On the quantiles of the Brownian motion and their
hitting times.

Angelos Dassios
London School of Economics

May 2003

Abstract

The distribution of the a-quantile of a Brownian motion on an
interval [0,¢] has been obtained motivated by a problem in financial
mathematics. In this paper we generalise these results by calculating
an explicit expression for the joint density of the a-quantile of a stan-
dard Brownian motion, its first and last hitting times and the value
of the process at time ¢. Our results can be easily generalised for a
Brownian motion with drift. It is shown that the first and last hitting
times follow a transformed arcsine law.

1 Introduction

Let (X (s),s > 0) be a real valued stochastic process on a probability space
(Q,F,Pr).For 0 < a < 1, define the a—quantile of the path of (X (s),s > 0)
up to a fixed time t by

Mx(a,t):inf{x:/otl(X(s)§x)ds>at}. (1)

The study of the quantiles of various stochastic processes has been recently
undertaken as a response to a problem arising in the field of mathemati-
cal finance, the pricing of a particular path-dependent financial option; see
Miura [7], Akahori [1] and Dassios [3]. This involves calculating quantities
such as E (h (Mx (,t))), where h(z) = (¢* — b)" or some other appropri-
ate function. This requires obtaining the distribution of X (¢). In the case
where (X (s),s > 0) is a Lévy process (having stationary and independent
increments) the following result was obtained:



Proposition 1 Let X (s) and X® (s) be independent copies of X (s).
Then,

My (a,t)  (aw) [ supgesear X1 (8) 4 infoeieq_qn X P (s)
(5E7) " (D i we ) @

When (X (s),s > 0) is a Brownian motion, we can use this result and
obtain an explicit formula for the joint density of Mx («,t) and X (¢). This
result was first proved for a Brownian motion with drift; see Dassios [3] and
Embrechts, Rogers and Yor [5] and for Lévy processes by Dassios [4]. There
is also a similar result for discrete time random walks first proved by Wendel
[8].

We now let
Lx (a,t) =inf {s € [0,t] : X (s) = Mx (a,t)}
be the first, and
Kx (ayt) = sup {s € [0,4] : X (5) = My (1)},

the last time the process hits Mx («,t). One can now introduce a ‘barrier’
element to the financial application by making the option worthless if the
quantile is hit too early or too late. For example, this can involve calculating
quantities such as E (h (Mx (o, t)) 1 (Lx (a,t) > v, Kx (a,t) < u)).

The first study of these quantities can be found in Chaumont [2]. By
using combinatorial arguments he derives of the same type as Proposition 1
that are extensions to Wendel’s results in discrete time. In the case where
the random walk steps can only take the values +1 or -1, a represenation
for the analogues of Ly (a,t) and Kx («,t) is obtained. Finally he derives
a continuous time representation for the triple law of Mx (a,t), Lx («,t)
and X (t), extending Proposition 1 when X (¢) is a Brownian motion. We
will adopt a direct approach that seems better suited to obtaining explicit
expressions for the densities involved. We will also derive alternative repre-
sentations and prove a remarkable arc-sine law.

For the rest of the paper we assume that (X (s),s > 0) is a standard
Brownian motion. We will derive the joint density of Mx («,t), Lx (a,t),
Kx (a,t) and X (t). If we denote this density by f (y,x,u,v), our results
can be generalised for a Brownian motion with drift m, using a Cameron-
Martin-Girsanov transformation. The corresponding density will be

f (ya €, U, U) exp (ml' — mQt/Z) .
Before we obtain the density of (Mx (a,t),Lx (a,t), Kx (a,t), X (t)),

we will first show that the law of Ly (o, t) (and Kx («,t)) is a transformed
arcsine law.



2 An arcsine law for Ly («,1).

Let Sx (t) = supp<s<; {X (s)} and Ox (t) = sup {s € [0,t] : X (s) = Sx (t)}.
We prove the following theorem:

Theorem 1 For u > 0,
Pr(Lx (a,t) >u) =Pr(u<f0x(t) <at)+Pr(u<fx(t) <(l—a)t) (3)

and Lu<at)+1(u<(l—a)t)

T/ u(t — u)

Furthermore, Kx (a,t) has the same distribution as t — Lx (a,t).

Pr(Lx (a,t) € du) = du. (4)

Proof We will first prove that
Pr(Mx (a,t) > 0,Lx (a,t) > u) =Pr(u < 0x (t) < at). (5)
We observe that

Pr(Mx (a,t) > 0,Lx (a,t) > u) = Pr (Mx (a,t) > Sx (u)) =
Pr (/0 1(X (s) <Sx(u))ds <at> =

t

Pr</1(X(s)—X(u)gsx(u)—X(u))ds<at). (6)
Let X*(s) =X (u+s)—X (u). (X*(s),s > 0) is a standard Brownian mo-
tion which is independent of (X (s),0 < s < u). We condition on Sx (u) —
X (u) =c,and set 7. =inf {s > 0: X*(s) = c} and X** (s) = X* (7. + s) —
c. (X** (s),s>0) is a standard Brownian motion which is independent of
both (X (s),0 < s <wu)and (X*(s),0 <s <7.). We have that

Pr(/ot_ul(X*(s)gc)ds<at—u) -

at—u t—u—r
/ Pr(Tcedr)Pr</ 1(X**(s)§0)ds<at—u—r>
0 0

and since fg_u_r 1(X* (s) <0)ds has the same (arcsine) law as
Ox+ (t —u —r), this is equal to

at—u
/ Pr(r. €dr)Pr(0x=~ (t—u—r)<at—u—r)=
0
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at—u
/ Pr(r. € dr)Pr ( sup X (s) > sup X** (s)> =
0

0<s<at—u—r at—u—r<s<t—u—r

Pr ( sup X*(s)> sup X*(s), sup X"(s)> c)
0<s<at—u at—u<s<t—u 0<s<at—u
and so (6) is equal to

Pr < SupugsgatX (S) -X (u) > SupatﬁsStX (S) -X (u) ’ >
SupugsgatX (5) - X (u) > SuPogsguX (S) -X (u)

Pr(u < 6x (t) < at).

Since (—X (s),s > 0) is also a standard Brownian motion and M_x («,t) =
—Mx (1 — a,t) almost surely, we use —X (s) instead of X (s) and we get

Pr(My (a,t) < 0, Ly (a,t) > u) = Pr(u<0x (t) < (1 —a)t). (7)

Adding (5) and (7) we get (3), and since 0x (?) has an arcsine law, (4) follows.
To see that Kx («,t) has the same distribution as Lx («a,t), set X (s) =

X (t—s)—X (t). Clearly (X' (s),0<s< t) is a standard Brownian motion
and we can easily see that Mg (o, t) = Mx (o, t) — X (t) and K¢ (a,t) =
t—Lx (a,t). O

We can also extend our result and obtain the joint distribution of
(MX (av t)  Lx (a, t))
(also of (Mx (a,t) — X (t),t — Kx (a,t)).

Theorem 2 Forb > 0,

Pr(Mx (a,t) € db, Lx (o, t) € du) = (8)
Pr(Sx (t) € db,0x (t) € du) 1 (0 < u < at), 9)
and for b < 0,
Pr(Mx (a,t) € db, Lx (o, t) € du) = (10)
Pr(Sx (t) edlb],0x (t) edu)1(0<u<(l—a)t). (11)

Furthermore (Mx (a,t), Lx (o, t)) and (Mx (a,t) — X () ,t — Kx (o, t)) have
the same distribution.



Proof Let b > 0 and u < at. We then have that
Pr(Mx (a,t) > b, Lx (a,t) > u) = Pr(Sx (u) < Mx (o, t), Mx (o, t) > b) =

Pr(b < Sx (u) < Mx (a,t)) + Pr(Sx (u) < b < Mx (o, 1)) . (12)

Let 7, =inf{s > 0: X (s) =b} and X*(s) = X (,+s) —c. (X" (s),5s>0)
is a standard Brownian motion which is independent of (X (s),0 < s <7.).
Using theorem 1, we have

Pr(b < Sy (u) < Mx (o, 1)) =

/OuPr(Tb € dr) Pr (/Otrl(X* (5) < Sy (u— 1) <at—r) _

v t— t —
/ Pr(m € dr)Pr <MX* <a T,t—r) >0, Ly« <a T,t—r) >u—r> =
0 t—r t—r

/uPr(TbEdr)Pr(u—r<9X*(t—r)<at—r): (13)
0

Pr(u < 6x (t) < at,Sx (u) > b). (14)

Furthermore,

Pr(Sx (u) <b< Mx (a,t)) =Pr (SX(U)<b,/0t1(X(s)§b)ds<at> =

/uatPr(Tbedr)Pr </()t_T1(X*(s) <0) <at—r>

at
—/ Pr(m edr)Pr(0x«(t—7r)<at—r)=

Pr (u<9X (t) < at, Sx (u) < b, sup X(s)>b>. (15)

u<s<at

Adding (14) and (15) together, we see that (12) is equal to

Pr (u <Ox (t) <at, sup X (s) > b> =Pr(u < 0x (t) < at,Sx (t) > b)
u<s<at
which leads to (9).
Since (—X (s),s > 0) is also a standard Brownian motion and M_x (a,t) =

—Mx (1 — «, t) almost surely, we use — X (s) instead of X (s) and we get that
for b < 0,

Pr(Mx (o, t) < b, Ly (a,t) > u) = Pr(u < fx (£) < (1 — a)t,Sx (£) > [b]),



which leads to (11).

To see that (t — Kx (a,t), Mx (a,t) — X (t)) has the same distribution
as (Lx (a,t), Mx (a,t)), set again X (s) = X (t—s) — X (t). Clearly
(X' (s),0<s< t) is a standard Brownian motion and we can easily see
that M (a,t) = Mx (a,t) — X (t), (and so Mg (a,t) — X (t) = My (o, t)
) and K (a,t) =t — Lx (a,t) .0

Remarks

1.

The distribution of (f0x (¢),Sx (t)) is well known (see for example
Karatzas and Shreve [6], page 102. From this and theorem 2, we
can deduce the density of (Lx («a,t), Mx (a,t)). This is given by

Pr(Mx (a,t) € db, Lx ( t)ed)ZL —ﬁ .
r X (&, , Lx (&, u W\/mexp ou

l0<u<at,b>0)+1(0<u<(l—a)t,b<0)]dbdu.  (16)

Theorem 2 also leads to an alternative expression for the distribution
of Mx (a,t); that is

Pr(Mx (a,t) € db) = Pr(Sx (t) € db,0 < 0x (t) < at),
for b > 0 and
Pr(Mx (a,t) € db) = Pr(Sx (t) € d|b|,0 < Ox (t) < (1 —a)t),
for b < 0.

Using the argument at the end of the proof, we can generalise the last
assertion of the theorem and observe that

(Kx (o, 1), Mx (o, t) = X (1), =X (1))
has the same law as
(t = Lx (o, 1), Mx (o, 1) , X (1))
and so we see that
(Kx (o, t), Mx (o, 1), X (1))

and
(t— Lx (a,t), Mx (a,t) — X (t),—X (1)),

have the same distribution, a fact we will use in the following section.



3 The joint law of (Lx («a,t), Kx (a,t), Mx (a,t), X (1)) .

From now on we will denote the density of 7, by & (-, ) ; that is for v > 0,

20| ( b2>
Pr(m € dv) =k (v,b) dv dv. 17
We will also denote the joint density of (M ( (% ) ) by g (-,-,-,-); that

isfor 0 < v < t,
Pr (MX (%t) cdb, X (1) e da) = ¢(b, a,v,t) dbda.

We can calculate g (+,-,-,-) by using the proposition in the introduction.
(MX (%, t) , X (t)) has the same distribution as

(SX1 (U) - SXz (t - U) le (U) - Xy (t - ’U)) )

where (X1 (s),0 < s <w)and (X2(s),0 <s <t—wv) are independent stan-
dard Brownian motions. The density of (Sx (t), X (¢)) is given by

Pr(Sx (t) € db, X (t) € da) = (18)
2(2b — a) (2b — a)?
ol exp <_2t 1(b>0,b>a)dadb (19)
(see Karatzas and Shreve [6], p.95). We observe that since (19) is bounded,
g (+,+,+,-) is a bounded density. For our results, we need to calculate g (0,0, v,t) .

This is the same as the value of the density of (MX (%, t) , Mx (%, t) - X (t))
at (0,0). From (19) we see that

Pr(Sx (t) € dy,Sx (t) — X (t) € dz) = (20)
2(y + ) (y+ )
—_— — > >
s exp < 57 1(y >0,z >0)dydx (21)
and it is a simple exercise to verify that
g (07 07 /U7 t) =
/ / 2(y+z) exp (y+o) (y + =) exp (y+u) dedy
27'("0 2v o7 (t _ U)S 2 (t — 'U)
v(t—wv)
=" (22)

We will now obtain a preliminary result.



Lemma 1 For any u and v, such that 0 < u < v < t, we have that
Pr(Lx (o, t) > u, Mx (o, t) € db, X (t) € da, Kx (a,t) > v) =
Pr(m > u, Mx (o, t) € db, X (t) € da, Kx (a,t) > v). (23)

Proof Since M_x (a,t) = —Mx (1 — o, t) , it suffices to prove (23) for b > 0.

We have to prove that
1

im —-
§—0,e—0 e
{Pr(Lx (a,t) > u, Mx (a,t) € (b,b+ 6], X (t) € (a,a+¢],Kx (a,t) > v) —
Pr(m > u, Mx (a,t) € (b,b+0],X (t) € (a,a+¢€],Kx (a,t) >v)} =0.
(24)
Let X*(s) = X (s +u) — X (u). We then have that

Pr(Lx (a,t) > u, Mx (a,t) € (b,b+0],X (t) € (a,a+¢|,Kx (a,t) >v)—

Pr (7, > u, My (0,2) € (b,b+ 8], X (1) € (ya + €], Kx (a,8) > v) =
Pr(b < Sx (u) < Mx (a,t) <b+6,X (t) € (a,a+¢], Kx (a,t) >v) <
Pr(b < Sx (u) < Mx (a,t) <b+6,X (t) € (a,a+¢]) =
b< Sx (u) <b+§4,
Pr| Sx(u) < Mx«(at —u,t —u)+X (u) <b+4, |. (25)
X (t—u)+ X (u) € (a,a+¢]
0<s<u), and
==

Since (X*(s),0 <s <t—u) is independent of (X (s),0 <
g(+,+,+,-) is bounded, we condition on Sx (u) = y and X (u) and see
that there is a constant K, such that

y < Mx+ (at —u,t —u)+x <b+ 74,
< —vY).
Pr( X*(t—u)+x € (a,a+¢] < Ke(b+o-y)
We therefore conclude that (25) is bounded by
KeE((b4+0—Sx(u)1(b<Sx (u) <b+9)) <KedPr(b< Sx (u) <b+9)

and by the continuity of the distribution of Sx (u), we see that the limit in
(24) is zero. O
As a corollary we will obtain the distribution of (Lx (o, t), Mx (a,t), X (1)) .



Corollary 1 The law of (Lx (a,t), Mx (a,t), X (t)) is given by
Pr(Lx (a,t) € du, Mx (a,t) € db, X (t) € da) =

{ k(b,u)g(0,a —b,at —u,t —u)1(0 <u < at)dudbda b >0

k(b,u)g(0,a—b,at,t —u)1(0 <u < at)dudbda  b<0 (26)

Proof For b > 0, since (X (s + 1) — X (1) ,0 < s <t — ) is independent
of (X (s),0<s <), we have that

Pr(m, > v, Mx (o, t) € (b,b+ 6], X (t) € (a,a+¢)) =

at
/ Pr(m € du) Pr (Mx (ot —u,t —u) € (0,0], X (t) € (a —b,a—b+¢)).
For b < 0, we use that M_x (a,t) = Mx (1 — «a,t) and so
g(0,b—a,(1—a)t—u,t —u)=g(0,a—b,at,t —u).

|
We can now obtain the law of (Lx (a,t), Kx (a,t), Mx (a,t), X (1)) .

Theorem 3

Pr(Lx (a,t) € du, Kx (a,t) € dv, Mx (o, t) € db, X (t) € da) =

21b| |b — a| dudvdbda exp ¥ (b—a) y
72 (v —u)* yJud (t —v)? 2u 2(t-v)

Vi—u—(1-a)t)l-a)tl(u>0u+(l-a)t<v<t) b>0,b>a

Viat—u)(v—at)1 (0 <u<at<v<t) b>0,b<a
(v—u—at)atl (u>0,u+at <v <t) b<0,b>a
Vd-a)t—-u)(v-(1-a)t)l(0<u<(l-a)t<v<t) b<0,€)<)a
27

Proof We start with the case b > 0,b > a. Using (23), and choosing € such
that a + & < b, we need to look at

Pr(m <r, Kx (a,t) <v,Mx (a,t) € (b,b+ ], X (t) € (a,a+¢]) =

Pr T <7, Mx (o, t) € (b,0+ 9],
X (t) € (a,a+¢], Mx (o, t) < sup,<,<; X ()



’ Mx (ot —u,t —u) € (0,0],
/Pr(Tbedu)Pr X(t—u)€(a—ba—b+¢], =
0 Mx (Oét - u7t_u> < Supv—ugsgt—uX(s)

, Mx (at —u,t —u) € (0,0],
/ Pr(mpedu)Pr| X(t—u)e(a—ba—-b+¢], |. (28)
0 Kx (at—u,t—u)<v—u

Using the last remark of the previous section, we then see that

Mx (ot —u,t —u) € (0,9],
Pr{ X(t—u)e(a—ba—-b+¢|, | =
Kx (ot —u,t—u) <v—wu

Mx (at —u,t —u) — X (t —u) € (0,0],
Pr —X(t—u)€(a—ba—b+el, ) (29)
Lx (at —u,t—u)>t—ov

From the previous theorem we see that the density of
(Lx (at —u,t —u),Mx (at —u,t —u) — X (t —u),—X (t —u))
at (t —v,0,a —b) is
E(b—a,t—v)g(0,0,v—u—(1—-a)t,v—u)1(0<t—v<at—u).

Combining this with (28) we get that (Lx (a,t), Kx (o, t), Mx (a,t) , X (2))
has a continuous density at (u,v, b, a) that is given by

kE(b,u)k(b—a,t —v)g(0,0,v—u—(1—a)t,v—u)- (30)

lu>0,u+(1—-a)t<v<t). (31)

We now look at the case b > 0,b < a. Using (23), and choosing § such that
b+ 6 < a, we need to look at

Pr(m <r Kx (a,t) > v, Mx (a,t) € (b,b+ 6], X (t) € (a,a+¢]) =

Pr ™ <1, Mx (a,t) € (b,b+ 6], B
X(t) S (a,a+e] , Mx (a,t) < infvgsth(S) o

r MX(at—u,t—u)E(O,é],
/ Pr (7 € du) Pr X(t—u)e(a—ba—b+e], =
0 Mx (ot —u,t —u) <inf,_y<s<t—oy X (5)

10



. Mx (at —u,t —u) € (0,9],
/ Pr(medu)Pr| X(t—u)e(a—ba—b+¢], |. (32)
0 Kx (at —u,t —u) <v—u

Using (29) and the previous theorem we see that the density of
(Lx (at —u,t —u),Mx (at —u,t —u) — X (t —u),—X (t —u))
at (t —v,0,a—0b) is
kE(b—a,t—v)g(0,0,at —u,v—u)l(at <v).
Combining this with (28) we get that
(Lx (a,t), Kx (a,t), Mx (e, t) , X (1))
has a continuous density at (u,v, b, a) that is given by
kE(byu)k(b—a,t —v)g(0,0,at —u,v—u)l1(0<u<at<v<t). (33)

Substituting (17) and (22) into (31) and (33), we get the first two legs
of (27). Considering (—X (s),0 < s <t) and observing that M_x (a,t) =
—Mx (1 —a,t), L_x (a,t) = Lx (1 — a,t) and K_x (a,t) = Kx (1 — a,t)
yields the rest of (27). O
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