbf{1}\left(X^{*}(s) \leq S_{X^{*}}(u-r)\right)<\alpha t-r\right)= \\
\int_{0}^{u} \operatorname{Pr}\left(\tau_{b} \in d r\right) \operatorname{Pr}\left(M_{X^{*}}\left(\frac{\alpha t-r}{t-r}, t-r\right)>0, L_{X^{*}}\left(\frac{\alpha t-r}{t-r}, t-r\right)>u-r\right)= \\
\int_{0}^{u} \operatorname{Pr}\left(\tau_{b} \in d r\right) \operatorname{Pr}\left(u-r<\theta_{X^{*}}(t-r)<\alpha t-r\right)= \tag{13}\\
\operatorname{Pr}\left(u<\theta_{X}(t)<\alpha t, S_{X}(u)>b\right) \tag{14}
\end{gather*}
$$

Furthermore,

$$
\begin{gather*}
\operatorname{Pr}\left(S_{X}(u)<b<M_{X}(\alpha, t)\right)=\operatorname{Pr}\left(S_{X}(u)<b, \int_{0}^{t} \mathbf{1}(X(s) \leq b) d s<\alpha t\right)= \\
\int_{u}^{\alpha t} \operatorname{Pr}\left(\tau_{b} \in d r\right) \operatorname{Pr}\left(\int_{0}^{t-r} \mathbf{1}\left(X^{*}(s) \leq 0\right)<\alpha t-r\right) \\
=\int_{u}^{\alpha t} \operatorname{Pr}\left(\tau_{b} \in d r\right) \operatorname{Pr}\left(\theta_{X^{*}}(t-r)<\alpha t-r\right)= \\
\operatorname{Pr}\left(u<\theta_{X}(t)<\alpha t, S_{X}(u)<b, \sup _{u \leq s \leq \alpha t} X(s)>b\right) \tag{15}
\end{gather*}
$$

Adding (14) and (15) together, we see that (12) is equal to

$$
\operatorname{Pr}\left(u<\theta_{X}(t)<\alpha t, \sup _{u \leq s \leq \alpha t} X(s)>b\right)=\operatorname{Pr}\left(u<\theta_{X}(t)<\alpha t, S_{X}(t)>b\right)
$$

which leads to (9).
Since $(-X(s), s \geq 0)$ is also a standard Brownian motion and $M_{-X}(\alpha, t)=$ $-M_{X}(1-\alpha, t)$ almost surely, we use $-X(s)$ instead of $X(s)$ and we get that for $b<0$,

$$
\operatorname{Pr}\left(M_{X}(\alpha, t)<b, L_{X}(\alpha, t)>u\right)=\operatorname{Pr}\left(u<\theta_{X}(t) \leq(1-\alpha) t, S_{X}(t)>|b|\right)
$$

which leads to (11).
To see that $\left(t-K_{X}(\alpha, t), M_{X}(\alpha, t)-X(t)\right)$ has the same distribution as $\left(L_{X}(\alpha, t), M_{X}(\alpha, t)\right)$, set again $\tilde{X}(s)=X(t-s)-X(t)$. Clearly $(\tilde{X}(s), 0 \leq s \leq t)$ is a standard Brownian motion and we can easily see that $M_{\tilde{X}}(\alpha, t)=M_{X}(\alpha, t)-X(t),\left(\right.$ and so $M_{\tilde{X}}(\alpha, t)-\tilde{X}(t)=M_{X}(\alpha, t)$ $)$ and $K_{\tilde{X}}(\alpha, t)=t-L_{X}(\alpha, t)$

Remarks

1. The distribution of $\left(\theta_{X}(t), S_{X}(t)\right)$ is well known (see for example Karatzas and Shreve [6], page 102. From this and theorem 2, we can deduce the density of $\left(L_{X}(\alpha, t), M_{X}(\alpha, t)\right)$. This is given by

$$
\begin{align*}
& \operatorname{Pr}\left(M_{X}(\alpha, t) \in d b, L_{X}(\alpha, t) \in d u\right)=\frac{|b|}{\pi \sqrt{u^{3}(t-u)}} \exp \left(-\frac{b^{2}}{2 u}\right) \\
& \quad[\mathbf{1}(0<u<\alpha t, b>0)+\mathbf{1}(0<u<(1-\alpha) t, b<0)] d b d u \tag{16}
\end{align*}
$$

2. Theorem 2 also leads to an alternative expression for the distribution of $M_{X}(\alpha, t)$; that is

$$
\operatorname{Pr}\left(M_{X}(\alpha, t) \in d b\right)=\operatorname{Pr}\left(S_{X}(t) \in d b, 0<\theta_{X}(t)<\alpha t\right)
$$

for $b>0$ and

$$
\operatorname{Pr}\left(M_{X}(\alpha, t) \in d b\right)=\operatorname{Pr}\left(S_{X}(t) \in d|b|, 0<\theta_{X}(t)<(1-\alpha) t\right)
$$

for $b<0$.
3. Using the argument at the end of the proof, we can generalise the last assertion of the theorem and observe that

$$
\left(K_{X}(\alpha, t), M_{X}(\alpha, t)-X(t),-X(t)\right)
$$

has the same law as

$$
\left(t-L_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)
$$

and so we see that

$$
\left(K_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)
$$

and

$$
\left(t-L_{X}(\alpha, t), M_{X}(\alpha, t)-X(t),-X(t)\right)
$$

have the same distribution, a fact we will use in the following section.

3 The joint law of $\left(L_{X}(\alpha, t), K_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)$.

From now on we will denote the density of τ_{b} by $k(\cdot, \cdot)$; that is for $v>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(\tau_{b} \in d v\right)=k(v, b) d v=\frac{2|b|}{\sqrt{2 \pi v^{3}}} \exp \left(-\frac{b^{2}}{2 v}\right) d v \tag{17}
\end{equation*}
$$

We will also denote the joint density of $\left(M_{X}\left(\frac{v}{t}, t\right), X(t)\right)$ by $g(\cdot, \cdot, \cdot, \cdot)$; that is for $0<v<t$,

$$
\operatorname{Pr}\left(M_{X}\left(\frac{v}{t}, t\right) \in d b, X(t) \in d a\right)=g(b, a, v, t) d b d a .
$$

We can calculate $g(\cdot, \cdot, \cdot, \cdot)$ by using the proposition in the introduction. ($\left.M_{X}\left(\frac{v}{t}, t\right), X(t)\right)$ has the same distribution as

$$
\left(S_{X_{1}}(v)-S_{X_{2}}(t-v), X_{1}(v)-X_{2}(t-v)\right),
$$

where ($X_{1}(s), 0 \leq s \leq v$) and ($\left.X_{2}(s), 0 \leq s \leq t-v\right)$ are independent standard Brownian motions. The density of $\left(S_{X}(t), X(t)\right)$ is given by

$$
\begin{gather*}
\operatorname{Pr}\left(S_{X}(t) \in d b, X(t) \in d a\right)= \tag{18}\\
\frac{2(2 b-a)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 b-a)^{2}}{2 t}\right) \mathbf{1}(b \geq 0, b \geq a) d a d b \tag{19}
\end{gather*}
$$

(see Karatzas and Shreve [6], p.95). We observe that since (19) is bounded, $g(\cdot, \cdot, \cdot, \cdot)$ is a bounded density. For our results, we need to calculate $g(0,0, v, t)$. This is the same as the value of the density of $\left(M_{X}\left(\frac{v}{t}, t\right), M_{X}\left(\frac{v}{t}, t\right)-X(t)\right)$ at $(0,0)$. From (19) we see that

$$
\begin{gather*}
\operatorname{Pr}\left(S_{X}(t) \in d y, S_{X}(t)-X(t) \in d x\right)= \tag{20}\\
\frac{2(y+x)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(y+x)^{2}}{2 t}\right) \mathbf{1}(y \geq 0, x \geq 0) d y d x \tag{21}
\end{gather*}
$$

and it is a simple exercise to verify that

$$
\begin{gather*}
g(0,0, v, t)= \\
\int_{0}^{\infty} \int_{0}^{\infty} \frac{2(y+x)}{\sqrt{2 \pi v^{3}}} \exp \left(-\frac{(y+x)^{2}}{2 v}\right) \frac{2(y+x)}{\sqrt{2 \pi(t-v)^{3}}} \exp \left(-\frac{(y+x)^{2}}{2(t-v)}\right) d x d y \\
=\frac{\sqrt{v(t-v)}}{t^{2}} \tag{22}
\end{gather*}
$$

We will now obtain a preliminary result.

Lemma 1 For any u and v, such that $0<u<v<t$, we have that

$$
\begin{gather*}
\operatorname{Pr}\left(L_{X}(\alpha, t)>u, M_{X}(\alpha, t) \in d b, X(t) \in d a, K_{X}(\alpha, t)>v\right)= \\
\operatorname{Pr}\left(\tau_{b}>u, M_{X}(\alpha, t) \in d b, X(t) \in d a, K_{X}(\alpha, t)>v\right) \tag{23}
\end{gather*}
$$

Proof Since $M_{-X}(\alpha, t)=-M_{X}(1-\alpha, t)$, it suffices to prove (23) for $b>0$. We have to prove that

$$
\begin{gather*}
\lim _{\delta \rightarrow 0, \varepsilon \rightarrow 0} \frac{1}{\delta \varepsilon} \\
\left\{\operatorname{Pr}\left(L_{X}(\alpha, t)>u, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon], K_{X}(\alpha, t)>v\right)-\right. \\
\left.\operatorname{Pr}\left(\tau_{b}>u, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon], K_{X}(\alpha, t)>v\right)\right\}=0 . \tag{24}
\end{gather*}
$$

Let $X^{*}(s)=X(s+u)-X(u)$. We then have that

$$
\begin{gather*}
\operatorname{Pr}\left(L_{X}(\alpha, t)>u, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon], K_{X}(\alpha, t)>v\right)- \\
\operatorname{Pr}\left(\tau_{b}>u, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon], K_{X}(\alpha, t)>v\right)= \\
\operatorname{Pr}\left(b<S_{X}(u)<M_{X}(\alpha, t) \leq b+\delta, X(t) \in(a, a+\varepsilon], K_{X}(\alpha, t)>v\right) \leq \\
\operatorname{Pr}\left(b<S_{X}(u)<M_{X}(\alpha, t) \leq b+\delta, X(t) \in(a, a+\varepsilon]\right)= \\
\quad \operatorname{Pr}\left(\begin{array}{c}
b<S_{X}(u)<b+\delta, \\
S_{X}(u)<M_{X^{*}}(\alpha t-u, t-u)+X(u) \leq b+\delta, \\
X^{*}(t-u)+X(u) \in(a, a+\varepsilon]
\end{array}\right) . \tag{25}
\end{gather*}
$$

Since $\left(X^{*}(s), 0 \leq s \leq t-u\right)$ is independent of $(X(s), 0 \leq s \leq u)$, and $g(\cdot, \cdot, \cdot, \cdot)$ is bounded, we condition on $S_{X}(u)=y$ and $X(u)=x$ and see that there is a constant K, such that

$$
\operatorname{Pr}\binom{y<M_{X^{*}}(\alpha t-u, t-u)+x \leq b+\delta,}{X^{*}(t-u)+x \in(a, a+\varepsilon]} \leq K \varepsilon(b+\delta-y)
$$

We therefore conclude that (25) is bounded by
$K \varepsilon E\left(\left(b+\delta-S_{X}(u)\right) \mathbf{1}\left(b<S_{X}(u)<b+\delta\right)\right) \leq K \varepsilon \delta \operatorname{Pr}\left(b<S_{X}(u)<b+\delta\right)$
and by the continuity of the distribution of $S_{X}(u)$, we see that the limit in (24) is zero.

As a corollary we will obtain the distribution of $\left(L_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)$.

Corollary 1 The law of $\left(L_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)$ is given by

$$
\begin{gather*}
\operatorname{Pr}\left(L_{X}(\alpha, t) \in d u, M_{X}(\alpha, t) \in d b, X(t) \in d a\right)= \\
\left\{\begin{array}{rr}
k(b, u) g(0, a-b, \alpha t-u, t-u) \mathbf{1}(0<u<\alpha t) d u d b d a & b>0 \\
k(b, u) g(0, a-b, \alpha t, t-u) \mathbf{1}(0<u<\alpha t) d u d b d a & b<0
\end{array}\right. \tag{26}
\end{gather*}
$$

Proof For $b>0$, since $\left(X\left(s+\tau_{b}\right)-X\left(\tau_{b}\right), 0 \leq s \leq t-\tau_{b}\right)$ is independent of ($X(s), 0 \leq s \leq \tau_{b}$), we have that

$$
\begin{gathered}
\operatorname{Pr}\left(\tau_{b}>v, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon)\right)= \\
\int_{v}^{\alpha t} \operatorname{Pr}\left(\tau_{b} \in d u\right) \operatorname{Pr}\left(M_{X}(\alpha t-u, t-u) \in(0, \delta], X(t) \in(a-b, a-b+\varepsilon)\right) .
\end{gathered}
$$

For $b<0$, we use that $M_{-X}(\alpha, t)=M_{X}(1-\alpha, t)$ and so

$$
g(0, b-a,(1-\alpha) t-u, t-u)=g(0, a-b, \alpha t, t-u)
$$

We can now obtain the law of $\left(L_{X}(\alpha, t), K_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)$.

Theorem 3

$$
\begin{gather*}
\operatorname{Pr}\left(L_{X}(\alpha, t) \in d u, K_{X}(\alpha, t) \in d v, M_{X}(\alpha, t) \in d b, X(t) \in d a\right)= \\
\frac{2|b||b-a| d u d v d b d a}{\pi^{2}(v-u)^{2} \sqrt{u^{3}(t-v)^{3}}} \exp \left(-\frac{b^{2}}{2 u}-\frac{(b-a)^{2}}{2(t-v)}\right) \times \\
\left\{\begin{array}{cl}
\sqrt{(v-u-(1-\alpha) t)(1-\alpha)} t & (u>0, u+(1-\alpha) t<v<t) \\
\sqrt{(\alpha t-u)(v-\alpha t)} \mathbf{1}(0<u<\alpha t<v<t) & b>0, b>a \\
\sqrt{(v-u-\alpha t) \alpha t} \mathbf{1}(u>0, u+\alpha t<v<t) & b<0, b<a \\
\sqrt{((1-\alpha) t-u)(v-(1-\alpha) t)} \mathbf{1}(0<u<(1-\alpha) t<v<t) & b<0, b<a
\end{array}\right. \tag{27}
\end{gather*}
$$

Proof We start with the case $b>0, b>a$. Using (23), and choosing ε such that $a+\varepsilon<b$, we need to look at

$$
\begin{gathered}
\operatorname{Pr}\left(\tau_{b} \leq r, K_{X}(\alpha, t) \leq v, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon]\right)= \\
\\
\operatorname{Pr}\binom{\tau_{b} \leq r, M_{X}(\alpha, t) \in(b, b+\delta],}{X(t) \in(a, a+\varepsilon], M_{X}(\alpha, t) \leq \sup _{v \leq s \leq t} X(s)}=
\end{gathered}
$$

$$
\begin{gather*}
\int_{0}^{r} \operatorname{Pr}\left(\tau_{b} \in d u\right) \operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u) \in(0, \delta] \\
X(t-u) \in(a-b, a-b+\varepsilon] \\
M_{X}(\alpha t-u, t-u) \leq \sup _{v-u \leq s \leq t-u} X(s)
\end{array}\right)= \\
\quad \int_{0}^{r} \operatorname{Pr}\left(\tau_{b} \in d u\right) \operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u) \in(0, \delta] \\
X(t-u) \in(a-b, a-b+\varepsilon] \\
K_{X}(\alpha t-u, t-u) \leq v-u
\end{array}\right) \tag{28}
\end{gather*}
$$

Using the last remark of the previous section, we then see that

$$
\begin{gather*}
\operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u) \in(0, \delta], \\
X(t-u) \in(a-b, a-b+\varepsilon] \\
K_{X}(\alpha t-u, t-u) \leq v-u
\end{array}\right)= \\
\operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u)-X(t-u) \in(0, \delta], \\
-X(t-u) \in(a-b, a-b+\varepsilon] \\
L_{X}(\alpha t-u, t-u) \geq t-v
\end{array}\right) . \tag{29}
\end{gather*}
$$

From the previous theorem we see that the density of

$$
\left(L_{X}(\alpha t-u, t-u), M_{X}(\alpha t-u, t-u)-X(t-u),-X(t-u)\right)
$$

at $(t-v, 0, a-b)$ is

$$
k(b-a, t-v) g(0,0, v-u-(1-\alpha) t, v-u) \mathbf{1}(0<t-v<\alpha t-u)
$$

Combining this with (28) we get that $\left(L_{X}(\alpha, t), K_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)$ has a continuous density at (u, v, b, a) that is given by

$$
\begin{gather*}
k(b, u) k(b-a, t-v) g(0,0, v-u-(1-\alpha) t, v-u) . \tag{30}\\
\mathbf{1}(u>0, u+(1-\alpha) t<v<t) \tag{31}
\end{gather*}
$$

We now look at the case $b>0, b<a$. Using (23), and choosing δ such that $b+\delta<a$, we need to look at

$$
\begin{gathered}
\operatorname{Pr}\left(\tau_{b} \leq r, K_{X}(\alpha, t)>v, M_{X}(\alpha, t) \in(b, b+\delta], X(t) \in(a, a+\varepsilon]\right)= \\
\operatorname{Pr}\binom{\tau_{b} \leq r, M_{X}(\alpha, t) \in(b, b+\delta],}{X(t) \in(a, a+\varepsilon], M_{X}(\alpha, t)<\inf _{v \leq s \leq t} X(s)}= \\
\int_{0}^{r} \operatorname{Pr}\left(\tau_{b} \in d u\right) \operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u) \in(0, \delta], \\
X(t-u) \in(a-b, a-b+\varepsilon], \\
M_{X}(\alpha t-u, t-u)<\inf _{v-u \leq s \leq t-u} X(s)
\end{array}\right)=
\end{gathered}
$$

$$
\int_{0}^{r} \operatorname{Pr}\left(\tau_{b} \in d u\right) \operatorname{Pr}\left(\begin{array}{c}
M_{X}(\alpha t-u, t-u) \in(0, \delta], \tag{32}\\
X(t-u) \in(a-b, a-b+\varepsilon], \\
K_{X}(\alpha t-u, t-u)<v-u
\end{array}\right) .
$$

Using (29) and the previous theorem we see that the density of

$$
\left(L_{X}(\alpha t-u, t-u), M_{X}(\alpha t-u, t-u)-X(t-u),-X(t-u)\right)
$$

at $(t-v, 0, a-b)$ is

$$
k(b-a, t-v) g(0,0, \alpha t-u, v-u) \mathbf{1}(\alpha t<v) .
$$

Combining this with (28) we get that

$$
\left(L_{X}(\alpha, t), K_{X}(\alpha, t), M_{X}(\alpha, t), X(t)\right)
$$

has a continuous density at (u, v, b, a) that is given by

$$
\begin{equation*}
k(b, u) k(b-a, t-v) g(0,0, \alpha t-u, v-u) \mathbf{1}(0<u<\alpha t<v<t) . \tag{33}
\end{equation*}
$$

Substituting (17) and (22) into (31) and (33), we get the first two legs of (27). Considering $(-X(s), 0 \leq s \leq t)$ and observing that $M_{-X}(\alpha, t)=$ $-M_{X}(1-\alpha, t), L_{-X}(\alpha, t)=L_{X}(1-\alpha, t)$ and $K_{-X}(\alpha, t)=K_{X}(1-\alpha, t)$ yields the rest of (27).

References

[1] Akahori, J., (1995), Some formulae for a new type of path-dependent option, Ann. Appl. Prob., 5, 383-388.
[2] Chaumont, L., (1999), A path transformation and its applications to fluctuation theory, J. London Math. Soc. (2), 59, no 2, 729-741.
[3] Dassios, A., (1995), The distribution of the quantiles of a Brownian motion with drift and the pricing of related path-dependent options, Ann. Appl. Prob., 5, 389-398.
[4] Dassios, A., (1996), Sample quantiles of stochastic processes with stationary and independent increments, Ann. Appl. Prob., 6, 1041-1043.
[5] Embrechts P.,Rogers, L.C.G., and Yor, M., (1995), A proof of Dassios' representation of the α-quantile of Brownian motion with drift, Ann. Appl. Prob., 5, 757-767.
[6] Karatzas I. and S.E. Shreve, (1988), Brownian motion and Stochastic Calculus, Springer-Verlag.
[7] Miura, R., (1992), A note on a look-back option based on order statistics, Hitosubashi Journal of Commerce and Management, 27, 15-28.
[8] Wendel, J.G., (1960), Order statistics of partial sums, Ann. of Math. Stat., 31, 1034-1044.

