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Abstract

This paper provides a survey of results on the quantiles of a Brownian
motion with drift as well as a general Lévy process. The motivation is to cal-
culate the price of related financial options. At the end of the paper some
new results on variability orderings between various quantities associated
with path dependent and European options are presented. This survey is not
exhaustive, but intends to provide a flavour of research carried out in the
area.

.

1 Path dependent options

A path dependent (look-back) option is a statistic which is a functional of the
path of the stochastic process (Y (t), t≥ 0) that denotes the price of an underlying
asset. Pricing such options involves calculating E∗(h(V (t2)) F F t1), where the
expectation is calculated under a changed measure, h is a known function, 0 ≤
t1 < t2 are fixed times, F t is the filtration generated by Y (t) and V (t) is an F t-
measurable process.

For example the price of a call option of this kind would be

e−r(t2−t1)E∗
(

(V (t2)− b)
+ F F t1

)

= e−r(t2−t1)E∗(max (V (t2)− b, 0) F F t1).

There is also the possibility of a floating-strike call that has price

e−r(t2−t1)E∗
(

(X(t2)− V (t2))
+ F F t1

)

= e−r(t2−t1)E∗(max (X(t2)−V (t2), 0) F F t1).
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One can similarly write down the prices for put and other types of options. From
now on we will drop the distinction between the physical measure and the risk-
neutral valuation equivalent measure. We will assume that it just changes the
values of the parameters but not the structure of the price process. This is true
when the price follows a geometric Brownian motion and the market is complete.
We will also for simplicity set t1 =0 and concentrate on the calculation of

E
(

(V (t)− b)
+
)

(1)

and

E
(

(Y (t)−V (t))
+
)

. (2)

These clearly require obtaining the distribution of V (t) and in the second case the
joint distribution of V (t) and X(t).

We will denote the price process as Y (t) = Y (0)exp (X(t)); X(t) is therefore
playing the role of the logarithm of the price and follows a Brownian motion with
drift in the classical case.

Here are some examples.

1. Arithmetic average options, where

V (t) =

∫

0

t
Y (s)d s

t

are also called Asian options.

2. It is mathematically simpler to look at the geometric average option. In
this case,

V (t) =Y (0)exp

(

∫

0

t
X(s)d s

t

)

.

3. We will also look at quantile options. Another statistic that can be used is
the median or more generally any α-quantile (0 < α < 1) of the underlying
stochastic process. This was first introduced by Miura . The median
sounds rather appealing as it should be similar in some respects to the
average, but it has a nice property seen below.The α-quantile is going to
be the level at which the process spends a proportion of size at least α of
its time below that level and a proportion of size at least 1 − α above. For
0<α< 1, define MX(α, t) as

MX(α, t) = inf

{

x:

∫

0

t

1(X(s)≤x)d s>αt

}

.

Note Y (t) = Y (0)exp (X(t)); so MY (α, t) = Y (0)exp (MX(α, t)). So the
study of the quantiles of Y (t) is equivalent to the study of the quantiles.

Also the events {MX(α, t) > x} and
{

∫

0

t
1(X(s) ≤ x)d s < αt

}

are

identical. This option has not appeared on trading floors very much, but
hopefully this will change.
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2 Quantile options

As already mentioned these were introduced by Miura in 1992. We repeat the
definition of a quantile. For 0<α< 1, define MX(α, t) as

MX(α, t) = inf

{

x:

∫

0

t

1(X(s)≤x)d s>αt

}

.

Note Y (t) = Y (0)exp (X(t)); so MY (α, t) = Y (0)exp (MX(α, t)). So the study of
the quantiles of Y (t) is equivalent to the study of the quantiles. This is a crucial
and important property that makes these options attractive from a mathematics

point of view. The fact that the events {MX(α, t)>x} and
{

∫

0

t
1(X(s)≤ x)d s<

αt
}

are identical is the starting point. Note that the second event involves the

occupation time of the process (the time it spends below the level x). This means
that results on quantile options can be used on options involving occupation
times. The following result was originally proved by AD in 1995,

Proposition 1. Let X(t)= σB(t) + µt, where µ∈R, σ ∈R+ and (B(t), t≥ 0) is a

standard Brownian motion. Furthermore, let X(1)
(t) and X

(2)
(t) be independent

copies of X(t). Then,

MX(α, t) =
(law)

sup
0≤s6αt

X
(1)

(s)+ inf
0≤s6(1−αt)

X
(2)

(s).

This means that the two quantities have the same distribution, The original proof
is in the 1995 paper. The proof is using the Feynman-Kac formula and you should
study it as it is a very good application to demonstrate what a powerful tool the
Feynman-Kac formula is. Because of the striking nature of the result various
researchers tried to think of a simple explanation. Although a simple explanation
has not been found there have been various alternative proofs of the result. The
most elegant of those is the proof by Embrechts, Rogers and Yor (1996); it is
based on the following result,

Proposition 2. Let X(t)= σB(t) + µt, where µ∈R, σ ∈R+ and (B(t), t≥ 0) is a
standard Brownian motion. Define SX(t) = sup0≤s≤t {X(s)} and θX(t) = sup {s ∈
[0, t]:X(s) =SX(t)}. Then,

∫

0

t

1(X(s)> 0)ds =
(law)

θX(t)
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SX(t) is the maximum of the Brownian motion and θX(t) is the last time it is
attained.

The result is well known for the standard Brownian motion and it is called the
arc-sine law. This is because the density of the two quantities is

1

π u(t−u)
√ and so

the distribution function is the arcsine function. In the case of the Brownian
motion with drift they observed that although the density function is different,
proposition 2 is still true. You can find a proof in their paper.

We now present the proof of proposition 1. This is a modified version of the proof
in the paper.

Proof. (of Proposition 1). Without loss of generality, we will assume that t =

1. Let x > 0 and also let τx = inf {s > 0: X(s) = x} and X(1)(s) = X(τx + s) − x.
(

X(1)(s), s ≥ 0
)

is an independent copy of (X(s), 0 ≤ s ≤ τx). Using the fact that

the events {MX(α, t)>x} and
{

∫

0

t
1(X(s)≤x)d s<αt

}

are identical, we have

Pr (MX(α)>x)=Pr

(
∫

0

1

1(X(s)≤x)d s<α

)

=

Pr

(
∫

0

1

1(X(s)>x)d s> 1−α

)

=Pr

(
∫

τx

1

1(X(s)>x)d s> 1−α

)

=

Pr

(
∫

τx

1

1(X(s)>x)d s> 1−α

)

=Pr

(
∫

0

1−τx

1(X(τx + s)−x> 0)d s> 1−α

)

=

∫

0

α

Pr (τx∈ d r)Pr
(
∫

0

1−r

1
(

X (1)(s)> 0
)

ds> 1−α

)

and because of () this is equal to

∫

0

α

Pr (τx∈ d r)Pr
(
∫

0

1−r

θX(1)(1− r)> 1−α

)

∫

0

α

Pr (τx∈ d r)Pr
(

sup
0≤sl≤1−α

X(1)(s)< sup
1−α≤s≤1−r

X(1)(s)

)

=

∫

0

α

Pr (τx ∈ d r)Pr

(

sup
0≤s≤1−α

(

X(1)(s) − X(1)(1 − α)
)

< sup
1−α≤s≤1−r

(

X(1)(s) −

X(1)(1−α)
)

)

=

∫

0

α

Pr (τx ∈ d r)Pr
(

− inf
0≤s≤1−α

(

X(1)(1−α)−X(1)(1−α− s)
)

< sup
0≤u≤α−r

(

X(1)(1−

α+ u)− X(1)(1−α)
)

)

. (3)
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Now set X(2)(s) = X(1)(1 − α) − X(1)(1 − α − s) and X(3)(s) = X(1)(1 − α + u) −
X(1)(1 − α)

)

.
(

X(2)(s), s ≥ 0
)

and
(

X(3)(s), s ≥ 0
)

are two more independent

copies of the original Brownian motion. Then (3) is equal to

∫

0

α

Pr (τx∈ d r)Pr
(

− inf
0≤s≤1−α

X(2)(s)< sup
0≤u≤α−r

X(3)(s)

)

=

Pr

(

− inf
0≤s≤1−α

X(2)(s)< sup
0≤u≤α

X(4)(s)−x

)

=

Pr

(

sup
0≤u≤α

X(4)(s)+ inf
0≤s≤1−α

X(2)(s)>x

)

,

where
(

X(4)(s), s ≥ 0
)

is yet another independent copy of the original Brownian

motion, The case x < 0 can be dealt by from the fact that MX(α, 1) has the same
distribution as M−X(1−α, 1).

�

Using the Girsanov transformation, we can extend Proposition 1 to a result
involving the joint distribution of M (α, t) and X(t).

Proposition 3. Let X(t), MX(α, t), X
(1)

(t) and X
(2)

(t) as in Proposition 1.
Then,

(

MX(α, t)
X(t)

)

=
(law)





sup
0≤s6αt

X
(1)

(s) + inf
0≤s6(1−αt)

X
(2)

(s)

X
(1)

(αt)+X
(2)

((1−α)t)



.

Using this result one could calculate an expression for the joint probability
density of M (α, t) and X(t). This can be used to price a floating strike option.

We can then use the density of sup0≤s6αtX
(1)

(s),

2
√

σ παt
√ exp

(

− (x− µαt)
2

σ αt
√

)

− 2µ

σ2
e

2µ

σ2
x
Φ

(

−x− µαt

σ αt
√

)

and use it to get the price of a quantile option.

Note that a formula for the quantile option was independently found by Akahori
(1995).
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In the case of the standard Brownian motion we can actually find an expression
for the density of MX(α, t). The he density of MB(α, 1) is givenby

4

2π
√ Φ̄

(

x
1−α

α

√

)

exp

(

− x2

2

)

, x> 0

4

2π
√ Φ̄

(

|x| α

1−α

√

)

exp

(

− x2

2

)

, x< 0

(4)

where Φ̄(x) = 1−Φ(x).

Proposition 1 and proposition 3 can be generalised to the case where (X(t), t ≥ 0)
is a Lévy process (it has independent and stationary increments). The result now
becomes

Proposition 4. Let (X(t), t≥ 0) be a Lévy process . Furthermore, let X(1)
(t) and

X
(2)

(t) be independent copies of X(t). Then,

MX(α, t) =
(law)

sup
0≤s6αt

X
(1)

(s)+ inf
0≤s6(1−αt)

X
(2)

(s).

and proposition 3

Proposition 5. Let (X(t), t≥ 0) be a Lévy process . Furthermore, let X(1)
(t) and

X
(2)

(t) be independent copies of X(t). Then,

(

MX(α, t)
X(t)

)

=
(law)





sup
0≤s6αt

X
(1)

(s) + inf
0≤s6(1−αt)

X
(2)

(s)

X
(1)

(αt)+X
(2)

((1−α)t)



.

These can be proven as limits of the following discrete time results (For details on
how to take the limits and prove propositions 4 and 5 see AD (1996a)

Consider the sequence x= (x0, x1, x2, ...). For integers 0≤ j ≤ n, define the(j , n)
th

quantile of x for j=0, 1, 2, ..., n by

Mj ,n(x)= inf

{

z:
∑

i=0

n

1(xi ≤ z)> j

}

.

It should also be remarked that if x(0), x(1), x(2), ..., x(n) is an increasing order per-

mutation of x0, x1, x2, ..., xn, then Mj ,n(x) = x(j). So, in particular, M0,n(x) =

mini=0,1,...,n {xi} and Mn,n(x) = maxi=0,1,...,n {xi}. Also note that in this setup
M0,0(x)= x0.

The following result is due to Wendel (1960)
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Proposition 6. Let Y1, Y2, ..., Yn be i.i.d. random variables. Define X = (X0, X1,

...,Xn) by

Xn =











∑

i=1

n

Yi n= 1, 2, ...

0 n=0

.

and let X(1) and X(2) be two independent copies of X. Then,

(

Mj ,n(X)
Xn

)

=
(law)

(

Mj ,j

(

X(1)
)

+M0,n−j

(

X(2)
)

Xj
(1) +Xn−j

(2)

)

.

An extension of this result, involving the time the quantile is achieved, was
obtained by Port (1963) . He defined the ordering ≺ by Xi ≺ Xj if Xi < Xj or
Xi = Xj but i < j. Then, one could alternatively define M0,n(X), M1,n(X), ...,
Mn,n(X) as the rearrangement of X0, X1, ..., Xn such that M0,n(X) ≺ M1,n(X) ≺
... ≺Mn,n(X). He then defined Lk,n(X)as the index in X0, X1, ..., Xn of Mk,n(X)
and extended the result to





Mj ,n(X)
Lj ,n(X)
Xn



 =
(law)









Mj ,j

(

X(1)
)

+M0,n−j

(

X(2)
)

Lj ,j

(

X(1)
)

+L0,n−j

(

X(2)
)

Xj
(1) +Xn−j

(2)









.

It is rather difficult to find a continuous time equivalent quantity to Lj,n(X). In
general (think of the Brownian motion) the quantile will be crossed from above
and below many times (in fact infinitely but countably many) and so it is not
clear which one corresponds to the limit of Lj ,n(X). For more details on hitting
times of quantiles see AD (2005). For a combinatorics treatment see Chaumont
(1999) and some of the references therein.

We will provide a proof of the first leg of proposition 6 (from this one can use an
argument similar to the Girsanov transformation and get proposition 6). That is

Mj ,n(X) =
(law)

Mj ,j

(

X(1)
)

+M0,n−j

(

X(2)
)

= max
0≤i≤j

Xi
(1) + min

0≤i≤n−j
Xi

(2). (5)

The proof is taken form AD (1996b). We start with an important lemma.

Lemma 7. Let Y1, Y2, ... be a sequence of independent and identically distributed
random variables with distribution function F . Let X0 = 0 and Xn =

∑

i=1

n
Yi for

n=1, 2, ... . Furthermore let 0≤ ψ< 1 and define

H1(x; ψ)= (1− ψ)
∑

n=0

∞

ψnPr

(

max
0≤i≤n

(Xi)≤x

)

(6)

and

H2(x; ψ)= (1− ψ)
∑

n=0

∞

ψnPr

(

min
0≤i≤n

(Xi)≤x

)

. (7)
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Then H1(x; ψ) satisfies the equation

H1(x; ψ) = 1(x≥ 0)

(

(1− ψ) + ψ

∫

−∞

∞
H1(x− y; ψ)d F (y)

)

(8)

and H2(x; ψ) satisfies the equation

H2(x; ψ) = 1(x≥ 0)+ ψ1(x< 0)

∫

−∞

∞
H2(x− y; ψ)d F (y). (9)

Proof. For x< 0, (8) is trivially true. For x≥ 0, and using the fact that Y1, Y2, ...

are i.i.d. and therefore exchangeable, observe that

(1− ψ)
∑

n=0

∞

ψnPr

(

max
0≤i≤n

(Xi)≤x

)

=

1− ψ+ ψ(1− ψ)
∑

n=1

∞

ψn−1Pr

(

max

(

0, Y1, ...,
∑

i=1

n

Yi

)

≤x

)

=

1− ψ+ ψ(1− ψ)
∑

n=1

∞

ψn−1Pr

(

max

(

Y1, Y1 + Y2, ...,
∑

i=1

n

Yi

)

≤x

)

=

1− ψ+ ψ(1− ψ)

(

∑

n=1

∞

ψn−1Pr

(

max

(

0, Y2, ...,
∑

i=2

n

Yi

)

≤x−Y1

))

=

1− ψ+ ψ(1− ψ)

(

∑

n=0

∞

ψnPr

(

max

(

0, Y2, ...,
∑

i=1

n

Yi+1

)

≤x− Y1

))

=

(1− ψ) + ψ

∫

−∞

∞
H1(x− y; ψ)dF (y),

which proves (8). To prove (9) note that it is trivially true for x ≥ 0 and that for
x< 0,

(1− ψ)
∑

n=0

∞

ψnPr

(

min
0≤i≤n

(Xi)≤x

)

=

ψ(1− ψ)
∑

n=1

∞

ψn−1Pr

(

min

(

0, Y1, ...,
∑

i=1

n

Yi

)

≤ x

)

=

ψ(1− ψ)
∑

n=1

∞

ψn−1Pr

(

min

(

Y1, Y1 +Y2, ...,
∑

i=1

n

Yi

)

≤x

)

=

ψ(1− ψ)

(

∑

n=1

∞

ψn−1Pr

(

min

(

0, Y2, ...,
∑

i=2

n

Yi

)

≤x−Y1

))

=

1− ψ+ ψ(1− ψ)

(

∑

n=0

∞

ψnPr

(

min

(

0, Y2, ...,
∑

i=1

n

Yi+1

)

≤x−Y1

))

=

ψ

∫

−∞

∞
H2(x− y; ψ)dF (y),

8 Section 2



This completes the proof.

�

You should observe the following:

1. Equations (8) and (9) are Wiener-Hopf type equations like the ones
described in the book by Feller section XII.3, with a defective probability
measure.

2. From their definition we can see that H1(x; ψ) and H2(x; ψ) are distribu-
tion functions. H1(x; ψ) is the distribution function of max0≤i≤N (Xi) and
is the distribution function of min0≤i≤N (Xi), where N is a random variable
independent of Y1, Y2, ... with a geometric distribution; that is Pr (N = n) =
(1− ψ)ψn, n=0, 1, 2, ....

We will now prove a very important result.

Lemma 8. Let D(R) be the space of bounded real valued functions of R that are
right continuous with left limits existing for all points and let G1(x), G2(x) be dis-
tribution functions. Then, for all 0≤ ψ < 1 and 0≤ φ< 1, the equation

H(x) = (1− ψ)1(x≥ 0) + ψ1(x≥ 0)

∫

−∞

∞
H(x− y)dG1(y) +

φ1(x< 0)

∫

−∞

∞
H(x− y)dG2(y)

(10)

has a unique solution H(x; ψ, φ)in D(R). Furthermore

H(x; ψ, φ) =

∫

−∞

∞
H1(x− y; ψ)dH2(y; φ), (11)

where H1(x; ψ) is the unique solution of

H(x)= (1− ψ)1(x≥ 0) + ψ1(x≥ 0)

∫

−∞

∞
H(x− y)dG1(y) (12)

in D(R) and H2(x; φ) is the unique solution of

H(x) = 1(x≥ 0)+ φ1(x< 0)

∫

−∞

∞
H(x− y; ψ)dG2(y) (13)

in D(R).

Proof. Define the metric d(H,K) in D(R), by

d(H,K)= sup
x∈R

|H(x)−K(x)|. (14)
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Also, define T :D(R)→D(R), by

TH(x)= (1− ψ)1(x≥ 0)+ ψ1(x≥ 0)

∫

−∞

∞
H(x− y)dG1(y)+

φ1(x< 0)

∫

−∞

∞
H(x− y)dG2(y).

Observe that for 0 ≤ ψ < 1 and 0 ≤ φ < 1, T is a contraction mapping on D(R),
using the metric defined by 14. Then by the fixed point theorem for contraction
mappings, (10) has a unique solution. Moreover, (12) and (13) have unique solu-
tions, since they are special cases of (10) for ϕ = 0 and ψ = 0 respectively. By
lemma 1 and the second remark following its proof, these solutions, H1(x; ψ) and
H2(x; φ), are distribution functions and let U and V be random variables on a
suitable probability space with distribution functions H1(x; ψ) and H2(x; φ)
respectively. Let H(x; ψ, φ) be the convolution of H1(x; ψ) and H2(x; φ), as
defined by (11). We will prove that H(x; ψ, φ) satisfies (10) and therefore is its
unique solution in D(R).

Observe that H(x; ψ, φ) = Pr (U + V ≤ x). Now, suppose x ≥ 0, and condition on
V = v, then Pr (U + V ≤ x F V = v) =H1(x− v; ψ). Note that Pr (V ≤ 0) = 1 and so
we only need to consider v ≤ 0, in which case x− v ≥ 0 and from (12) we then get
that

H1(x− v; ψ) = (1− ψ)+ ψ

∫

−∞

∞
H1(x− v− y; ψ)dG1(y). (15)

Integrating over all non-positive v, we get that for x≥ 0,

H(x; ψ, φ) = (1− ψ)+ ψ

∫

−∞

∞
H(x− y; ψ, φ)dG1(y). (16)

Similarly for x < 0, condition on U = u; then Pr (U + V ≤ x F U = u) =H2(x − u;
ψ). Note that Pr (U ≥ 0) = 1 and so we only need to consider u≥ 0, in which case
x−u< 0 and from 13 we then get that

H2(x−u; φ)= φ

∫

−∞

∞
H2(x−u− y; ψ)dG2(y). (17)

Averaging over all non-negative u, we get that for x< 0,

H(x; ψ, φ) = φ

∫

−∞

∞
H(x− y; ψ, φ)dG2(y). (18)

Combining (16) and (18) we see that H(x; ψ, φ) satisfies (10) and therefore is its

unique solution in D(R).

�

We now deduce (5) as a corollary.
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Corollary 9. Let Y1, Y2, ... be a sequence of independent and identically distrib-
uted random variables with distribution function F . Let X0 = 0 and Xn =

∑

i=1

n
Yi

for n= 1, 2, ... . Furthermore let

Mj ,n = inf

{

z:
∑

i=0

n

1(Xi ≤ z)> j

}

. (19)

(So M0,n denotes the smallest of X0, X1, ..., Xn, M1,n the second smallest and so

on, with Mn,n denoting the largest). Let also X0
(1)
, X1

(1)
, ... and X0

(2)
, X1

(2)
, ... be two

independent copies of the sequence X0,X1, .... Then

Mj ,n =
(law)

max
0≤i≤j

(

Xi
(1)
)

+ min
0≤i≤n−j

(

Xi
(2)
)

. (20)

Proof. Consider the occupation time Ln(x)=
∑

i=0

n
1(Xi ≤x) and let

h(x)=
∑

n=0

∞

φnE
(

ηLn(x)
)

,

where 0 ≤ φ < 1 and 0 ≤ η <
1

φ
. Using the fact that Y1, Y2, ... are independent and

therefore exchangeable, condition on Y1 = y and observe that

∑

n=0

∞

φnE
(

ηLn(x) F Y1 = y
)

= η1(x≥0) + φη1(x≥0)
∑

n=1

∞

φn−1E

(

η
∑

i=1
n 1

(

∑

r=1
i

Yr≤x
) F Y1 = y

)

=

η1(x≥0) + φη1(x≥0)
∑

n=1

∞

φn−1E

(

η
1(0≤x−y)+

∑

i=2
n 1

(

∑

r=2
i

Yr≤x−y
)

)

=

η1(x≥0) + φη1(x≥0)
∑

n=1

∞

φn−1E

(

η
1(0≤x−y)+

∑

i=1
n−11

(

∑

r=1
i

Yr≤x−y
)

)

=

η1(x≥0) + φη1(x≥0)h(x− y).

Averaging over all values of y we therefore get

h(x)= η1(x≥0) + φη1(x≥0)

∫

−∞

∞
h(x− y)dF (y). (21)

Now, note that

E
(

ηLn(x)
)

= 1− (1− η)
∑

j=0

n

ηjPr (Ln(x)> j),

and therefore

h(x)=
1

1− φ
− (1− η)

∑

n=0

∞

φn
∑

j=0

n

ηjPr (Ln(x)> j)=

1

1− φ
− (1− η)

∑

k=0

∞
∑

j=0

∞

φk(ηφ)
j
Pr (Lj+k(x)> j).

(22)
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Setting ψ= ηφ and observing that the events {Lj+k(x)> j} and {Mj ,j+k ≤ x} are
identical, we can rewrite (22) as

h(x)=
1

1− φ
− φ− ψ

φ

∑

k=0

∞
∑

j=0

∞

φkψjPr (Mj ,j+k ≤x) =

1

1− φ
− φ− ψ

φ(1− φ)(1− ψ)
H(x),

(23)

where

H(x) = (1− φ)(1− ψ)
∑

k=0

∞
∑

j=0

∞

φkψjPr (Mj ,j+k ≤x). (24)

From (23) and (21), we get

H(x) = (1− ψ)1(x≥ 0)+ ψ1(x≥ 0)

∫

−∞

∞
H(x− y)dF (y) +

φ1(x< 0)

∫

−∞

∞
H(x− y)dF (y).

(25)

From Lemma 2 we have that

H(x)=

∫

−∞

∞
H1(x− y)dH2(y), (26)

where H1(x) is the unique solution in D(R) of

H1(x)= (1− ψ)1(x≥ 0)+ ψ1(x≥ 0)

∫

−∞

∞
H1(x− y)dF (y),

and H2(x) is the unique solution in D(R) of

H2(x) = 1(x≥ 0)+ φ1(x< 0)

∫

−∞

∞
H2(x− y)dF (y).

From Lemma 1 we see that

H1(x)= (1− ψ)
∑

j=0

∞

ψjPr

(

max
0≤i≤j

(Xi)≤ x

)

(27)

and

H2(x) = (1− φ)
∑

k=0

∞

φkPr

(

min
0≤i≤k

(Xi)≤ x

)

. (28)

From (24), (26), (27), (28) and the uniqueness of the relevant expansion we con-
clude that

Mj ,j+k =
(law)

max
0≤i≤j

(

Xi
(1)
)

+ min
0≤i≤k

(

Xi
(2)
)

,

for all j ≥ 0 and k ≥ 0. This concludes the proof of the corollary. �
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One might wonder whether the property in proposition 4 characterises Lévy pro-
cesses (in other words whether they are the only processes with this property.
The same paper AD (1996b) concludes that this is not the case as the following
example demonstrates. Let ((Ti, Yi), i= 1, 2, ...) be a sequence of independent and
identically distributed pairs of random variables on a probability space (Ω,F ,Pr )
taking values in R+×R and having joint distribution function G(u, y). Let

S0 = 0, Sn =
∑

i=1

n

Ti, n= 1, 2, ...

and define the renewal process (N(t), t≥ 0) by

N(t)= sup
n=0,1,2,...

{n:Sn ≤ t}.
We define (X(t), t≥ 0) by

X(t)=











∑

i=1

N(t)

Yi N(t) = 1, 2, ...

0 N(t)= 0

.

It should be noted that X(t) is semi-Markov, but not a Markov process. However,

the pair (X(t), U(t)) is a Markov process. Let X(1)(t), X(2)(t) be independent
copies of X(t); then

MX(α, t) =
(law)

sup
0≤s≤αt

X
(1)

(s)+ inf
0≤s≤(1−α)t

X
(2)

(s).

The proof can be found in the paper, but it is not important; it is really another
corollary to lemma 8. Note that for the proof of corollary 9 G1 = G2 = F . The
example above is the case where G1� G2.

We finish this section with some calculated prices of call options for (values ,cal-
culated using the Rogers and Shi lower bound with upper bounds in brackets)
Y (0)= 100.

TABLE 1. σ= .05
r k Geom. Asian Median

.05 95 7.147 7.178 (7.183) 7.156
100 2.689 2.716 (2.722) 2.708
105 0.324 0.337 (0.343) 0.410

.09 95 8.757 8.809 (8.821) 8.767
100 4.256 4.308 (4.318) 4.275
105 0.922 0.958 (0.968) 1.059

.15 95 10.988 11.094 (11.114) 11.001
100 6.689 6.794 (6.810) 6.704
105 2.646 2.744 (2.761) 2.765
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TABLE 2. σ= .1
r k Geom. Asian Median

.05 90 11.862 11.951 (11.973) 11.894
100 3.573 3.641 (3.663) 3.617
110 0.306 0.331 (0.353) 0.413

.09 90 13.274 13.385 (13.410) 13.301
100 4.816 4.915 (4.942) 4.863
110 0.583 0.630 (0.657) 0.745

.15 90 15.235 15.399 (15.445) 15.265
100 6.869 7.028 (7.066) 6.919
110 1.310 1.413 (1.451) 1.553

TABLE 3. σ= .2
r k Geom. Asian Median

.05 90 12.318 12.595 (12.687) 12.469
100 5.547 5.762 (5.854) 5.651
110 1.845 1.989 (2.080) 2.045

.09 90 13.520 13.831 (13.927) 13.652
100 6.518 6.777 (6.872) 6.628
110 2.359 2.545 (2.641) 2.593

.15 90 15.267 15.641 (15.748) 15.383
100 8.073 8.408 (8.515) 8.193
110 3.292 3.554 (3.661) 3.571

TABLE 4. σ= .5
r k Geom. Asian Median

.05 90 13.404 13.952 (14.161) 13.657
100 7.496 7.944 (8.153) 7.674
110 3.722 4.070 (4.279) 3.981

.09 90 14.388 14.983 (15.194) 14.627
100 8.324 8.827 (9.039) 8.510
110 4.291 4.695 (4.906) 4.574

.15 90 15.838 16.512 (16.732) 16.062
100 9.612 10.208 (10.429) 9.812
110 5.229 5.728 (5.948) 5.548
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3 Hitting times of quantiles

We now let

LX(α, t) = inf {s∈ [0, t]:X(s) =MX(α, t)}
be the first, and

KX(α, t)= sup{s∈ [0, t]:X(s)=MX(α, t)},

the last time the process hits MX(α, t). One can now introduce a ‘barrier’ element
to the financial application by making the option worthless if the quantile is hit
too early or too late. For example, this can involve calculating quantities such as
E(h(MX(α, t))1(LX(α, t)>v,KX(α, t)<u)).

The first study of these quantities can be found in Chaumont (1999).

For this section we assume that (X(s), s ≥ 0) is a standard Brownian motion,
unless otherwisew specified. Without loss of generality, we will restrict our atten-
tion to the case t= 1 taking advantage of the Brownian scaling. For simplicity we
set MX(α, t) =MX(α), LX(α, t) =LX(α) and KX(α, t) =KX(α).We will derive the
joint density of MX(α), LX(α), KX(α) and X(1). If we denote this density by
f(y, x, u, v), our results can be generalised for a Brownian motion with drift m,
using a Cameron-Martin-Girsanov transformation. The corresponding density will
be

f(y, x, u, v)exp
(

mx−m2/2
)

.

Before we obtain the density of (MX(α), LX(α), KX(α), X(1)), we will first show
that the law of LX(α) (and KX(α)) is a transformed arcsine law.

3.1 An arc-sine law

Let SX(t) = sup0≤s≤t {X(s)} and θX(t) = sup {s ∈ [0, t]:X(s) = SX(t)}. Define also
the stopping time τc = inf {s > 0:X(s) = c}. We will first obtain the joint distribu-
tion of

(MX(α), LX(α))

(also of (MX(α)−X(1), 1−KX(α)).

Theorem 10. For b> 0,

Pr (MX(α)∈ d b, LX(α)∈ d u) =

Pr (SX(1)∈ d b, θX(1)∈ d u)1(0<u<α), (29)

Hitting times of quantiles 15



and for b< 0,

Pr (MX(α)∈ d b, LX(α)∈ d u) =

Pr (SX(1)∈ d|b|, θX(1)∈ d u)1(0<u< (1−α)). (30)

Furthermore, (MX(α), LX(α)) and (MX(α)−X(1), 1−KX(α))
have the same distribution.

Proof. Let b> 0 and u<α. We then have that

Pr (MX(α)>b, LX(α)>u) =Pr (SX(u)<MX(α),MX(α)>b)=

Pr (b<SX(u)<MX(α))+Pr (SX(u)<b<MX(α)). (31)

Let τb = inf {s > 0: X(s) = b} and X∗(s) = X(τb + s) − b. (X∗(s), s ≥ 0) is a
standard Brownian motion which is independent of (X(s), 0 ≤ s ≤ τb). Using the-
orem 1, we have

Pr (b<SX(u)<MX(α)) =

Pr

(

SX(u)>b,

∫

0

1

1(X(s)≤SX(u))d s<α

)

=

Pr

(

SX(u)>b,

∫

u

1

1(X(s)−X(u)≤SX(u)−X(u))d s<α−u

)

. (32)

We now condition on σ{X(s), 0 ≤ s ≤ u}. Let X∗(s) = X(u + s) − X(u). (X∗(s),
s ≥ 0) is a standard Brownian motion which is independent of (X(s), 0 ≤ s ≤ u).
We condition on SX(u)−X(u)= c, and set τc = inf {s> 0:X∗(s) = c} and X∗∗(s) =
X∗(τc + s) − c. (X∗∗(s), s ≥ 0) is a standard Brownian motion which is inde-
pendent of both (X(s), 0≤ s≤u) and (X∗(s), 0≤ s≤ τc). We have that

Pr

(
∫

0

1−u

1(X∗(s)≤ c)d s<α−u

)

=

∫

0

α−u

Pr (τc∈ d r)Pr
(
∫

0

1−u−r

1(X∗∗(s)≤ 0)d s<α1− u− r

)

and since
∫

0

1−u−r
1(X∗∗(s)≤ 0)d s has the same (arcsine) law as

θX∗∗(1−u− r), this is equal to

∫

0

α−u

Pr (τc∈ d r)Pr (θX∗∗(1−u− r)<α− u− r)=

∫

0

α−u

Pr (τc∈ d r)Pr
(

sup
0≤s≤α−u−r

X∗∗(s)> sup
α−u−r≤s≤1−u−r

X∗∗(s)

)

=

Pr

(

sup
0≤s≤α−u

X∗(s)> sup
α−u≤s≤t−u

X∗(s), sup
0≤s≤α−u

X∗(s)>c
)
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and so (32) is equal to

Pr













sup
u≤s≤α

X(s)−X(u)> sup
α≤s≤1

X(s)−X(u),

sup
u≤s≤α

X(s)−X(u)> sup
0≤s≤u

X(s)−X(u),

sup
0≤s≤u

X(s)>b













=

Pr (SX(u)>b, u< θX(1)≤α). (33)

Furthermore,

Pr (SX(u)<b<MX(α))=Pr

(

SX(u)<b,

∫

0

1

1(X(s)≤ b)d s<α

)

=

∫

u

α

Pr (τb∈ d r)Pr
( ∫

0

1−r

1(X∗(s)≤ 0)<α− r

)

=

∫

u

α

Pr (τb∈ d r)Pr (θX∗(1− r)<α− r) =

Pr

(

u<θX(1)<α, SX(u)<b, sup
u≤s≤α

X(s)>b

)

. (34)

Adding (33) and (34) together, we see that (31) is equal to

Pr

(

u<θX(1)<α, sup
u≤s≤α

X(s)>b

)

=Pr (u<θX(1)<α,SX(1)>b)

which leads to (29).
Since (−X(s), s≥ 0) is a standard Brownian motion and M−X(α)=−MX(1−

α) almost surely, we use −X(s) instead of X(s) and we get that for b< 0,

Pr (MX(α)<b,LX(α)>u)=Pr (u<θX(1)≤ (1−α), SX(1)> |b|),

which leads to (30).
To see that (t − KX(α), MX(α) − X(1)) has the same distribution as (LX(α),

MX(α)), set again X̃ (s) = X(1 − s) − X(1). Clearly
(

X̃ (s), 0 ≤ s ≤ t
)

is a

standard Brownian motion and we can easily see that MX̃(α) = MX(α) − X(1),
MX̃(α)− X̃ (1)= MX(α) and KX̃(α) = 1−LX(α). �

Remarks

1. The distribution of (θX(1), SX(1)) is well known (see for example Karatzas
and Shreve (1988, page 102). From this and Theorem 2, we can deduce the
density of (LX(α),MX(α)). This is given by

Pr (MX(α)∈ d b, LX(α)∈ d u)=
|b|

π u3(1−u)
√ exp

(

− b2

2u

)

·

[1(0<u<α, b> 0)+ 1(0<u< 1−α, b< 0)]d b d u. (35)
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2. Theorem 1 also leads to an alternative expression for the distribution of
MX(α); that is

Pr (MX(α)∈ d b)=Pr (SX(1)∈ d b, 0<θX(1)<α),

for b> 0 and

Pr (MX(α)∈ d b)=Pr (SX(1)∈ d|b|, 0<θX(1)< 1−α),

for b< 0.

3. From Theorem 1, we can immediately obtain the following corollary:

Corollary 11. For u> 0,

Pr (LX(α)>u)=Pr (u< θX(1)≤α) +Pr (u<θX(1)≤ 1−α) (36)

and

Pr (LX(α)∈ d u)=
1(u≤α) + 1(u≤ 1−α)

π u(1−u)
√ d u. (37)

Furthermore, KX(α) has the same distribution as 1−LX(α).

3.2 The joint law of (LX(α), KX(α), MX(α), X(1))

Theorem 12. For the standard Brownian motion (X(s), s≥ 0),

Pr (LX(α)∈ d u,KX(α)∈ d v,MX(α)∈ d b,X(1)∈ d a) =

2|b||b− a|d u d v d b d a
π2(v−u)2 u3(1− v)3

√ exp

(

− b2

2u
− (b− a)

2

2(1− v)

)

×























(v−u− (1−α))(1−α)
√

1(u> 0, u+ (1−α)<v < 1) b> 0, b > a

(α−u)(v−α)
√

1(0<u<α<v < 1) b> 0, b < a

(v−u−α)α
√

1(u> 0, u+α<v < 1) b< 0, b > a

(1−α−u)(v− (1−α))
√

1(0<u< 1−α<v < 1) b< 0, b < a

. (38)

For the proof of this see AD (2005).
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4 Variability orderings

One might have concluded from the last section that the median is just a spe-
cial case of a quantile option with α =

1

2
and does not merit any extra interest

from a mathematics point of view. This is not true. In this subsection we will
investigate whether the median option is cheaper than a European option. We
will also compare the median option to European options with different strike
dates (we will see that this is more appropriate) and try to compare it to geo-
metric average options.

The tool we use is the concept of stochastic variability introduced in section 1.3.
Note that if the random variable X is stochastically more variable than Y , then

exp(X) is stochastically more variable than exp(Y ), and that E
(

(V (t)− b)
+
)

is a

non-decreasing convex function. If we therefore compare MX

(

1

2
, t
)

with X(t), we

can decide whether the median option on is cheaper than the European option
(remember the underlying stock price is Y (t) = Y (0)exp (X(t))). Also comparing

MX

(

1

2
, t
)

with
∫

0

t
X(s)d s

t
we can decide whether median or geometric average

options are cheaper. This is because (exp(αx) − b)
+
is an increasing convex func-

tion of x.

We will mostly work in discrete time; the continuous time results can follow as
limiting cases. Let . Let X0 = 0 and Xn =

∑

i=1

n
Yi for n= 1, 2, ..., where Y1, Y2, ...

is a sequence of independent and identically distributed random variables with

finite mean E(Y1) = m. In the sequel Y1
(k)
, Y2

(k)
k = 1, 2 are independent copies of

the sequence and Xn
(k) =

∑

i=1

n
Yi

(k) Let us consider Mn,2n − 1

2
X2n. This has the

same distribution as

max
0≤i≤n

(

Xi
(1)
)

+ min
0≤i≤n

(

Xi
(2)
)

− Xn
(1)

2
− Xn

(2)

2
=

max
0≤i≤n

(

Xi
(1)− Xn

(1)

2

)

− max
0≤i≤n

(

Xn
(2)

2
−Xi

(2)

)

=

max
0≤i≤n

(

Xi
(1)− Xn

(1)

2

)

− max
0≤i≤n

(

Xn
(2)

2
−Xn−i

(2)

)

.

Note now that

Xi
(1)− Xn

(1)

2
=

−Y1
(1)−Y2

(1)−� −Yi
(1)

+ Yi+1
(1)

+� +Yn
(1)

2
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and

Xn
(2)

2
−Xn−i

(2) =
−Yn

(2)−Yn−1
(2) −� −Yn−i

(2)
+Yn−i−1

(2)
+� +Y1

(2)

2
.

Note then that conditioning on Y1
(1) + Y2

(1) + � + Yn
(1) + Y1

(2) + Y2
(2) + � + Yn

(2) = z

all the Yi
(k)’s are identically distributed (they are exchangeable) and hence

Xn
(2)

2
−

Xn−i
(2) and

Xn
(2)

2
− Xn−i

(2) have the same conditional distributions. Therefore

max0≤i≤n

(

Xi
(1) − Xn

(1)

2

)

and max0≤i≤n

(

Xn
(2)

2
− Xn−i

(2)

)

have the same conditional

distributions and hence

E

(

max
0≤i≤n

(

Xi
(1)
)

+ min
0≤i≤n

(

Xi
(2)
)

− Xn
(1)

2
− Xn

(2)

2

∣

∣

∣

∣

∣

Xn
(1) +Xn

(2)

)

= 0.

From section 1.3 we can then see that max0≤i≤n

(

Xi
(1)
)

+ min0≤i≤n

(

Xi
(2)
)

is

therefore stochastically more variable than
Xn

(1)

2
+

Xn
(2)

2
and so Mn,2n is stochastic-

ally more variable than
1

2
X2n. Moreover,

E(Mn,2n)=E

(

1

2
X2n

)

=nm. (39)

By considering the limiting process as in AD (1996a) we conclude that if (X(t),
t ≥ 0) is a process with stationary and independent increments with E(X(t)) =

mt, we then have that MX

(

1

2
, t
)

is stochastically more variable than
1

2
X(t) and

E

(

MX

(

1

2
, t

))

=E

(

1

2
X(t)

)

=
1

2
nmt. (40)

Equations (39) and (40) appear rather intuitive. However, it is hard to see how
one can prove them without the results of the previous section.

It is now natural to compare Mn,2n with other functionals of the same expectation

such as Xn and
1

2n +1

∑

i=0

2n
Xi or in the continuous time case

1

2
X(t) and

∫

0
t

X(s)d s

t
.

It turns out that Mn,2n is stochastically less variable than Xn. In order to prove
this first prove the following result.

Proposition 13. Let M Mn,n =max0≤i≤n (Xi) and M0,n =min0≤i≤n (Xi). Let also
Y be a random variable with the same distribution as Y1 and independent of the

sequence Y1, Y2, .... Then, Mn+1,n+1 has the same distribution as (Mn,n + Y )
+
and

−M0,n+1 has the same distribution as (−M0,n − Y )
+
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Let us now prove our stochastic variability result.

Proposition 14. Let Y1, Y2, ... be i.i.d. random variables. Define X = (X0, X1, ...)
by

Xn =











∑

i=1

n

Yi n= 1, 2, ...

0 n=0

.

Then Xn is stochastically more variable than Mn,2n.

Proof. Recall that the random variable Z is stochastically more variable than

the random variable Y if and only if E
(

(Z − b)
+
)

≥E
(

(Y − b)
+
)

for all b∈R.

Assume Y1
(k)
, Y2

(k)
k = 1, 2 are independent copies of Y1, Y2, .... We will now pro-

ceed by induction. For n = 1, X1 = Y1, M1,2 has the same distribution as
(

Y1
(1)
)+

−
(

−Y1
(2)
)+

and for b≥ 0,

E

(

(

Y1
(1)
)+

−
(

−Y1
(2)
)+

− b

)+

=E

(

Y1
(1)−

(

−Y1
(2)
)+

− b

)+

≤E(Y1− b)
+
.

For b< 0,

E(M1,2− b)
+

=E(M1,2− b) +E(−M1,2 + b)
+

=

E(X1− b)+E

(

−
(

Y1
(1)
)+

+
(

−Y1
(2)
)+

+ b

)+

=

E(X1− b)+E

(

−
(

Y1
(1)
)+

−Y1
(2) + b

)+

≤

E(X1− b)−E
(

−Y1
(2) + b

)+

=E(X1− b)−E(−X1 + b)
+

=E(X1− b)
+
.

We now prove the induction step. Suppose the proposition statement is true for
n= k.We will prove it is also true for n= k + 1. Mk+1,2k+2 has the same distribu-
tion as Mk+1,k+1 +M0,k+1. Using the results of the previous exercise, we see that
for b≥ 0,

E(Mk+1,k+1 +M0,k+1− b)
+

=E
(

(Mk,k +Y )
+

+M0,k+1− b
)+

=

E(Mk,k +Y +M0,k+1− b)
+≤E(Mk,k + Y +M0,k+1− b)

+≤

E(Mk,k + Y +M0,k − b)
+≤E(Xk − b)

+
.

A similar argument proves the case b< 0.

�
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By taking limits one can show the following.

Proposition 15. Let (X(t), t ≥ 0) be a Lévy process. The median MX

(

1

2
, t
)

is

stochastically less variable than X
(

t

2

)

.

Note that this result does not depend on the distribution of the increments of the
process (as long as they have a finite mean). One can now compare median with
European options.

Comparing the median of a Lévy process with its average is an open problem and
probably needs some assumptions about the distribution of the increments in
order to proceed. We can make some headway in the case of the the standard

Brownian motion (B(t), t ≥ 0). Note that then MB

(

1

2
, 1
)

has a symmetric distri-

bution and of course E
(

MB

(

1

2
, 1
))

= 0. One can compare it to other symmetric

random variables, which happen to be normally distributed. We have already

established that MB

(

1

2
, 1
)

is stochastically larger than a normal random variable

with mean 0 and variance
1

4
(this is

1

2
B(1)) and stochastically smaller than a

normal random variable with mean 0 and variance
1

2
(this is B

(

1

2

)

). The “upper”

bound can not be improved. as we can see from the fact that

lim
b→∞

E(Z − b)
+

E
(

MB

(

1

2
, 1
)

− b
)+ = 0.

However, we can improve the “lower” bound.

Proposition 16. Let (B(t), t≥ 0) be a standard Brownian motion and let Z be a
normal random variable with mean 0 and variance σ2, with σ2 ≤ 6 − 4 2

√
. We

then have that MB

(

1

2
, 1
)

is stochastically larger than Z.

Proof. We only need to prove it for σ2 = 6− 4 2
√

.By symmetry we need to prove

E
(

MB

(

1

2
, 1
)

− b
)+

≥E(Z − b)
+
for b≥ 0 only. Set

g(b)=E(Z − b)
+−E

(

MB

(

1

2
, 1

)

− b

)+

.

Differentiating we get

g ′(b) =Pr

(

MB

(

1

2
, 1

)

>b

)

−Pr(Z > b)

and once more

g ′′(b) =− 4

2π
√ Φ̄(b)exp

(

− b2

2

)

+
1

2πσ2
√ exp

(

− b2

2σ2

)
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where Φ̄(b) = 1−Φ(b) (see exercise 18). This has the same sign as

h(b)=− Φ̄(b) +
1

4σ
exp

(

− b2
1−σ2

2σ2

)

whose derivative

h′(b) =
1

2π
√ exp

(

− b2

2

)

− b
1−σ2

4σ3
exp

(

− b2
1−σ2

2σ2

)

has the same sign as

k(b) = exp

(

b2
1− 2σ2

2σ2

)

− b 2π
√ 1− σ2

4σ3

which is a convex function with k(0) > 0 and limb→∞ k(b) = ∞ so it is either pos-
itive for all b ≥ 0 or it is first positive then negative and then positive again.
This means that h(b) is either increasing or first increasing then decreasing and

then increasing again, We observe that for σ2 = 6 − 4 2
√

, h(0) < 0 and
limb→∞ h(b) = 0, so h(b) and therefore g ′′(b) is either negative for all b ≥ 0 or
first negative then positive and then negative again. So g ′(b) is either decreasing
or decreasing, increasing and then decreasing again. Since g ′(0) = 0 and
limb→∞ g ′(b) = 0, it can not be decreasing, so it is first decreasing, then increasing
and then decreasing again and also it is first negative and then positive changing
sign only once. We then conclude that g(b) is first decreasing and then

increasing. Note again form exercise 18 that E
(

MB

(

1

2
, 1
))+

=
2

π

√

(

1− 1

2

√

)

and

for σ2 = 6 − 4 2
√

, E(Z)
+

=
σ

2

2

π

√

=
6− 4 2

√√

2

2

π

√

=
2

π

√

(

1− 1

2

√

)

and so g(0) = 0.

Note also that limb→∞ g(b) = 0 and hence g(b) has to be negative. We therefore
conclude that

E(Z − b)
+
<E

(

MB

(

1

2
, 1

)

− b

)+

for all b> 0.
�

An important corollary is the following.

Corollary 17. MB

(

1

2
, 1
)

is stochastically larger than
∫

0

1
B(s)ds.

Proof. Observe that
∫

0

1
B(s)ds is normally distributed with mean zero and vari-

ance
1

3
. Since

1

3
<6− 4 2

√
, the corollary follows. �

Note that
1

3
and 6 − 4 2

√
are very close so the result might be a bit fortuitous.

The corollary does not generalise to other processes. It does not even generalise to
the case of a Brownian motion with drift as it is possible to find µ and b such
that X(t)= µt+B(t) and

E

(
∫

0

1

X(s)ds− b

)+

>E

(

MX

(

1

2
, 1

)

− b

)+

.
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One can see this by calculating both quantities for µ= 0.1 and b= 0.2.
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