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Abstract

The distribution of the a-quantile of a Brownian motion on an interval [0,¢] has been
obtained motivated by a problem in financial mathematics. In this paper we generalise
these results by calculating an explicit expression for the joint density of the a-quantile of
a standard Brownian motion, its first and last hitting times and the value of the process at
time ¢t. Our results can be easily generalised for a Brownian motion with drift. It is shown
that the first and last hitting times follow a transformed arcsine law.
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1 Introduction

Let (X (s),s > 0) be a real valued stochastic process on a probability space (2, F,Pr). For
0 < a < 1, define the a—quantile of the path of (X (s),s > 0) up to a fixed time ¢ by

Mx(a,t):inf{x:/otl(X(s)Sx)d8>at}. (1)

The study of the quantiles of various stochastic processes has been undertaken as a response to a
problem arising in the field of mathematical finance, the pricing of a particular path-dependent
financial option; see Miura (1992), Akahori (1995) and Dassios (1995). This involves calculating
quantities such as E (h (M (a,t))), where h () = (¢* — b)™ or some other appropriate function.
This requires obtaining the distribution of X (¢). In the case where (X (s),s > 0) is a process
with exchangeable increments the following result was obtained:

Proposition 1 Let X (s) = X (at 4+ s) — X (at). Then,

(Mx (a,8), X (1) "2 (Nx (1), X () + X' (1 = a)1) ), 2)
where /
Nx (a,t) = OSSBSPMX (s) + o< é?lf_a)tX (s)- (3)
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Note that if (X (s),s > 0) is a Lévy process (having stationary and independent increments),
then X' (s) is an independent copy of X (s).

When (X (s),s > 0) is a Brownian motion, we can use this result and obtain an explicit
formula for the joint density of Mx (a,t) and X (¢). This result was first proved for a Brownian
motion with drift; see Dassios (1995) and Embrechts, Rogers and Yor (1995) and for Lévy
processes by Dassios (1996). There is also a similar result for discrete time random walks first
proved by Wendel (1960).

We now let

Lx (a,t) =inf{s € [0,t] : X (s) = Mx (a,t)}

be the first, and
Kx (avt) = sup {s € [0,] : X (s) = Mx (a,1)},

the last time the process hits Mx (o, t) . One can now introduce a ‘barrier’ element to the financial
application by making the option worthless if the quantile is hit too early or too late. For exam-
ple, this can involve calculating quantities such as E (h (Mx (a,t)) 1 (Lx (o, t) > v, Kx (o, t) < u)).

The first study of these quantities can be found in Chaumont (1999). By using combinatorial
arguments he derives results of the same type as Proposition 1 that are extensions of Wendel’s
results in discrete time. In the case where the random walk steps can only take the values +1 or
-1, a representation for the analogues of Lx («,t) and Kx (a,t) is obtained. Finally he derives
a continuous time representation for the triple law of Mx (a,t), Lx («a,t) and X (¢), extending
Proposition 1 when X (¢) has continuous paths; in particular when it is a Brownian motion. We
will demonstrate that Chaumont’s results point to a representation involving Kx (o, t) as well.
We will use this to obtain an explicit form in the last section. We will also derive alternative
representations and prove a remarkable arc-sine law.

For the rest of the paper we assume that (X (s),s > 0) is a standard Brownian motion,
unless otherwise specified. Without loss of generality, we will restrict our attention to the case
t = 1 taking advantage of the Brownian scaling. For simplicity we set Mx (a,t) = My («),
Lx (a,t) = Lx () and Kx (o, t) = Kx (a).We will derive the joint density of Mx («), Lx (),
Kx (o) and X (1). If we denote this density by f (y,z,u,v), our results can be generalised
for a Brownian motion with drift m, using a Cameron-Martin-Girsanov transformation. The
corresponding density will be

f(y’:E?uvv) €Xp (mx — m2/2) .

Before we obtain the density of (Mx («),Lx (), Kx (), X (1)), we will first show that the
law of Lx («) (and Kx («)) is a transformed arcsine law.

2 An arcsine law for Ly (a,t).

Let Sx (t) = supg<s<; {X (s)} and x (t) = sup {s € [0,t] : X (s) = Sx (t)} . Define also the stop-
ping time 7. = inf {s > 0 : X (s) = ¢}. We will first obtain the joint distribution of (M (o), Lx («))
(also of (Mx (o) — X (1),1 — Kx («)).

Theorem 1 For b > 0,
Pr(Mx (o) € db, Lx (o) € du) =

Pr(Sx (1) € db,0x (1) € du) 1(0 < u < ), (4)
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and for b < 0,
Pr(Mx (o) € db, Lx (o) € du) =

Pr(Sx(1)ed|bl,0x (1) edu)1(0<u<(l—a)). (5)
Furthermore, (Mx (o), Lx («)) and (Mx (o) — X (1),1 — Kx («))
have the same distribution.
Proof Let b >0 and u < . We then have that
Pr(Mx (o) > b,Lx (o) > u) = Pr(Sx (u) < Mx (o), Mx (o) > b) =

Pr(b < Sx (u) < Mx (a)) + Pr(Sx (u) <b < Mx (a)) . (6)
Let 7, =inf{s > 0: X (s) = b} and X* (s) = X (1, + s) —b. (X*(s),s > 0) is a standard Brow-
nian motion which is independent of (X (s),0 < s < 7,). We then have,

Pr(b < Sx (u) < Mx (o)) =

Pr<SX >b/ <SX())ds<a>:
Pr(SX( )>b,/ 1(X (s)— X (u) <Sx (u) — X (u) ds<au> (7)
We now condition on o {X (s),0<s<u}. Let X*(s) = X(u+s) — X (u). (X*(s),s>0)

is a standard Brownian motion which is independent of (X (s),0 <s <u). W condition on
Sx (u) — X (u) = ¢, and set 7. = inf{s>0:X*(s)=c} and X*(s) = X*(1.+s) — ¢
(X** (s),s > 0) is a standard Brownian motion which is independent of both (X (s),0 < s < u)
and (X*(s),0 < s < 7.). We have that

Pr(/olul(X*(s)gc)ds<a—u> —

a—u 1—u—r
/ PT(TCECZT)PI"</ 1(X**(s)§0)ds<a1—u—r>
0 0

and since fl "1 (X** (s) < 0)ds has the same (arcsine) law as

Ox++ (1 —u —7), this is equal to

/ Pr(re.€dr)Pr(0x~(1—u—r)<a—u—r)=
0

/ Pr (7. € dr)Pr < sup X (s) > sup X** (s)) =
0

0<s<a—u—r a—u—r<s<l—u—r
Pr( sup X*(s)> sup X*(s), sup X*(s)>c>
0<s<a—u a—u<s<t—u 0<s<a—u
and so (7) is equal to
Supugsga X (5) - X (u) > Supagsgl X (5) -X (u) )

Pr | sup,<s<q X (8) = X (u) > supgcscy, X (5) = X (u), | =
SUPg<s<y X (8) > b
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Pr(Sx (u) > bu < 0x (1) < ) . (8)

Furthermore,

Pr(SX(u)<b<MX(a)):Pr<SX(u)<b,/011(X(s)§b)ds<oz> =

/uaPr(TbGdr)Pr(/Ol—rl(X*(s)<0)<a_r>

:/aPr(TbGdT)PI‘(Hx* I-r)<a-r)=

Pr <u<0x(1)<a,SX(u)<b, sup X(s)>b>. 9)

u<s<a

Adding (8) and (9) together, we see that (6) is equal to

u<s<a

(u<0X < a, sup X(s)>b>:Pr(u<9X(1)<a,SX(1)>b)
(

which leads to (4).
Since (—X (s),

surely, we use

s > 0) is a standard Brownian motion and M_x (o) = —Mx (1 — «) almost
X (s ) instead of X (s) and we get that for b < 0,

Pr(Mx (o) <b,Lx (a) >u) =Pr(u<6x (1) <(1—a),Sx (1) > b)),
which leads to (5).

To see that (t — Kx (), Mx (o) — X (1)) has the same distribution as (Lx (a), Mx («)),
set again X (s) = X (1 —s) — X (1). Clearly (X (s),0<s< t) is a standard Brownian motion
and we can easily see that Mz (o) = My (o) — X (1), Mg (o) — X (1) = Mx (@) and K¢ (@) =
1—-Lx(a). O

Remarks

1. The distribution of (fx (1), Sx (1)) is well known (see for example Karatzas and Shreve

(1988, page 102). From this and Theorem 2, we can deduce the density of (Lx («), Mx (a)) .
This is given by

_ 1 b2
Pr(Mx (a) € db, Lx (a) € du) = Wﬁe){p (_2u> ,
1O0<u<a,b>0)+1(0<u<l—a,b<0)]dbdu. (10)

2. Theorem 1 also leads to an alternative expression for the distribution of My («); that is
Pr(Mx (o) € db) =Pr(Sx (1) € db,0 < 0x (1) < ),
for b > 0 and
Pr(Mx (o) € db) =Pr(Sx (1) €d|b|,0<bx (1) <1—a),

for b < 0.
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3. From Theorem 1, we can immediately obtain the following corollary:

Corollary 1 For u > 0,
Pr(Lx(a) >u)=Pr(u<fx(l)<a)+Pr(u<fx (1) <1-a) (11)

and
1u<a)+1(u<l—a)

mu (1l —u)

Furthermore, Kx («) has the same distribution as 1 — Lx (&) .

Pr(Lx (o) € du) = du. (12)

3 The joint law of (Ly (o), Kx (o), Mx (o), X (1)).
From now on we will denote the density of 7, by & (-, ) ; that is for v > 0,

2
Pr (7 € dv) = k (v,b) dv = 2“;|U5 exp (—;}) dv. (13)

We will also denote the joint density of (MX (%,t) , X (t)) by g (-,-,-,-); that is for 0 < v < t,
Pr (MX (%t) edb, X (1) € da) = ¢(b, a,v,t) dbda.
From proposition 1 this is also the density of
(Nx (1), X (at) + X' (1 = at)) ),

where Nx (a,t) is defined by (3).

We can calculate g (-, -, -, ) by using proposition 1. Note that
inf X (s)=— sup (—X/ s)
0<s<(1-a)t (=) 0<s<(1—a)t (#)

and that the density of (Sx (t),X (t)) is given by

Pr(Sy (t) € db, X (t) € da) =

2(22\/%@ exp (_(21)2—;)2) 1(b>0,b>a)dadb (14)

(see Karatzas and Shreve, 1988, p.95). We observe that since (14) is bounded, ¢ (-,-,-,-) is a
bounded density. We first need to calculate g (0,0, v,t). This is the same as the value of the
density of (MX (%,t) ,Mx (%,t) -X (t)) at (0,0). From (14) we see that

PI"(SX (t) € dy,SX (t) —X(t) S da:) =

2 +2) o (y+o)
Vo8 P 2t

and it is a simple exercise to verify that

) 1(y>0,2>0)dydz (15)
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g(0,0,v,t) =

> [®2(y+2) W+’ 2 +a) (y+a)’

[ 2t (-5 ) R (e
4y/v(t—v
¥z "

We will also use the following lemma

Lemma 1 Let (X (s),s > 0) be a standard Brownian motion, 7, = inf {s > 0: X (s) = z} and
T, =sup{s <t: X (s) =y}. Then, for 0 <z <z andw <y < z,
Pr (7, € du,T, € dv, Sx (t) € dz, X (1) € dw) =
E(u,2)k(t—v,y—w)Pr(Sx (v—u)ed(z—y),X (v—u) ed(z—y)) (17)

Proof Using the strong Markov property as in the previous section, we see that the right hand
side of (17) is equal to

Pr (7, € du) Pr ( edv—u),Sx(t—u)€d(z—2z),X (t—u) €d(w—2z))

nyx

and replacing X (s) by the standard Brownian motion X (¢t —u — s) — X (¢ — u) this is equal to

Pr(ry € du)Pr(ry—yp €d(1 —v),Sx(t—u)ed(z—w),X (t —u) €d(x—w))
which leads to (17). O
The following extension to Proposition 1 can be derived as a direct consequence of the results

of Chaumont (1999) (see Theorem 7 and the remark after Theorem 4 in his paper):

Proposition 2 Let (X (s),s > 0) be a continuous process with exchangeable increments and

X (s) =X (a+s)— X («). Then,

(Lx (0), Kx (a), My (a), X (1)) "2’ (TX (@),Ux (@), Nx (a), X (a) + X (1 - 04)) , (18)

where
Tx (o) =inf{s >0: X (s) = Nx (o)} 1(Nx () > 0) +

inf{s >0: X (s) = Nx (a)}1(Nx (a) <0)

and
Ux (@) = (1= a+supfs <a: X (s) = Nx (a) = X' (1= a)}) 1 (Nx (a) = X (a) + X' (1 =) ) +
(a+sup{sg1—a;X’(s):NX(a)—X(a)}) 1(Nx(a)gX(a)+X’(1_a))

Note that the expression for Uy («) is a slight modification of the one in Chaumont’s paper
that better serves our purpose. We now deduce the law of (Lx (o), Kx (a) , Mx (), X (1)).
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Theorem 2 For the standard Brownian motion (X (s),s > 0),

Pr(Lx (o) € du, Kx (o) € dv, Mx () € db, X (1) € da) =

2|6l b~ a| dudvdbda___ ( b2 (b—a)2>

WQ(U—U)z ’U,S(l—v)B _%_2(1—’0)

Vo—u—(1-a)(l-a)l(u>0,u+(l—a)<v<1l) b>0,b>a
(a—u)(v—a)I(0<u<a<v<l) b>0,b<a
(v—u—a)al(u>0ut+a<v<l) b<0,b>a

Vi—-a—-u)(v-(1-a)i(0<u<l—-a<v<l) b<0b<a

(19)

Proof We start with the case b > 0,b > a; we use Proposition 2 and Lemma 1 with z =
b— infogsg(l—a)tX/ (s)yw=a—-X (1—a),z=band y=b— X (1—a). This leads to

kE(bu)k(b—a,1—-v)g(0,0,v—u—(1—a),v—u)-

1(u>0,u+(1—a)t<v<t)dudvdbda. (20)

Substituting (13) and (15) in (20), we get the first leg of the right hand side of (19). For the
case b > 0,b < a, note that we can rewrite Ux («) in Proposition 2 as

Ux(a)=1—inf{s>0: X" (s)= sup X(S)+O inf X (s)— X (o)},

0<s<a <s< 1—a
where X" (s) = X' (1 —a —s) — X' (1 — a). The left hand side of (19) is then the density of

< inf{s >0: X (s) =b},inf{s >0: X (s)=b—a}, )
SUP<s<q X (8) +infocs<i—a X'(5)-X"1-0),X(0)-X"(1-0)

at (u,1 —v,b,a). This in turn is equal to k (b,u) k (|b — a|,1 — v) multiplied by the density of

sup X(s)+ inf X (s)—-X (w—a),X(a—u)—X (v—0)],
0<s< (a—u) 0<s<(v—a)
which leads to the second leg of the right hand side of (19).
Considering the process (—X (s),0 < s < 1) and observing that M_x (o) = —Mx (1 — «a),
L_x(a)=Lx(1—«a)and K_x (o) = Kx (1 — ) yields the rest of (19). O

Remark
One could derive Theorem 1 from Theorem 2 | by integrating out two variables. However, it is
difficult to obtain the result, without knowing it in advance.
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