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ABSTRACT

In this paper, we study the integral over time of the ins-
tantaneous rate, i.e the interest rate accrual, in the Cox In-
gersoll Ross model. We derive distributional results for
this process, including series representations for the den-
sity and probability distribution function. Applications to
the valuation of derivatives, including Asian options prices
in closed form, are presented here. Numerical examples
are included to demonstrate the speed of convergence of
the series. We also find that the series provide a more ro-
bust tool than numerical Laplace transform inversion for
regions of high maturity and volatility. Given the versa-
tility of the square-root process, the results derived in this
paper are also of value for various others areas of finance,
among which stochastic volatility and credit derivatives.

KEY WORDS
Derivatives, valuation, Square-root process, average-rate
claims.

1 Introduction

The popularity of the square-root process in all main
branches of financial modeling stems from its desirable
property of positivity, its richness of behaviour and its
mathematical properties. As a result, it has been used
to model equities ( Cox-Ross [1] alternative process), in-
terest rates ( CIR [2] interest rate model and its time-
inhomogeneous [3], multivariate [4] and other derivatives),
stochastic volatility ( Heston [5] model and its various ex-
tensions [6], [7], [8]) and other financial quantities. Cox,
Ingersoll and Ross [2] developed a general equilibrium
model based on a mean-reverting square-root process. Be-
longing to the class of time-homogeneous endogenous pro-
cesses initially employed to represent the short rate, the
CIR model has been a benchmark for many years because
of its allying both strictly positive interest rates - unlike the
Vasicek [9] model - and a relative analytical tractability,
unlike many other positive short rate models.

In this paper, we study the integral over time of the
short rate, i.e the interest rate accrual. After recalling some
known properties of the square-root process and its inte-
gral, we will derive explicitly the density of the latter. The
same methodology is then used to obtain other distribu-
tional results as well as prices of options on the rate ac-

crual, including Asian options on interest rates, also called
average-rate claims.

2 The square-root process: some reminders

For any positive initial valueXy, there is a unique
strong solution to the stochastic differential equation
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3 The marginal density

We start by studying the marginal density f.
This enables us to present in detail the methodology used
throughout this paper and applied to option prices and other
functionals ofY; as well.

Definitions and notations. For @ € R*™\{0}, we
construct a sequenck, ,(w) in the following recursive
way for positive integerg andq
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being also computed through
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Theorem 3.1 The marginal density of the integra} can
be rewritten as
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Proof 3.1 See Appendix 7.1.

Remark. ) o .
1. For programming purposes, it might be simpler to use
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be efficiently computed though recursions.

2. The complementary error function erfc, appearing in
(11) has been widely studied in the literature. As a result,
there exists several algorithms to compute it numerically
with accuracy in a minimal number of operations.

4 Applications

In the same way as for the density, it is possible to derive
key probability functions and option prices relatedie.

i. Two fundamental functionals

For this purpose, we begin by deriving two prelimi-
nary results, on which lie the other applications we will be
looking at in this paper.

Theorem 4.1 For A > 0, the inverse Laplace transform of
BEZCHOY) with respect tqu > 0 is
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wherer, ., and i, ,_,w. » =) are simple functions de-
fined by recursion in Appendix 7.2.

Proof 4.1 The derivation is based on the same decomposi-
tion as for Theorem 3.1 and on the same type of arguments
as the derivation of the density. See [11] for the details of
intermediate calculations.

ii. Probability distribution function of the
cumulative interest rate

Theorem 4.2 For y > 0, the probability distribution func-
tion of Y; is given by

P(Ye < ) = Ga b0 (4, 0) (18)

Proof 4.2 For u > 0, the Laplace transform of the proba-
bility distribution function is
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which, combined with Theorem 4.1, implies the result.

iii. Truncated expectation of the cumulative
interest rate

Theorem 4.3 For y > 0, the truncated expectation &f is
given by

E(Ytl{ytgy}> =040y 0) (19)

Proof 4.3 For i > 0, the Laplace transform of the proba-
bility distribution function is
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iv. Guaranteed endowment option




This option pays out the shortfall between 1 and the amount
accumulated in a standard savings accqurtKe¥7)*. It

is simply used to guarantee a minimal accrual on an initial
amount of cash, a common insurance feature.

Theorem 4.4 For 1 > K > 0, the guaranteed endowment
put option is given by the expectation of the discounted ex-
pectation of its payoff
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Proof 4.4 The option price can be split in two parts
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We denotéd; = —In K. Sincel > K > 0, k is strictly
positive and we therefore have, for> 0,
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Remark. The assumptior’ < 1 is due to the fact that
e~ YT < 1. ForK > 1, the option is simply worthless.

Theorem 4.5 The guaranteed endowment call option can
be deduced from the parity relation

GECP(K,T) — GEQP(K, T) = P(+,T) — K (21)
Proof 4.5 This results follow from
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v. Binary Asian options

In general, binary - or digital - options are classified
in two groups: the ones paying in cash units and the one
paying in asset units, i.e. paying an interest rate here. In the
context of Asian interest rate derivatives, their respective
payoff is s 71y, -y AN Bvpe=¥T1py, 5,y fOr cap -
or call - options. For floor - put - options, those payoffs are

E(e™ YT 1y, <xy) andE(YTe—YT1{YT§K}).

Theorem 4.6 For K > 0, the cash binary Asian floor is
worth
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Proof 4.6 We have , fop, > 0,
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Hence the result.

Theorem 4.7 For K > 0, the rate binary Asian floor is
worth

reaf (K, T) = E(YTe*YTHYTSK}) =0, 4,0 (K, 1) (23)

Proof 4.7 In the same way,
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We end this section with the call-put parity relation
which allows us to deduce cap option prices from the floor
option prices given above.

Theorem 4.8 The options are linked in the following way

CBA® (K, T) + CBAf (K, T)
RBAC (K, T) + RBAf (K, T)
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Proof 4.8 Indeed,
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vi. Regular Asian options

Interest rates Asian options have been developed to
cover needs similar to those having created equity Asians.
Those instruments have been noticeably studied by Leblanc
and Scaillet [12] and Chacko and Das [13].

Theorem 4.9 The regular Asian option can be computed
as the inverse Laplace transform with respect tof

E(Ype YT) E(e~ (DY _ —n¥YT)
+

(25)
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Proof 4.9 Straightforward application of the previous re-
sults.

Remarks.
1. The first term of the expression (25) can easily
be obtained explicitly as the derivative of the MGF
B%LX’Y(O@) at¢é = 1. We do not present the actual for-
mula here as the expression turns out to be quite heavy.
2. To compare this Laplace transform result to the existing
solutions to this problem, the Laplace transform approach
proposed in Theorem 4.9 is simpler. Indeed, Leblanc and
Scalillet [12] proposed to first compute the densityYegf
through numerical Laplace transform inversion of its MGF
and then integrate it against the discounted payoff of the
option, which is a heavy numerical procedure. Chacko and
Das [13] expressed the option as a sum of Asian binary
calls at ascending strikes and used Fourier inversion. Our
expression is more immediate to calculate.

We can yet also propose a completely explicit solution
for this option.

Theorem 4.10 For K > 0, the Asian floor is worth

pof (5, 1) = B(K — Yp) Ve ™YT) = KG, 4 o (K, 1) — 0q 4 o (K. 1) (26)

Proof 4.10 The regular Asian option is the difference be-
tween two binary options, one paying in cash unit and the
other in rate unit

Aof(K, T) = K.CBA(K, T) — RBA(K, T')
As previously, we present a call-put parity result.

Theorem 4.11 For « > o, we have

ACC (K, T) — Ao (K, T) = E(ype™YT) — KP(0,T) @7



5 Numerical results

The works of Chacko and Das [13] on one hand
and Leblanc and Scaillet [12] provide us with mate-
rial for comparison. Of the two methods, the one-
step numerical inversion proposed by Chacko and Das
is the most efficient, since it involves a single integra-
tion as opposed to Leblanc and Scaillet double integra-
tion. But, both sets of numerical results are useful for
reference. We consider the prices of regular Asian caps,
e 1) = 5 (3 - K>+Q—Yr), cash binary capssax, ) -

E(ﬂm{ypm}), and additionally the valuation of rate bi-

nary capSgesc(x.r) — E(YT;YTl{YT>KT}), truncated mo-

ments defined asex, ) - E<YT1{YT>KT}) and probabili-
ties,r = p(yvp > k1),

Following Chacko and Das [13], we first analyse in
Table 1 the evolution with respect to the maturftyand
strike K. The diffusion parameters of the instantaneous
rate are a=0.15, b=1.5, = 0.2 andrg = 0.1. The results
we obtained do not actually exactly tally with the ones pre-
sented by Chacko and Das [13]. Yet, numerical Laplace
inversion using the Abate and Whitt algorithm confirm our

results. o
To double-check the validity of our method, we also

consider Asian options on yields in the setting of Leblanc
and Scaillet [12]. The yield, r + -y of maturity 7 at time

T is defined as n(B(T.T+n) _ es(ntrpv(n) - Agjan call op-
tions on yields are then given by

:
Yk [(1 /T V(u, u+ rydu — K) eYT} (28)
T JO

They are related to the Asian options on the instantaneous

rate through
oY _ V) ef T~ as() r
kd % ()

Table 2 confirms that the values computed with our series
are correct. Indeed, the column LS and Fusai collect the
prices respectively produced by Leblanc and Scaillet [12]
and Fusai [14].

This cross-checking done, we come back to the pa-
rameters proposed by Chacko and Das [13]. We first ob-
serve how higher maturities, common in fixed-income, af-
fect the results in Table 3.

The volatility of ¥z should start from a low level, in-
crease withr and then decrease again for high maturities,
the mean-reversion pulling the rate to its long-term lexel
The call prices and the probabilities corroborate this intu-
ition. The monotonous evolutions with respectifcare as
expected.

The figures of Table 4 represent the minimal number
of terms needed to ensure the relative error is inferior to
10~%. Gy stand forG, ;, ,(KT,0), G1 for Gu . (KT, 1),

Oy for &, 4., (KT,0) and@, for 8., ,(KT,1). The four
series converge more and more quicklylagcrease. N
remains roughly of the same order throughout the strike
curve.

All the results produced in this section have been
cross-tested against one-step numerical transform inver-
sion, the most efficient numerical method available so far.

For maturities superior than five years, the Abate-
Whitt algorithm starts becoming unstable. Figure 1 shows
no hint can obtained as to the location of the real inverse for
T = 10 with the Abate and Whitt algorithm (See Appendix
7.3 for a description of this algorithm). Long-dated ins-
truments are not rare in fixed-income markets. Our series
brings a quick and effective solution for those problematic
high maturities regions.

The same is true for high volatilities as expected; our
series converge faster as the volatility increases whereas the
Abate-Whitt routine has difficulties.

6 Conclusion

In this paper, we derived explicit expressions for the dis-
tribution of the interest rate accrual as well as options on
this underlying. Computing numerically these expressions
proves simple and also more robust than numerical inver-
sion in regions of high volatilities and maturities.

If this methodology cannot be easily extended to
the general CIR model with time-dependent coefficients -
for which even the zero-coupon prices are only formally
given as solution to a differential equation but not ex-
plicitly known in general -, computing derivatives in the
CIR++ model, analytically tractable extension of the CIR
model proposed by Brigo and Mercurio [15], is however a
straightforward application.

7 Appendix

7.1 Proof of Theorem 3.1 and completed for-
mulation of the density of the integrated
CIR process

7.1.1 Main Expansion

Rearranging the marginal MGF df; (A = 0 in
equation (2)) allows us to see the importance of the term
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But, if that term does not by itself give more insight, its re-
ciprocal istitg-ne"" _,_ Goni-<" where the last

ratio is an easily |nvert|ble Laplace transform Exploiting
this, we represent (29) as
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where the generalised binomial coefficient defined as
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7.1.2 The recursions

The density can be constructed from the inverse of
G=pP o=, w > 0, p,g > 0. We build this inverse de-
notede ¢(y,w) in a recursive manner by exploiting the
properties of the inverse gaussian distribution, which has
for density

—
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and for moment generating function
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CASEq >0

From (32), the inverse in this case can be expressed
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For this case, the integro-differential formula (33) is
to be replaced by the differential formula
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Calculating these expressions enables us to formulate
the density as in Theorem 3.1.

7.2 Definition of expressions in Theorem 4.1

First inverse: g, ,
Forp > 0,¢ > 0 andw > 0, the main term in (16),
1,4(y, \,w) is given by
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Second inversei

a,b,o

Forp>0,q >

Ipqy, X\, =) =

0 andw > 0, I, ,(y, A, @) is given by
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where the three new sequencgsw. ». =). 72 , . ». =) and
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for any a to the right of all the singularities ¢f-).

o Initial value recursion The most popular inversion method, the Abate and
2 Whitt algorithm, rely on a trapezoidal rule to invert this
ey — 6 (a4 A e, [ =208 ) oscillatory integral. Definingd = at, the Abate and Whitt
P11 A=) = bl (A, Jen(zemp it e is the sum of the series
. . A A
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WW) @ The series can critically depend on the choice of A:
the series may not converge to the correct values for too
small A. On the other hand, it might become too difficult
to evaluate numerically for large A. The correct value for
the inverse can be located on a interval of A for which the

o Recursion sum (56) remains constant. This length of this interval of

stability can vary greatly from one application to another.
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Table 1. Evolution withl", Chacko and Das parameters.

Table 5.0 = 0.3, T = 1, Chacko and Das parameters.
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Figure 1.Parametersyrg = 0.1,a = 0.15,b = 1.5, 0 = 0.2 and7T = 10



