QUANTILE AND OTHER

OCCUPATION TIME
OPTIONS

Angelos Dassios,
London School of Economics



LOOK-BACK OPTIONS

A statistic which i1s a functional of the path of the
stochastic process (Y (t),t > 0) that denotes the price
of the underlying asset. Pricing such options involves
calculating E*(h(V (t2)) | Ft,), where the expectation
is calculated under a changed measure, h is a known
function, 0 < t; < ty are fixed times, F; is the filtra-
tion generated by Y (¢) and V(¢) is an Fsmeasurable
process.

Call option e_T(tz_tl)E*<(V(t2) — b | ftl) =
E*(max (V(tg) — b, O) | ftl)

GEOMETRIC AVERAGE OPTIONS
Y(t) =Y (0)exp (X(t)),

V() =Y (0)exp (fo XES)C“)

ASTAN OPTIONS

Arithmetic average options, where

Vi) = Jo Y(s)ds

are also called Asian options.



QUANTILE OPTIONS

Another statistic that can be used is the median or
more generally any a-quantile (0 < a < 1) of the
underlying stochastic process. This was first intro-
duced by Miura . The a-quantile is going to be the
level at which the process spends a proportion of size
at least o of its time below that level and a propor-

tion of size at least 1 — o above. For 0 < o < 1, define
Mx(a,t) as

Mx(a,t) :inf{x: /Ot 1(X(s)<z)ds> at}.

Note Y (t) = Y(0)exp (X(t)); so My(o, t) =
Y (0)exp (Mx(a,t)).

Also the events {Mx(«a, t) > x} and { f(f 1(X (s)
x)ds < ozt} are identical.
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Proposition 1. Let X (t)=0B(t) 4+ ut, where u € R,
o € R and (B(t), t > 0) is a standard Brownian

motion. Furthermore, let X(l)(t) and X(Q)(t) be
independent copies of X (t). Then,

(law) (1) : (2)
M(a,t) =" sup X''(s)+ inf X (s).
( ) OSSEOAE ( ) 0<s<(1—at) ( )

Proposition 2. Let X(t), M(a, t), XM(t) and
X<2)(t) as in Proposition 1. Then,

(1) : (2)
M(a,t) \taw) [ S0P X (s) + ogsé?lf_at) X(s)
X(1) B

XY at)+ XxP((1-a)t)

Using this result one could calculate an expression
for the joint probability density of M («a,t) and X ().

Density of supo<s<at X(l)(s):

2
V2 exp — (z — pat) _Z_gei—gmq)<—x—uat)
o\ Tat ovat o ovat
Propositions 1 and 2 are true when X () is a
process with stationary and independent

increments, whose paths are right continuous
with left limits. (Lévy processes).




DISCRETE TIME RESULTS.

Consider the sequence z = (xg, 1, 2, ...). For integers
0<j<n, define the(j,n)th quantile of x for 7=0,1,
2,...,n by

M; n(x —mf{ lezgz >]}

It should also be remarked that if x(g), z(1), z(2), ...,
T(n) 18 an increasing order permutation of xg, T1, T2,
.y Tp, then Mj ,(x) = xz(. So, in particular,
MO,n(x) — minizO,l ..... n {xz} and Mn,n(x) —
max;—0.1,..n 1%i}. Also note that in this setup
Mo,()(a?) = Xy.

The following result is due to Wendel

Proposition 3. Let Y7, Y5, ..., Y, be i.1.d. random
variables. Define X = (Xo, X1,...,Xp) by

1=1
0 n=0

\

and let XV and X@ be two independent copies of
X. Then,

(Mj,n(X) >(la:w) Mj,j(X(l)) —|-M0,n—j<X(2)>
X, Xj(_1)+XT(Lz_)j



An extension of this result, involving the time the
quantile is achieved, was obtained by Port. He
defined the ordering < by X; < X, if X; < X or
X; = X; but ¢« < j. Then, one could alternatively
define My (X)), M1 n(X), ..., M, »(X) as the rear-
rangement of Xy, Xy, ..., X,, such that My ,(X) <
Mi o (X) < ... < My n(X). He then defined L ,(X)as
the index in Xy, X1, ..., X;, of M} ,(X) and extended
the result to

Mj’n(X) o ( Mj,j<X(1)> —|—M0,n—j(X(2)) \
Lj,;iX) — Lj,j(Xa)) +Lo,n_j(X<2)>

\ XM x? )



DOES THE PROPERTY CHARACTERISE
LEVY PROCESSES?

Let ((13,Y:),t=1,2,...) be a sequence of independent
and identically distributed pairs of random variables
on a probability space (€2, F, Pr ) taking values in
R* x R and having joint distribution function G(u,
y). Let

So=0, Sp=) T;, n=1,2,..
1=1

and define the renewal process (N (t),t > 0) by

N(t)= sup {n:S,<t}.
n=0,1,2,...

We define (X (¢),t >0) by

’

N(t)
X(1) =« ;Y N(t)=1,2,...
0 N(t)=0

It should be noted that X(t) is semi-Markov, but
not a Markov process. However, the pair (X (?),
U(t)) is a Markov process.



Theorem 4. Define
t
MX(a,t):inf{a::/ 1(X(s)§:r:)ds>ozt}.
0

Let XMD(t), X@(t) be independent copies of X(t);
then

(law) (1) : (2)
M(a,t) = sup X“/(s)+ inf X (s).
( ) 0<s<at ( ) 0<s<(1—at) ( )



We now let
Lx(a,t)=inf{s€[0,t]: X(s)=Mx(a,t)}
be the first, and
Kx(a,t)=sup{s€[0,t]: X(s)=Mx(a,t)},

the last time the process hits Mx(«,t). One can now
introduce a ‘barrier’ element to the financial applica-
tion by making the option worthless if the quantile is
hit too early or too late. For example, this can
involve calculating quantities such as E(h(Mx(«,
))1(Lx(a,t) >v, Kx(a,t) <u)).

The first study of these quantities can be found in
Chaumont (1999).



For the rest of the paper we assume that (X(s), s >
0) is a standard Brownian motion, unless otherwisew
specified. Without loss of generality, we will restrict
our attention to the case ¢t = 1 taking advantage of
the Brownian scaling. For simplicity we set Mx(«,
t) = Mx(a), Lx(a, t) = Lx(a) and Kx(o, t) =
Kx(a).We will derive the joint density of Mx(«),
Lx(a), Kx(o) and X(1). If we denote this density
by f(y,z,u,v), our results can be generalised for a
Brownian motion with drift m, using a Cameron-
Martin-Girsanov transformation. The corresponding
density will be

f(y,z,u,v)exp (mx—m?/2).

Before we obtain the density of (Mx(«a), Lx(«a),
Kx(a), X(1)), we will first show that the law of

Lx(a) (and Kx(«)) is a transformed arcsine law.
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An arcsine law for Lx(o,t).

Let Sx(t) =supo<s<t {X(s)} and 0x(t) =sup {s € [0,
t]: X(s) = Sx(t)}. Define also the stopping time 7. =
inf {s > 0: X(s) = c}. We will first obtain the joint
distribution of

(Mx(a), Lx(a))
(also of (Mx(a) — X(1),1— Kx(a)).

Theorem 5. For b> 0,
Pr(Mx(a)€db, Lx(a) €du)=
Pr(Sx(1)edb,0x(1)edu)l(0<u< a), (1)
and for b< 0,
Pr(Mx(a)€db, Lx(a) €du)=
Pr(Sx(1) €d|b|,0x(1) edu)l(0<u<(l—a)). (2)

Furthermore, (Mx (o), Lx(a)) and (Mx(a) — X (1),
1 - Kx(a))
have the same distribution.
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Proof. Let b >0 and u < «. We then have that

Pr (Mx(()é) > b, Lx(a) > ’LL) = Pr (Sx<u) < Mx(a),
Mx(()z) >b):

Pr (b < Sx(u) < Mx(a)) + Pr (Sx(u) < b <
Mx(a)). (3)

Let y=inf{s>0: X(s) =0} and X*(s)=X(1p+s) —
b. (X*(s), s > 0) is a standard Brownian motion
which is independent of (X (s),0<s <7). Using the-
orem 1, we have

Pr(b< Sx(u) < Mx(a)) =

Pr (SX(U) >b,/1 1(X (s) §SX(u))ds<oz> =

u

Pr <Sx(u) > b, / 1(X(s) — X(u) < Sx(u) —
X(u))ds<ozu>. (4)

We now condition on 0{X(s), 0 < s < wu}. Let
X*(s) = X(u+s) — X(u). (X*(s), s >0) is a stan-
dard Brownian motion which is independent of
(X(s),0<s<u). We condition on Sx(u) — X(u)=c,
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and set 7, = inf {s > 0: X*(s) = ¢} and X**(s) =
X*(te +s) —c. (X*(s),s >0) is a standard Brow-
nian motion which is independent of both (X (s),0 <
s <wu) and (X*(s),0<s <7.). We have that

Pr (/H 1(X*(s)<c)ds<a—u> _

/Oa_u Pr (. € dr)Pr (/Ol—u_r 1(X**(s) < 0)d s <

al—u—r

and since fol_u_r 1(X**(s) < 0)d s has the same
(arcsine) law as

Ox+«+(1 —wu—r), this is equal to

/ Pr(r.edr)Pr(0x~(1—u—r)<a—u—r)=
0
/ Pr (r. € d r)Pr sup X**(s) >
0 0<s<a—u-—r

sup X**(s) | =

a—u—r<s<l—u—r

Pr ( sup X*(s) > sup X*(s),

0<s<a—u a—u<ls<t—u

sup X*(s)>c
0<s<a—u
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and so (4) is equal to

( iug X(s)—X(u)> iulilX(S)_X(u)v\
P; Eué X(s)—X(u)>Oi_uI<; X(s) = X(u), |=
K - sup X(s_);b )

0<s<u

Pr(Sx(u) >b,u<0x(1) <a). (5)

Furthermore,
Pr (Sx(u) < b < Mx(a)) = Pr (Sx(u) < b,

/1 1(X(S)Sb)ds<a> =

/ua Pr(m, €dr)Pr (/OH 1(X*(3)§0)<a—r>

:/a Pr(medr)Pr(x«(1—r)<a—r)=

Pr <u<9x(1)<a,SX(u)<b, sup X(s)>b). (6)

u<s<ao

Adding (5) and (6) together, we see that (3) is equal
to

Pr (u < 0x(l) < a, sup X(s) > b) = Pr (u <
u<s<a«

Qx(1> <, Sx(l) > b)
which leads to (1).
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Since ( — X (s),s > 0) is a standard Brownian motion
and M_x(a) = — Mx(1 — «) almost surely, we use
— X (s) instead of X (s) and we get that for b <0,

Pr (Mx(a)<b,Lx(a)>u)=Pr(u<0x(1)<(1—a),
Sx(1)>1b]),

which leads to (2).

To see that (1 — Kx(a), Mx(a) — X (1)) has the same
distribution as (Lx(a), Mx(a)), set again X(s) =

X(1—-s)—X(1). Clearly (X(s), 0<s< t) is a stan-

dard Brownian motion and we can easily see that
My (o) = Mx(a) = X(1), Mz(a) = X(1)= Mx(a)
and K (o) =1— Lx(«). ]
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Remarks

1. The distribution of (0x(1), Sx(1)) is well
known (see for example Karatzas and Shreve
(1988, page 102). From this and Theorem 2,
we can deduce the density of (Lx(a), Mx(a)).
This is given by

Pr (Mx(a) € d b, Lx(a) € d u) =

e (-2).

m/ud(1 — u) 2u
10<u<a,b>0)+10<u<l—-a,b<
0)]dbdu. (7)

2. Theorem 1 also leads to an alternative expres-
sion for the distribution of Mx(«); that is

Pr(Mx(a) €db)=Pr(Sx(1)€db,0<0x(1) <
o),

for b >0 and

Pr (Mx(a) € d b) = Pr (Sx(1) € d|b|, 0 <
Ox(1) <1-a),

for b <0.

3. From Theorem 1, we can immediately obtain
the following corollary:
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Corollary 6. For u >0,
Pr(Lx(a)>u)=Pr(u<0x(1)<a)+Pr(u<fx(1)<
1—a) (8)
and

llu<a)+1l(u<l—a)

T/ u(l—u)

Furthermore, Kx(a) has the same distribution as
1—Lx(04).

Pr(Lx(a)€du)= du. (9)
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The joint law of (Lx (o), Kx(a), Mx ()

Theorem 7. For the standard Brownian motion
(X(s),s>0),

Pr (Lx(a) € du, Kx(a) € dv, Mx(a) €d b, X(1) €
da)=

N\

\

2b||b—aldudvdbda b2 (b—a)’
P\ T T2 | "
(v — u)Q\/u3(1 —v)?

Vie—uw)(v—a)l(0<u<a<v<l)
Viv—u—a)al(u>0,u+a<v<l)
Vil-a—-u)(v—(1-a)l(0<u<l—a<v<l)

18
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b>0,
b<0,
b<0,



SOME PROPERTIES OF THE MEDIAN
(General Lévy processes)

1. E (MX (l, t) ) =F (@) .(assuming existence)

2. M X( > t) is stochastically more variable than
X (t)

3 M X( t) is stochastically less variable than

X <§> (but not that different at the tail for a Brow-

nian motion)
For the standard Brownian motion Mx (%, t)is

stochastically more variable than X (3t), where 8 <
6 —4v/2 =0.343.

X (s)d . :
Notef0 t(s ° has the same distribution as X(%)

and = 7 <6 — 42,50 M X( )13 stochastically more
fo X(s)ds

- :
Are median options more expensive than geometric

average options? (also more expensive than Asian
when way out of the money 7)

In the tables we calculate e_TE*((V(l) — k)+>, for a

geometric average option, an Asian option (values
taken from Rogers and Shi ,Jower bounds given with

upper bounds in brackets ) Y (0) =100

Varlable than
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TABLE 1. 0=.05

/’n

.05

.09

15

k

95
100
105

95
100
105

95
100
105

Geom.

7.147

2.689

0.324

8.757

4.256

0.922
10.988
6.689

2.646

TABLE 2. o0=.1

r

.05

.09

15

k

90
100
110

90
100
110

90
100
110

Geom.

11.862
3.573
0.306

13.274
4.816
0.583

15.235
6.869
1.310

Asian

7.178 )
2.716 )
0.337 (0.343)
8.809 (8.821)
)
)

(7.183
(
(
(
4.308 (4.318
(
(
(
(

2.722

0.958 (0.968
11.094 (11.114)
6.794 (6.810)
2.744 (2.761)

Asian

11.951 (11.973)
3.641 (3.663)
0.331 (0.353)
13.385 (13.410)
4.915 (4.942)
0.630 (0.657)
15.399 (15.445)
7.028 (7.066)
1.413 (1.451)

20

Median

7.156
2.708
0.410
8.767
4.275
1.059
11.001
6.704
2.765

Median

11.894
3.617
0.413

13.301
4.863
0.745

15.265
6.919
1.553



TABLE 3. 0=.2

r k Geom.
05 90 12.318
100 5.547

110 1.845

.09 90 13.520
100 6.518

110 2.359

15 90 15.267
100 8.073

110 3.292

TABLE 4. 0=.1

r k Geom.
.05 90 13.404
100 7.496

110 3.722

09 90 14.388
100 8.324

110 4.291

15 90 15.838
100 9.612

110 5.229

Asian

12.595 (12.687)
5.762 (5.854)
1.989 (2.080)
13.831 (13.927)
6.777 (6.872)
2.545 (2.641)
15.641 (15.748)
8.408 (8.515)
3.554 (3.661)

Asian

13.952 (14.161)
7.944 (8.153)
4.070 (4.279)
14.983 (15.194)
8.827 (9.039)
4.695 (4.906)
16.512 (16.732)
10.208 (10.429)
5.728 (5.948)

21

Median

12.469
5.651
2.045

13.652
6.628
2.993

15.383
8.193
3.571

Median

13.657
7.674
3.981

14.627
8.510
4.574

16.062
9.812
5.548



Let X(t) be a Lévy process. Define I'y(t) =

fot 1(X(s)<z)ds and let I’w_l be its inverse. So far

o (u) — u(la:w)Ru

where

Ru:inf<fr: sup X(l)(s)—|— inf X(z)(s)>

0<s<r 0<s<u

I Hu)—u |Uaw) [ R,
u >0 |l u>0

sup Mx(a, t)(la:w) sup { sup X(l)(s) +
0<t<T 0<t<T lo<s<at

inf X(2)(s)
0<s<(1—at)

Extension

Corollary
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