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Abstract

In this paper, we extend the concept of ruin in risk theory to the
Parisian type of ruin. For this to occur, the surplus process must fall
below zero and stay negative for a continuous time interval of specified
length. We obtain the probability of ruin in the infinite horizon for the
case when the process starts from zero and the asymptotic form of the
probability of ruin in the infinite horizon for the case when the process
starts from the point far above zero. We see that in the small claim case
an asymptotic formula similar to Cramér’s formula is true.

Keywords: ruin, Parisian type of ruin, risk process, ruin probability,
adjustment coefficient.

1 Introduction

We consider a classical surplus process in continuous time {Xt}t≥0

Xt = u + ct−
Nt∑

k=0

Yk, (1)

where u ≥ 0 is the initial reserve, c is a constant rate of premium payment
per time unit, and {Nt}t≥0 is a Poisson process with parameter λ representing
the numbers of claims up to time t. The sequence {Yk}, k = 1, 2, ..., are claim
sizes which are independent and identically distributed non-negative random
variables that are also independent of the number of claims. We also assume
c > λE (Y1) (the net profit condition). Define the stopping time

T = inf {t > 0 | Xt < 0} . (2)

The event of ruin in infinite time horizon can be expressed as {T < ∞}. The
density of T and the probability of ruin have been widely studied. See for
example [3], [4], [9], [10], [11], [12], [13], [16], [17], [14], [20] and [23].

In this paper, we extend the concept of ruin to the Parisian type of ruin. The
idea comes from Parisian options, the prices of which depend on the excursions
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of the underlying asset prices above or below a barrier. An example is a Parisian
down-and-out option, the owner of which loses the option if the underlying asset
price S reaches the level l and remains constantly below this level for a time
interval longer than d . For details and extensions, see [2], [5], [6], [7], [8], [21]
and [22].

Parisian type ruin will occur if the surplus falls below zero and stays below
zero for a continuous time interval of length d. In some respects, this is a more
appropriate measure of risk than classical ruin as it gives the office some time to
put its finances back in order. In practice, the bankruptcy procedures in many
countries allow for this ”grace” period, such as the Chapter 11 bankruptcy of
the United States’ Bankruptcy Code. Similar bankruptcy regulations are also
applied to Japan and France (see [1]).

In order to introduce the concept of Parisian type of ruin mathematically,
we will first define the excursion. Set

gt = sup{s < t | sign (Xs) sign (Xt) ≤ 0}, (3)
dt = inf{s > t | sign (Xs) sign (Xt) ≤ 0}, (4)

with the usual convention, sup{∅} = 0 and inf{∅} = ∞, where

sign(x) =





1, if x > 0
−1, if x < 0
0, if x = 0

.

The trajectory between gt and dt is the excursion of process X below or above
zero which straddles time t. Assuming d > 0, we now define

τd = inf{t > 0 | 1{Xt<0}(t− gt) ≥ d}. (5)

We can see that τd is therefore the first time that the length of the excursion of
process X below zero reaches given level d. We then define the events {τd < ∞}
to be the Parisian type of ruin in the infinite horizon. We are interested in the
corresponding probabilities

P (τd < ∞) .

In Section 2 we calculate the Parisian type ruin probability for the case
when the initial reserve is zero. In Section 3 we study the case when the initial
research is greater than zero. The asymptotic form of the Parisian type ruin
probability will be given for the small claim case. We conclude our results in
Section 4 and point out some directions for the future research.

2 The ruin probability for the case when the
initial reserve is zero

In this section, we are going to consider a simplified case with no initial reserve,
i.e.

Xt = ct−
Nt∑

k=0

Yk. (6)
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Set
G(y) = P (Yi < y) , Ḡ(y) = P (Yi > y) ;

m = E (Yi) , ĝ(v) =
∫ ∞

0

e−vydG(y).

Denote the ruin probabilities to be

ψ(u) = P (T < ∞ | X0 = u) , ψd(u) = P (τd < ∞ | X0 = u) .

Since T < τd, it is clear that ψ(u) > ψd(u).

Theorem 1 For the process X defined by (6), we have that

ψd(0) =
λmH̄(d)

c− λmH(d)
, (7)

where

H(d) = L −1
β

(
cv+

β − β

λmβv+
β

)
, (8)

H̄(d) = 1−H(d), (9)

and v+
β is the unique positive solution of

−β + cvβ + λ (ĝ (vβ)− 1) = 0. (10)

Proof: It is well-known that

ψ(0) =
λm

c
, (11)

and that the overshoot −XT is a non-negative continuous random variable with
density

Ḡ(x)
m

. (12)

See for example [9], [10], [11], [12], [16], [17], [18], [19], [20] and [23]. Further-
more, define

T ∗ = inf {t > 0, Xt = 0 | X0 = x, x < 0} . (13)

It has been shown in [15] that

E (exp (−βT ∗)) = exp
(
v+

β x
)

. (14)

We use h(t) to denote the density of the first (and actually any, due to the
Markov property of the process X) excursion below zero. Its Laplace transform
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can be obtained as follows:

ĥ(β) =
∫ ∞

0

e−βth(t)dt

=
∫ ∞

0

E (exp (−βT ∗ | X0 = −y))
Ḡ(y)
m

dy

=
∫ ∞

0

exp
(
−v+

β y
) Ḡ(y)

m
dy

=
1− ĝ

(
v+

β

)

mv+
β

=
cv+

β − β

λmv+
β

.

Define then the cumulative distribution function of T ∗ to be

H(d) = P (T ∗ < d) . (15)

We have actually

H(d) =
∫ d

0

h(t)dt = L −1
β

(
ĥ(β)

β

)
= L −1

β

(
cv+

β − β

λmβv+
β

)
. (16)

Moreover, the number of excursions N below zero has a geometric distribution
such that

P (N = n) =
(

1− λm

c

)(
λm

c

)n

, n = 0, 1, 2, . . . (17)

As a result, the largest ever excursion below zero, denoted by L, is such that

P (L ≤ d) =
∞∑

i=0

(H(d))i

(
1− λm

c

)(
λm

c

)i

=
1− λm

c

1− λm
c H(d)

. (18)

Hence we have

ψd(0) = 1− P (L ≤ d) =
λmH̄(d)

c− λmH(d)
. (19)
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Remark: It is clear that ψd(0) < ψ(0) by simply comparing (7) and (11).
Also, we can obtain ψ(0) by taking d → 0 in (7).

3 An asymptotic formula for the ruin probabil-
ity

In this section we focus on the asymptotic form for the Parisian ruin probability
as u →∞. We assume that we have small claims.

Assumption: The Laplace transform ĝ(v) is defined for all v ∈ (α,∞) for
some α < 0.
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Theorem 2 For the process X, X0 = u, when u →∞ we have that

ψd(u) ∼ Cde
−Ru, (20)

where

Cd = C

{
1− R

c− λmH(d)
Q(d)

}
, (21)

C =
c−mλ

Rλ

[∫ ∞

0

yeRyḠ(y)y
]−1

, (22)

Q(d) = L −1
β


 1

v+
β

(
v+

β + R
)


 , (23)

and R is the adjustment coefficient which is the unique positive root of

−cR + λ (ĝ(−R)− 1) = 0. (24)

Proof: First of all, the Parisian ruin probability can be written as follow:

ψd(u)
= P (τd < ∞ | X0 = u)
= P (τd < ∞, T < ∞, T ∗ < d | X0 = u) + P (τd < ∞, T < ∞, T ∗ ≥ d | X0 = u)
= P (T < ∞, T ∗ < d | X0 = u)P (τd < ∞ | X0 = 0)

+P (T < ∞, T ∗ ≥ d | X0 = u) .

That last equality is due to the strong Markov property of X. We have obtained
P (τd < ∞ | X0 = 0) in (7). Furthermore, we have

∫ ∞

0

e−βd lim
u→∞

eRuP (T < ∞, T ∗ < d | X0 = u) dd

= lim
u→∞

∫ ∞

0

e−βdeRuP (T < ∞, T ∗ < d | X0 = u) dd

= lim
u→∞

eRuE

(
e−βT∗

β
1{T<∞}

∣∣∣X0 = u

)

= lim
u→∞

∫ ∞

0

E

(
e−βT∗

β

∣∣∣−XT = z

)
eRuP (T < ∞,−XT ∈ dz | X0 = u)

= lim
u→∞

∫ ∞

0

E

(
e−βT∗

β

∣∣∣−XT = z

)
P (−XT ∈ dz | T < ∞, X0 = u) eRuψ(u)

=
∫ ∞

0

E

(
e−βT∗

β

∣∣∣−XT = z

)
lim

u→∞
P (−XT ∈ dz | T < ∞, X0 = u) eRuψ(u).

By (14) we have that

E

(
e−βT∗

β

∣∣∣−XT = z

)
=

e−v+
β z

β
.
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It is well-known that

lim
u→∞

P (−XT ∈ dz | T < ∞, X0 = u) =
λR

c− λm

∫ ∞

0

eRxḠ(x + z)dx,

lim
u→∞

eRuψ(u) = C =
c−mλ

Rλ

[∫ ∞

0

yeRyḠ(y)y
]−1

.

For more details see [3], [13] and [23]. We have therefore that
∫ ∞

0

e−βd lim
u→∞

eRuP (T < ∞, T ∗ < d | X0 = u) dd

= C

∫ ∞

0

e−v+
β z

β

λR

c− λm

∫ ∞

0

eRxḠ(x + z)dx

=
Cλ

c− λm

1
β

(
ĝ(−R)− ĝ(v+

β )

v+
β + R

− 1− ĝ(v+
β )

v+
β

)

=
CR

c− λm


 1

v+
β

(
v+

β + R
)


 .

As a result,

lim
u→∞

eRuP (T < ∞, T ∗ < d | X0 = u) =
CR

c− λm
Q(d), (25)

where

Q(d) = L −1
β


 1

v+
β

(
v+

β + R
)


 ;

and hence

P (T < ∞, T ∗ < d | X0 = u) ∼ e−Ru CR

c− λm
Q(d). (26)

Also, we have

P (T < ∞, T ∗ ≥ d | X0 = u)
= ψ(u)− P (T < ∞, T ∗ < d | X0 = u)

∼ Ce−Ru

(
1− R

c− λm
Q(d)

)
. (27)

We have therefore proved (20).
2

Remark 1: The constant C given by (22) is the well-know Cramér constant.
This theorem gives the modified version of the Cramér constant, Cd for the
Parisian ruin case, which is given by (21).

Remark 2: It is easy to see that Cd < C, and hence ψd(u) < ψ(u).
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4 Conclusion

In Section 3 we obtain the asymptotic result for the small claim case (see As-
sumption). Note that it is not the case for the result in Section 2, which is true
for all claim distributions. When u > 0, the difficulty with the large claim case
is that we do not have a nice form for the distribution of overshoot on which
the length of excursions below zero depend. The investigation of the large claim
case can be a topic of future research.

For the small claim case, instead of asymptotic form we obtained here, it
would also be nice to get a formula for ψd(u) for a general u > 0. One of the
difficulties is that the length of the excursions below zero depends on the length
of the preceding excursion above zero since the overshoots depend on the length
of the excursion above zero. However, in the case of exponential distributed
claims, we do not have such problem since the overshoot is independent of the
excursion and the explicit form for ψd(u) can be obtained (see [8]).

Furthermore, as another direction of future research, one should try to study
the Parisian ruin probability in finite time horizon, i.e. P (τd < t).
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