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Abstract

The distribution of the α-quantile of a Brownian motion on an interval [0, t] has been
obtained motivated by a problem in financial mathematics. In this paper we generalise
these results by calculating an explicit expression for the joint density of the α-quantile of
a standard Brownian motion, its first and last hitting times and the value of the process at
time t. Our results can be easily generalised for a Brownian motion with drift. It is shown
that the first and last hitting times follow a transformed arcsine law.
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1 Introduction

Let (X (s) , s ≥ 0) be a real valued stochastic process on a probability space (Ω,F ,Pr) . For
0 < α < 1, define the α−quantile of the path of (X (s) , s ≥ 0) up to a fixed time t by

MX (α, t) = inf
{

x :
∫ t

0
1 (X (s) ≤ x) ds > αt

}
. (1)

The study of the quantiles of various stochastic processes has been undertaken as a response to a
problem arising in the field of mathematical finance, the pricing of a particular path-dependent
financial option; see Miura (1992), Akahori (1995) and Dassios (1995). This involves calculating
quantities such as E (h (MX (α, t))) , where h (x) = (ex − b)+ or some other appropriate function.
This requires obtaining the distribution of X (t) . In the case where (X (s) , s ≥ 0) is a process
with exchangeable increments the following result was obtained:

Proposition 1 Let X
′
(s) = X (αt + s)−X (αt) . Then,

(MX (α, t) , X (t))
(law)
=
(
NX (α, t) , X (αt) + X

′
((1− α) t)

)
, (2)

where
NX (α, t) = sup

0≤s≤αt
X (s) + inf

0≤s≤(1−α)t
X

′
(s) . (3)
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Note that if (X (s) , s ≥ 0) is a Lévy process (having stationary and independent increments),
then X

′
(s) is an independent copy of X (s) .

When (X (s) , s ≥ 0) is a Brownian motion, we can use this result and obtain an explicit
formula for the joint density of MX (α, t) and X (t) . This result was first proved for a Brownian
motion with drift; see Dassios (1995) and Embrechts, Rogers and Yor (1995) and for Lévy
processes by Dassios (1996). There is also a similar result for discrete time random walks first
proved by Wendel (1960).

We now let
LX (α, t) = inf {s ∈ [0, t] : X (s) = MX (α, t)}

be the first, and
KX (α, t) = sup {s ∈ [0, t] : X (s) = MX (α, t)} ,

the last time the process hits MX (α, t) . One can now introduce a ‘barrier’ element to the financial
application by making the option worthless if the quantile is hit too early or too late. For exam-
ple, this can involve calculating quantities such as E (h (MX (α, t))1 (LX (α, t) > v, KX (α, t) < u)) .

The first study of these quantities can be found in Chaumont (1999). By using combinatorial
arguments he derives results of the same type as Proposition 1 that are extensions of Wendel’s
results in discrete time. In the case where the random walk steps can only take the values +1 or
-1, a representation for the analogues of LX (α, t) and KX (α, t) is obtained. Finally he derives
a continuous time representation for the triple law of MX (α, t), LX (α, t) and X (t) , extending
Proposition 1 when X (t) has continuous paths; in particular when it is a Brownian motion. We
will demonstrate that Chaumont’s results point to a representation involving KX (α, t) as well.
We will use this to obtain an explicit form in the last section. We will also derive alternative
representations and prove a remarkable arc-sine law.

For the rest of the paper we assume that (X (s) , s ≥ 0) is a standard Brownian motion,
unless otherwise specified. Without loss of generality, we will restrict our attention to the case
t = 1 taking advantage of the Brownian scaling. For simplicity we set MX (α, t) = MX (α),
LX (α, t) = LX (α) and KX (α, t) = KX (α).We will derive the joint density of MX (α) , LX (α) ,
KX (α) and X (1) . If we denote this density by f (y, x, u, v) , our results can be generalised
for a Brownian motion with drift m, using a Cameron-Martin-Girsanov transformation. The
corresponding density will be

f (y, x, u, v) exp
(
mx−m2/2

)
.

Before we obtain the density of (MX (α) , LX (α) ,KX (α) , X (1)) , we will first show that the
law of LX (α) (and KX (α)) is a transformed arcsine law.

2 An arcsine law for LX (α, t) .

Let SX (t) = sup0≤s≤t {X (s)} and θX (t) = sup {s ∈ [0, t] : X (s) = SX (t)} . Define also the stop-
ping time τc = inf {s > 0 : X (s) = c}. We will first obtain the joint distribution of (MX (α) , LX (α))
(also of (MX (α)−X (1) , 1−KX (α)) .

Theorem 1 For b > 0,
Pr (MX (α) ∈ db, LX (α) ∈ du) =

Pr (SX (1) ∈ db, θX (1) ∈ du)1 (0 < u < α) , (4)
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and for b < 0,
Pr (MX (α) ∈ db, LX (α) ∈ du) =

Pr (SX (1) ∈ d |b| , θX (1) ∈ du)1 (0 < u < (1− α)) . (5)

Furthermore, (MX (α) , LX (α)) and (MX (α)−X (1) , 1−KX (α))
have the same distribution.

Proof Let b > 0 and u < α. We then have that

Pr (MX (α) > b,LX (α) > u) = Pr (SX (u) < MX (α) ,MX (α) > b) =

Pr (b < SX (u) < MX (α)) + Pr (SX (u) < b < MX (α)) . (6)

Let τb = inf {s > 0 : X (s) = b} and X∗ (s) = X (τb + s)− b. (X∗ (s) , s ≥ 0) is a standard Brow-
nian motion which is independent of (X (s) , 0 ≤ s ≤ τb) . We then have,

Pr (b < SX (u) < MX (α)) =

Pr
(

SX (u) > b,

∫ 1

0
1 (X (s) ≤ SX (u)) ds < α

)
=

Pr
(

SX (u) > b,

∫ 1

u
1 (X (s)−X (u) ≤ SX (u)−X (u)) ds < α− u

)
. (7)

We now condition on σ {X (s) , 0 ≤ s ≤ u}. Let X∗ (s) = X (u + s) − X (u) . (X∗ (s) , s ≥ 0)
is a standard Brownian motion which is independent of (X (s) , 0 ≤ s ≤ u) . We condition on
SX (u) − X (u) = c, and set τc = inf {s > 0 : X∗ (s) = c} and X∗∗ (s) = X∗ (τc + s) − c.
(X∗∗ (s) , s ≥ 0) is a standard Brownian motion which is independent of both (X (s) , 0 ≤ s ≤ u)
and (X∗ (s) , 0 ≤ s ≤ τc) . We have that

Pr
(∫ 1−u

0
1 (X∗ (s) ≤ c) ds < α− u

)
=

∫ α−u

0
Pr (τc ∈ dr) Pr

(∫ 1−u−r

0
1 (X∗∗ (s) ≤ 0) ds < α1− u− r

)
and since

∫ 1−u−r
0 1 (X∗∗ (s) ≤ 0) ds has the same (arcsine) law as

θX∗∗ (1− u− r) , this is equal to∫ α−u

0
Pr (τc ∈ dr) Pr (θX∗∗ (1− u− r) < α− u− r) =

∫ α−u

0
Pr (τc ∈ dr) Pr

(
sup

0≤s≤α−u−r
X∗∗ (s) > sup

α−u−r≤s≤1−u−r
X∗∗ (s)

)
=

Pr
(

sup
0≤s≤α−u

X∗ (s) > sup
α−u≤s≤t−u

X∗ (s) , sup
0≤s≤α−u

X∗ (s) > c

)
and so (7) is equal to

Pr

 supu≤s≤α X (s)−X (u) > supα≤s≤1 X (s)−X (u) ,
supu≤s≤α X (s)−X (u) > sup0≤s≤u X (s)−X (u) ,

sup0≤s≤u X (s) > b

 =
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Pr (SX (u) > b, u < θX (1) < α) . (8)

Furthermore,

Pr (SX (u) < b < MX (α)) = Pr
(

SX (u) < b,

∫ 1

0
1 (X (s) ≤ b) ds < α

)
=

∫ α

u
Pr (τb ∈ dr) Pr

(∫ 1−r

0
1 (X∗ (s) ≤ 0) < α− r

)
=
∫ α

u
Pr (τb ∈ dr) Pr (θX∗ (1− r) < α− r) =

Pr
(

u < θX (1) < α, SX (u) < b, sup
u≤s≤α

X (s) > b

)
. (9)

Adding (8) and (9) together, we see that (6) is equal to

Pr
(

u < θX (1) < α, sup
u≤s≤α

X (s) > b

)
= Pr (u < θX (1) < α, SX (1) > b)

which leads to (4).
Since (−X (s) , s ≥ 0) is a standard Brownian motion and M−X (α) = −MX (1− α) almost

surely, we use −X (s) instead of X (s) and we get that for b < 0,

Pr (MX (α) < b,LX (α) > u) = Pr (u < θX (1) ≤ (1− α) , SX (1) > |b|) ,

which leads to (5).
To see that (t−KX (α) ,MX (α)−X (1)) has the same distribution as (LX (α) ,MX (α)) ,

set again X̃ (s) = X (1− s)−X (1) . Clearly
(
X̃ (s) , 0 ≤ s ≤ t

)
is a standard Brownian motion

and we can easily see that MX̃ (α) = MX (α)−X (1) , MX̃ (α)− X̃ (1) = MX (α) and KX̃ (α) =
1− LX (α) . �

Remarks

1. The distribution of (θX (1) , SX (1)) is well known (see for example Karatzas and Shreve
(1988, page 102). From this and Theorem 2, we can deduce the density of (LX (α) ,MX (α)) .
This is given by

Pr (MX (α) ∈ db, LX (α) ∈ du) =
|b|

π
√

u3 (1− u)
exp

(
− b2

2u

)
·

[1 (0 < u < α, b > 0) + 1 (0 < u < 1− α, b < 0)] dbdu. (10)

2. Theorem 1 also leads to an alternative expression for the distribution of MX (α) ; that is

Pr (MX (α) ∈ db) = Pr (SX (1) ∈ db, 0 < θX (1) < α) ,

for b > 0 and

Pr (MX (α) ∈ db) = Pr (SX (1) ∈ d |b| , 0 < θX (1) < 1− α) ,

for b < 0.
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3. From Theorem 1, we can immediately obtain the following corollary:

Corollary 1 For u > 0,

Pr (LX (α) > u) = Pr (u < θX (1) ≤ α) + Pr (u < θX (1) ≤ 1− α) (11)

and
Pr (LX (α) ∈ du) =

1 (u ≤ α) + 1 (u ≤ 1− α)
π
√

u (1− u)
du. (12)

Furthermore, KX (α) has the same distribution as 1− LX (α) .

3 The joint law of (LX (α) , KX (α) , MX (α) , X (1)) .

From now on we will denote the density of τb by k (·, ·) ; that is for v > 0,

Pr (τb ∈ dv) = k (v, b) dv =
|b|√
2πv3

exp
(
− b2

2v

)
dv. (13)

We will also denote the joint density of
(
MX

(
v
t , t
)
, X (t)

)
by g (·, ·, ·, ·) ; that is for 0 < v < t,

Pr
(
MX

(v

t
, t
)
∈ db,X (t) ∈ da

)
= g (b, a, v, t) dbda.

From proposition 1 this is also the density of(
NX (α, t) , X (αt) + X

′
((1− αt))

)
,

where NX (α, t) is defined by (3).
We can calculate g (·, ·, ·, ·) by using proposition 1. Note that

inf
0≤s≤(1−α)t

X
′
(s) = − sup

0≤s≤(1−α)t

(
−X

′
(s)
)

and that the density of (SX (t) , X (t)) is given by

Pr (SX (t) ∈ db,X (t) ∈ da) =

2 (2b− a)√
2πt3

exp

(
−(2b− a)2

2t

)
1 (b ≥ 0, b ≥ a) dadb (14)

(see Karatzas and Shreve, 1988, p.95). We observe that since (14) is bounded, g (·, ·, ·, ·) is a
bounded density. We first need to calculate g (0, 0, v, t) . This is the same as the value of the
density of

(
MX

(
v
t , t
)
,MX

(
v
t , t
)
−X (t)

)
at (0, 0) . From (14) we see that

Pr (SX (t) ∈ dy, SX (t)−X (t) ∈ dx) =

2 (y + x)√
2πt3

exp

(
−(y + x)2

2t

)
1 (y ≥ 0, x ≥ 0) dydx (15)

and it is a simple exercise to verify that
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g (0, 0, v, t) =∫ ∞

0

∫ ∞

0

2 (y + x)√
2πv3

exp

(
−(y + x)2

2v

)
2 (y + x)√
2π (t− v)3

exp

(
− (y + x)2

2 (t− v)

)
dxdy

=
4
√

v (t− v)
πt2

. (16)

We will also use the following lemma

Lemma 1 Let (X (s) , s ≥ 0) be a standard Brownian motion, τx = inf {s > 0 : X (s) = x} and
τy = sup {s ≤ t : X (s) = y} . Then, for 0 < x < z and w < y < z,

Pr
(
τx ∈ du, τy ∈ dv, SX (t) ∈ dz,X (t) ∈ dw

)
=

k (u, x) k (t− v, y − w) Pr (SX (v − u) ∈ d (z − y) , X (v − u) ∈ d (x− y)) (17)

Proof Using the strong Markov property as in the previous section, we see that the right hand
side of (17) is equal to

Pr (τx ∈ du) Pr
(
τy−x ∈ d (v − u) , SX (t− u) ∈ d (z − x) , X (t− u) ∈ d (w − x)

)
and replacing X (s) by the standard Brownian motion X (t− u− s)−X (t− u) this is equal to

Pr (τx ∈ du) Pr (τy−w ∈ d (1− v) , SX (t− u) ∈ d (z − w) , X (t− u) ∈ d (x− w))

which leads to (17). �

The following extension to Proposition 1 can be derived as a direct consequence of the results
of Chaumont (1999) (see Theorem 7 and the remark after Theorem 4 in his paper):

Proposition 2 Let (X (s) , s ≥ 0) be a continuous process with exchangeable increments and
X

′
(s) = X (α + s)−X (α) . Then,

(LX (α) ,KX (α) ,MX (α) , X (1))
(law)
=
(
TX (α) , UX (α) , NX (α) , X (α) + X

′
(1− α)

)
, (18)

where
TX (α) = inf{s ≥ 0 : X (s) = NX (α)}1 (NX (α) ≥ 0) +

inf{s ≥ 0 : X
′
(s) = NX (α)}1 (NX (α) ≤ 0)

and

UX (α) =
(
1− α + sup{s ≤ α : X (s) = NX (α)−X

′
(1− α)}

)
1
(
NX (α) ≥ X (α) + X

′
(1− α)

)
+(

α + sup{s ≤ 1− α : X
′
(s) = NX (α)−X (α)}

)
1
(
NX (α) ≤ X (α) + X

′
(1− α)

)
Note that the expression for UX (α) is a slight modification of the one in Chaumont’s paper

that better serves our purpose. We now deduce the law of (LX (α) ,KX (α) ,MX (α) , X (1)) .
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Theorem 2 For the standard Brownian motion (X (s) , s ≥ 0),

Pr (LX (α) ∈ du,KX (α) ∈ dv, MX (α) ∈ db,X (1) ∈ da) =

2 |b| |b− a| dudvdbda

π2 (v − u)2
√

u3 (1− v)3
exp

(
− b2

2u
− (b− a)2

2 (1− v)

)
×


√

(v − u− (1− α)) (1− α)1 (u > 0, u + (1− α) < v < 1) b > 0, b > a√
(α− u) (v − α)1 (0 < u < α < v < 1) b > 0, b < a√
(v − u− α) α1 (u > 0, u + α < v < 1) b < 0, b > a√

(1− α− u) (v − (1− α))1 (0 < u < 1− α < v < 1) b < 0, b < a

. (19)

Proof We start with the case b > 0, b > a; we use Proposition 2 and Lemma 1 with z =
b− inf0≤s≤(1−α)t X

′
(s), w = a−X

′
(1− α), x = b and y = b−X

′
(1− α). This leads to

k (b, u) k (b− a, 1− v) g (0, 0, v − u− (1− α) , v − u) ·

1 (u > 0, u + (1− α) t < v < t) dudvdbda. (20)

Substituting (13) and (15) in (20), we get the first leg of the right hand side of (19). For the
case b > 0, b < a, note that we can rewrite UX (α) in Proposition 2 as

UX (α) = 1− inf{s ≥ 0 : X
′′
(s) = sup

0≤s≤α
X (s) + inf

0≤s≤ 1−α
X

′′
(s)−X (α)},

where X
′′
(s) = X

′
(1− α− s)−X

′
(1− α). The left hand side of (19) is then the density of(

inf{s ≥ 0 : X (s) = b}, inf{s ≥ 0 : X
′′
(s) = b− a},

sup0≤s≤α X (s) + inf0≤s≤1−α X
′′
(s)−X

′′
(1− α) , X (α)−X

′′
(1− α)

)
at (u, 1− v, b, a). This in turn is equal to k (b, u) k (|b− a| , 1− v) multiplied by the density of(

sup
0≤s≤(α−u)

X (s) + inf
0≤s≤(v−α)

X
′′
(s)−X

′′
(v − α) , X (α− u)−X

′′
(v − α)

)
,

which leads to the second leg of the right hand side of (19).
Considering the process (−X (s) , 0 ≤ s ≤ 1) and observing that M−X (α) = −MX (1− α) ,

L−X (α) = LX (1− α) and K−X (α) = KX (1− α) yields the rest of (19). �

Remark
One could derive Theorem 1 from Theorem 2 , by integrating out two variables. However, it is
difficult to obtain the result, without knowing it in advance.
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