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Abstract

This paper provides a survey of results on the quantiles of a Brownian
motion with drift as well as a general Lévy process. The motivation is to cal-
culate the price of related financial options. At the end of the paper some
new results on variability orderings between various quantities associated
with path dependent and European options are presented. This survey is not
exhaustive, but intends to provide a flavour of research carried out in the
area.

1 Path dependent options

A path dependent (look-back) option is a statistic which is a functional of the
path of the stochastic process (Y'(t),¢ > 0) that denotes the price of an underlying
asset. Pricing such options involves calculating E*(h(V (t2)) | Fi,), where the
expectation is calculated under a changed measure, h is a known function, 0 <
t1 < to are fixed times, F; is the filtration generated by Y (¢) and V(¢) is an F;-
measurable process.

For example the price of a call option of this kind would be
e E((V(ts) = b) | Foy ) =TT B max (V (1) = b, 0) | F).
There is also the possibility of a floating-strike call that has price

B (X (1) = V(1)) | Foy ) = e B max (X (1) = V(12),0)| Fo)



2 SECTION 1

One can similarly write down the prices for put and other types of options. From
now on we will drop the distinction between the physical measure and the risk-
neutral valuation equivalent measure. We will assume that it just changes the
values of the parameters but not the structure of the price process. This is true
when the price follows a geometric Brownian motion and the market is complete.
We will also for simplicity set t; =0 and concentrate on the calculation of

E(vn-v") 1)

and
E(vm)-ve'). )

These clearly require obtaining the distribution of V' (¢) and in the second case the
joint distribution of V/(¢) and X (t).

We will denote the price process as Y(t) = Y (0)exp (X(¢)); X(¢) is therefore
playing the role of the logarithm of the price and follows a Brownian motion with
drift in the classical case.

Here are some examples.

1. Arithmetic average options, where

are also called Asian options.

2. It is mathematically simpler to look at the geometric average option. In
this case,

V(i)=Y (0)exp <m>

3. We will also look at quantile options. Another statistic that can be used is
the median or more generally any a-quantile (0 < o < 1) of the underlying
stochastic process. This was first introduced by Miura . The median
sounds rather appealing as it should be similar in some respects to the
average, but it has a nice property seen below.The a-quantile is going to
be the level at which the process spends a proportion of size at least « of
its time below that level and a proportion of size at least 1 — v above. For
0<a<1, define Mx(a,t) as

Mx(a,t) = inf{:c: /Ot 1(X(s)<a)ds> at}.

Note Y (t) = Y (0)exp (X (¢)); so My(a, t) =Y (0)exp (Mx(a, t)). So the
study of the quantiles of Y (¢) is equivalent to the study of the quantiles.
Also the events {Mx(a, t) > x} and { fot 1(X(s) <a)d s < at} are
identical. This option has not appeared on trading floors very much, but
hopefully this will change.
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2 Quantile options

As already mentioned these were introduced by Miura in 1992. We repeat the
definition of a quantile. For 0 <« <1, define Mx(«,t) as

Mx(a, 1) :inf{x: /Ot 1(X(s)<z)ds> at}.

Note Y (t) =Y (0)exp (X (¢)); so My(a,t) =Y (0)exp (Mx(«, t)). So the study of
the quantiles of Y () is equivalent to the study of the quantiles. This is a crucial
and important property that makes these options attractive from a mathematics
point of view. The fact that the events {Mx(a,t) >z} and { fg 1(X(s)<z)ds<

at} are identical is the starting point. Note that the second event involves the

occupation time of the process (the time it spends below the level x). This means
that results on quantile options can be used on options involving occupation
times. The following result was originally proved by AD in 1995,

Proposition 1. Let X(t)=0B(t)+ put, where p € R, 0 € R and (B(t),t >0) is a
standard Brownian motion. Furthermore, let X m(t) and X (2)(t) be independent
copies of X (t). Then,

Mx(a,t)(lgu) sup X(l)(s)+ inf X(Q)(s).

0<s<at 0<s<(1-at)

This means that the two quantities have the same distribution, The original proof
is in the 1995 paper. The proof is using the Feynman-Kac formula and you should
study it as it is a very good application to demonstrate what a powerful tool the
Feynman-Kac formula is. Because of the striking nature of the result various
researchers tried to think of a simple explanation. Although a simple explanation
has not been found there have been various alternative proofs of the result. The
most elegant of those is the proof by Embrechts, Rogers and Yor (1996); it is
based on the following result,

Proposition 2. Let X (t)=0B(t)+ ut, where p€ R, 0 € RT and (B(t),t >0) is a
standard Brownian motion. Define Sx(t) = supo<s<¢ {X(5)} and Ox(t) =sup {s €
0,t]: X (s) =Sx(t)}. Then,

(law

/t 1(X(s) > 0)ds = 0x(t)
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Sx(t) is the maximum of the Brownian motion and fx(t) is the last time it is
attained.

The result is well known for the standard Brownian motion and it is called the
arc-sine law. This is because the density of the two quantities is —L_ and so

m/u(t —u)
the distribution function is the arcsine function. In the case of the Brownian
motion with drift they observed that although the density function is different,

proposition 2 is still true. You can find a proof in their paper.

We now present the proof of proposition 1. This is a modified version of the proof
in the paper.

Proof. (of Proposition 1). Without loss of generality, we will assume that ¢t =
1. Let > 0 and also let 7, = inf {s > 0: X(s) =2} and XY (s) = X (7, + 5) — 2.
(X(l)(s), s >0) is an independent copy of (X(s),0 < s < 7,). Using the fact that

the events {Mx(a,t) >z} and { fot 1(X(s)<z)ds< at} are identical, we have

Pr(MX(a)>:c):Pr</01 1(X(S)§:c)ds<a):

P]r(/o1 1(X(s)>x)ds>1—a>:Pr([: 1(X(s)>x)ds>1—a):

Pr(/T: 1(X(5)>x)d5>1—a):Pr</Osz 1(X(Tx+s)—x>0)ds>1—a):

1—r
/ Pr(r,edr)P </ 1(X(1)(s)>0)ds>1—a)
0 0

and because of () this is equal to

/0 Pr(uEdr)Pr( /OH ex(l>(1—r)>1—a)

/ Pr(TxEdr)Pr( sup XW(s)<  sup X(l)(s)):

0 0<sl<l—« l1-a<s<l-r

/ Pr (1, € d r)Pr ( sup (X(l)(s) — XM - @)) <  sup (X(l)(s) —
0

0<s<1—a l-a<s<l—r
X1 - a))) =

/PY(T"”E‘“)PY(‘ inf (XO(1-a)-XV(1-a-s5)< sup (XO(1-
0

0<s<1l—a 0<uLa—r

a+u)— X(l)(l—a))) (3)
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Now set X(2)(s) = X(l)(l —a) — X(l)(l —a —s) and X(?’)(s) = X(l)(l —a+u)—
X1 = a)). (XP(s), s >0) and (XP(s), s > 0) are two more independent
copies of the original Brownian motion. Then (3) is equal to

/Pr(uEdr)Pr(— inf X®(s)< sup X(?’)(s)):
0

0<s<l-a 0<u<a—r

Pr(— inf  X®(s)< sup X(4)(s)—x>:

Oss<l-a 0<u<a

Pr( sup XW(s)+ inf X(Q)(3)>a:),

0<u<a 0<s<1l—-a

where (X®(s), s > 0) is yet another independent copy of the original Brownian
motion, The case z <0 can be dealt by from the fact that Mx(«a, 1) has the same
distribution as M_x(1—a,1).

O

Using the Girsanov transformation, we can extend Proposition 1 to a result
involving the joint distribution of M (a,t) and X (t).

Proposition 3. Let X(t), Mx(a, t), X(l)(t) and X(Q)(t) as i Proposition 1.
Then,
1 . 2
<Mx<a,t> )@ sup XU(s)+  if  XOs)

Yt 0<s<at 0<s<(1—at)
() XO(at) + XO((1 = a)t)

Using this result one could calculate an expression for the joint probability
density of M (a,t) and X (¢). This can be used to price a floating strike option.

We can then use the density of supp<s<at X(l)(s),

—(r— 2 2, [
V2 exp( (x ,uozt))_Q_ueaQ <I>( x uozt)

ov ot ovat

and use it to get the price of a quantile option.

Note that a formula for the quantile option was independently found by Akahori
(1995).
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In the case of the standard Brownian motion we can actually find an expression
for the density of Mx(a,t). The he density of Mp(«,1)isgiven by

. q)( P)e){p(—l;), >0

N
T@( || )exp(—l;), <0

where ®(r)=1— ®(x).

Proposition 1 and proposition 3 can be generalised to the case where (X(t),¢ > 0)
is a Lévy process (it has independent and stationary increments). The result now
becomes

Proposition 4. Let (X(t),t>0) be a Lévy process . Furthermore, let X(l)(t) and
X@(t) be independent copies of X (t). Then,

MX(oz,t)(lgU) sup X(l)(s)+ inf X(Q)(s).

0<s<at 0<s<(1—at)
and proposition 3

Proposition 5. Let (X (t),t>0) be a Lévy process . Furthermore, let XV(t) and
X(Z)(t) be independent copies of X (t). Then,

(1) . (2)
Mx(a,1) (law) 0<Sil£atX () + Oﬁsg(llf*at) X)
X(t) B

XY(at)+ XP((1-a)t)

These can be proven as limits of the following discrete time results (For details on
how to take the limits and prove propositions 4 and 5 see AD (1996a)

Consider the sequence = = (g, 1, T2, ...). For integers 0 < j <n, define the(7, n)th
quantile of x for j=0,1,2,....,n by

M; () :inf{z: i 1(z; <z) >j}.

i=0
It should also be remarked that if x(, x(1), 7(2), ..., (n) is an increasing order per-
mutation of xo, z1, 72, ..., T,, then M;,(x) = ;. So, in particular, M ,(z) =
min;—o 1., {®:} and M, ,(xr) = max;—o1,.» {x;}. Also note that in this setup
MQQ(I‘) =X2y.

The following result is due to Wendel (1960)
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Proposition 6. Let Y1, Y5, ..., Y, be i.i.d. random variables. Define X = (X, X3,
ey Xn) by

Y, n=1,2,..
X, = Zl "

0 n=0

and let X1 and X® be two independent copies of X. Then,

<NGmCY))G%w<«MGJCY”U‘%A%mj@yew )

o ) (2 :

An extension of this result, involving the time the quantile is achieved, was
obtained by Port (1963) . He defined the ordering < by X; < X, if X; < X, or
X; = X, but ¢ < j. Then, one could alternatively define M, ,(X), M (X), ...,
M, »(X) as the rearrangement of Xy, X, ..., X, such that M ,(X) < M ,(X)
. <= My, o(X). He then defined Ly ,,(X)as the index in Xy, X7, ..., X, of My ,(X)
and extended the result to

M; n(X) M; j(XD) + Mo (X))
LinX) | Lis(X0) 4 Lo (X)) |
Xy X](1)+X1(122j

It is rather difficult to find a continuous time equivalent quantity to L;,(X). In
general (think of the Brownian motion) the quantile will be crossed from above
and below many times (in fact infinitely but countably many) and so it is not
clear which one corresponds to the limit of L;,(X). For more details on hitting
times of quantiles see AD (2005). For a combinatorics treatment see Chaumont
(1999) and some of the references therein.

We will provide a proof of the first leg of proposition 6 (from this one can use an
argument similar to the Girsanov transformation and get proposition 6). That is

M; () "2 M; 5 (XD) 4 My (XP) = max X,V 4+ min X, (5)

! 0<i<j 0<i<n—j

The proof is taken form AD (1996b). We start with an important lemma.

Lemma 7. Let Yy, Ys, ... be a sequence of independent and identically distributed
random variables with distribution function F. Let Xo =0 and X, =>." | Y; for
n=1,2,... . Furthermore let 0 < <1 and define

0<i<n

(s )=(1- )3 wPr( max (X, Sx) (6)
and =0

Ha; ) = (1— ) S w"Pr( min (X;) Sx). (7)

0<i<n
n=0



8 SECTION 2
Then H,(x;1)) satisfies the equation

(o 0) =120 (=) +0 [ =) F)) ®)
and Hy(z; 1)) satisfies the equation

Hy(z;¢9)=1(z > 0)+ ¢1(x <0) /oo Hy(x — y;¢)d F(y). 9)

Proof. For z <0, (8) is trivially true. For z >0, and using the fact that Y}, Y5, ...
are i.i.d. and therefore exchangeable, observe that

(1—1) i 1/J"Pr< max (X;) gx) —

0<i<n
n=0
1—yv+yY(1 -9 Zw” 1Pr<max<0 Yi, ..., ZY)g )
n=1
L= +p(l—1 Zw 1Pr<max<Y1,Y1+Y2,.. ZY)g )

l—¢+y(l—v <%w" 1Pr<max<01/2,.. ZY)g ))
1—¢+¢(l—1 <Z@/}"Pr<max<0B,..,;Y;H)gx_ ))

(1- w+w/’zﬂx—%wa@»

which proves (8). To prove (9) note that it is trivially true for x > 0 and that for
r <0,

Y(1—1) Z " 'Pr (min (0, Yy, .., Z Yi> < x) -

n=1 1=1
P(1— @Z))i @Z)"lPr(min(Yl,YlJrYQ, ,zn: Yi> Sx) =
n=1 i=1
1/1(1—@[))( i @Z)"lPr(min(O,Yg,...,zn: Yi> §x—Y1>> =
n=1 1=2
1—yY+yQ1 —@Z))( i w”Pr<min<O,Yg, ,i Y;H) §:E—Y1>> =
n=0 i=1

w/WZﬁm—u¢wF@x

— 00
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This completes the proof.

You should observe the following:

1. Equations (8) and (9) are Wiener-Hopf type equations like the ones
described in the book by Feller section XII.3, with a defective probability
measure.

2. From their definition we can see that Hi(z; v) and Ha(z; v) are distribu-
tion functions. Hi(z; ¢) is the distribution function of maxo<;<y (X;) and
is the distribution function of ming<;<y (X;), where N is a random variable
independent of Y7, Y, ... with a geometric distribution; that is Pr (N =n) =

(1 - Q/’)@Z)na n= 0, 1, 2,
We will now prove a very important result.

Lemma 8. Let D(R) be the space of bounded real valued functions of R that are
right continuous with left limits existing for all points and let G1(x), Go(x) be dis-
tribution functions. Then, for all 0< ¢ <1 and 0< ¢ <1, the equation

H(z) = (1— ¢)1(x 2 0) + ¢1(x >0) / " Hia—y)dGily) +

0 (10)
o1 <0) [ H@—9)dGaly)
has a unique solution H(x;, ¢)in D(R). Furthermore
Hei0.0)= [t~ yi0)d Halyi o), (1)
where Hy(x; 1) is the unique solution of
H@) == 0120+ 01 20) [ H@—1)d6i() (12
in D(R) and Hay(x; ¢) is the unique solution of
Hiz) =1 20) +01(r <0) [~ H(z =) Galy) (13)
in D(R).
Proof. Define the metric d(H, K) in D(R), by
d(H,K)=sup|H(z)— K(x)|. (14)

zER
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Also, define T: D(R) — D(R), by

TH(x) = (1 ¢)1(x > 0) + ¢1(x >0) / " Hia—y)dGi(y) +

P1(x <0) / " H(z— y)dGaly).

Observe that for 0 < <1 and 0 < ¢ <1, T is a contraction mapping on D(RR),
using the metric defined by 14. Then by the fixed point theorem for contraction
mappings, (10) has a unique solution. Moreover, (12) and (13) have unique solu-
tions, since they are special cases of (10) for ¢ = 0 and ¢ = 0 respectively. By
lemma 1 and the second remark following its proof, these solutions, H(x; ) and
Hy(z; ¢), are distribution functions and let U and V' be random variables on a
suitable probability space with distribution functions Hi(z; ) and Hs(z; ¢)
respectively. Let H(z; v, ¢) be the convolution of Hi(z; v) and Hy(z; ¢), as
defined by (11). We will prove that H(x; ¢, ¢) satisfies (10) and therefore is its

unique solution in D(RR).

Observe that H(xz; ¢, ) =Pr (U +V <z). Now, suppose > 0, and condition on
V =v, then Pr(U+V <z |V =v)=H;(x —v; ). Note that Pr (V' <0)=1 and so
we only need to consider v <0, in which case x —v >0 and from (12) we then get
that

e=v)=(1=0)+0 [ H@=v=y0dGily) (15)
Integrating over all non-positive v, we get that for x >0,

Hizi,0)= (= 0)+0 [ Ha—y:0,0)dGrly). (16)

Similarly for # <0, condition on U =u; then Pr (U +V <z |U =u) = Hy(x — u;

). Note that Pr (U >0) =1 and so we only need to consider u >0, in which case
r —u <0 and from 13 we then get that

e —ui0)=0 [ Haa—u=y:0)dGaly). (a7)
Averaging over all non-negative u, we get that for x <0,
Hiziv,0)=6 [ Hiz =y 0, 6)dCaly) (18)

Combining (16) and (18) we see that H(z; ¢, ¢) satisfies (10) and therefore is its

unique solution in D(RR).

0

We now deduce (5) as a corollary.
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Corollary 9. Let Yy, Ys, ... be a sequence of independent and identically distrib—
uted random variables with dzstmbutwn function F. Let Xo=0 and X,,=>""_|
forn=1,2,... . Furthermore let

Mjm:inf{z:zn: 1(Xi§z)>j}. (19)

(So My, denotes the smallest of Xo, X1, ..., X,,, M, the second smallest and so

on, with M, , denoting the largest). Let also Xél), Xl(l), ... and XéQ), X{Q), ... be two
independent copies of the sequence Xo, X1, .... Then

Mj,n(lﬁu)m X (X( )> + min (X(2)>. (20)

0<i<j 0<i<n—j \ '

Proof. Consider the occupation time L,(z)=>""  1(X;<x) and let

=0

:i ¢nE(nL (2)
n=0

where 0 < ¢p<1land 0<n< % Using the fact that Y7, Ys, ... are independent and

therefore exchangeable, condition on Y; =y and observe that

[e.e]

Z (bnE(nLn(x) | Y1:y)
n=0
20 4 glez0 3 (bnlE(nE?_ll(zi_mg) i y) _
n=1
n1(120)+¢,’71(x20)i gbnlE(nl(ng—yHZ?_Ql(zj SYr<z— y>)
n=1

> 1(0<z— el Y <gp—
nl(x20)+¢n1(x20)z (bn—lE(n (0<z—y)+> ;- (Zr 1 y>>:

n=1
nl(xZO) + (b,r]l(xZO)h(x _ y)

Averaging over all values of y we therefore get

h(x) = n'= + gn'e=") /OO h(z —y)d F(y). (21)

— 00

Now, note that

and therefore

oo (22)
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Setting 1) = n¢ and observing that the events {L, ,(z) > j} and {M, j 1, <z} are
identical, we can rewrite (22) as

ha)=—— 2= ¥ i i PPIPr (M jon <) =

=0 ¢ == (23)
1 . ¢ — 1/1 H(SL’)
. 1—¢ o(1—0)(1—1) ’
H(z)=(1=¢)(1=v) ) Y ¢"iPr (M, ;4 <x). (24)
k=0 j=0

From (23) and (21), we get

H(z) = (1 $)1(x 2 0) + ¢1(x >0) /_°° H(z — y)dF(y) +

- (25)
¢1($<0)/_ H(x —y)d F(y).
From Lemma 2 we have that
He)= [ o= y)d o), (26)
where Hy(x) is the unique solution in D (R) of
Hia)= (1= )1 20) + 012 20) [ (e = p)dF(y)
and Hs(z) is the unique solution in D(R) of
Hy(z)=1(z >0)+ ¢1(x <0) /OO Hy(z —y)d F(y).
From Lemma 1 we see that
Hy@)=(1-) Y wPr (o (x) <) (27)
and = o
Hy(z)=(1—¢) )  ¢"Pr (Ogl‘ink (X)) < x) (28)
k=0 sis

From (24), (26), (27), (28) and the uniqueness of the relevant expansion we con-

clude that
MLHk(lg) max (Xl-(l)) + min (XZ-(Q)),

0<i<j 0<i<k

for all j >0 and k> 0. This concludes the proof of the corollary. U
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One might wonder whether the property in proposition 4 characterises Lévy pro-
cesses (in other words whether they are the only processes with this property.
The same paper AD (1996b) concludes that this is not the case as the following
example demonstrates. Let ((7;,Y;),7=1, 2, ...) be a sequence of independent and
identically distributed pairs of random variables on a probability space (€2, F, Pr)
taking values in R* x R and having joint distribution function G(u, y). Let

So=0, Sp=>_ T, n=1,2,..
i=1
and define the renewal process (N (t),t >0) by

N(t)= sup {n:S,<t}.

We define (X (t),t >0) by n=0,12,..
N(t)
X(t)= 2_; Yi N(t)=1,2,..
0 N(t)=0

It should be noted that X (¢) is semi-Markov, but not a Markov process. However,
the pair (X(t), U(t)) is a Markov process. Let X(t), X®(¢) be independent
copies of X (t); then

(law) (1) . (2)
Mx(a,t) =" sup X'/(s)+ inf  X‘(s).
x(a, 1) e )+, f X7
The proof can be found in the paper, but it is not important; it is really another
corollary to lemma 8. Note that for the proof of corollary 9 G; = Gy = F. The
example above is the case where G # Gb.

We finish this section with some calculated prices of call options for (values ,cal-

culated using the Rogers and Shi lower bound with upper bounds in brackets)
Y (0) =100.

TABLE 1. 0=.05

r k Geom. Asian Median
.05 95 7.147 7.178 (7.183) 7.156
100 2689 2716 (2.722)  2.708

105 0.324 0.337 (0.343) 0.410

.09 95 8.757 8.809 (8.821) 8.767
100 4.256 4.308 (4.318) 4.275

105  0.922 0.958 (0.968) 1.059

.15 95 10.988  11.094 (11.114) 11.001
100 6.689 6.794 (6.810) 6.704

105 2.646 2.744 (2.761) 2.765
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TABLE 2. 0=.1

r k Geom.
.05 90 11.862
100  3.573
110  0.306
09 90 13.274
100  4.816
110  0.583
15 90 15.235
100  6.869
110 1.310
TABLE 3. 0=.
r k Geom.
.05 90 12.318
100  5.547
110 1.845
.09 90  13.520
100  6.518
110  2.359
A5 90 15.267
100  8.073
110  3.292
TABLE 4. 0=
r k Geom.
.05 90 13.404
100  7.496
110 3.722
09 90  14.388
100 8.324
110  4.291
15 90 15.838
100  9.612
110  5.229

Asian

11.951 (11.973)
3.641 (3.663)
0.331 (0.353)
13.385 (13.410)
4.915 (4.942)
0.630 (0.657)
15.399 (15.445)
7.028 (7.066)
1.413 (1.451)

Asian

12.595 (12.687)
5.762 (5.854)
1.989 (2.080)
13.831 (13.927)
6.777 (6.872)
2.545 (2.641)
15.641 (15.748)
8.408 (8.515)
3.554 (3.661)

Asian

13.952 (14.161)
7.944 (8.153)
4.070 (4.279)
14.983 (15.194)
8.827 (9.039)
4.695 (4.906)
16.512 (16.732)
10.208 (10.429)
5.728 (5.948)

SECTION 2

Median

11.894
3.617
0.413

13.301
4.863
0.745

15.265
6.919
1.553

Median

12.469
5.651
2.045

13.652
6.628
2.593

15.383
8.193
3.571

Median

13.657
7.674
3.981

14.627
8.510
4.574

16.062
9.812
5.548
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3 Hitting times of quantiles

We now let
Lx(a,t)=inf{s€[0,t]: X(s) = Mx(a,t)}
be the first, and
Kx(a,t)=sup{s€[0,t]: X(s) = Mx(a,t)},
the last time the process hits Mx(«,t). One can now introduce a ‘barrier’ element
to the financial application by making the option worthless if the quantile is hit

too early or too late. For example, this can involve calculating quantities such as
E(h(Mx(a,t)1(Lx(c,t)>v, Kx(a,t) <u)).

The first study of these quantities can be found in Chaumont (1999).

For this section we assume that (X (s), s > 0) is a standard Brownian motion,
unless otherwisew specified. Without loss of generality, we will restrict our atten-
tion to the case t =1 taking advantage of the Brownian scaling. For simplicity we
set Mx(a,t) = Mx(a), Lx(c,t) = Lx(a) and Kx(a,t) = Kx(«).We will derive the
joint density of Mx(a), Lx(a), Kx(a) and X(1). If we denote this density by
f(y,x,u,v), our results can be generalised for a Brownian motion with drift m,
using a Cameron-Martin-Girsanov transformation. The corresponding density will
be

[y, @, u,v)exp (max—m?/2).

Before we obtain the density of (Mx(«a), Lx(a), Kx(a), X (1)), we will first show
that the law of Lx(«) (and Kx(«)) is a transformed arcsine law.

3.1 An arc-sine law

Let Sx(t) =supo<s<¢ {X(s)} and Ox(t) =sup {s € [0, t]: X(s) = Sx(t)}. Define also
the stopping time 7. =1inf {s > 0: X(s) =c}. We will first obtain the joint distribu-
tion of

(Mx(a), Lx(a))
(also of (Mx(a) — X(1),1— Kx(a)).

Theorem 10. For b>0,
Pr (Mx(a)edb, Lx(a) €du) =
Pr(Sx(1)edb,0x(1)edu)l(0<u<a), (29)
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and for b <0,
Pr(Mx(a)€db, Lx(a) €Edu) =

Pr(Sx(1)ed|b|,0x(1) edu)l(0<u<(1—a)). (30)
Furthermore, (Mx(a), Lx(a)) and (Mx(a) — X(1),1 — Kx(«))

have the same distribution.

Proof. Let b >0 and u <«a. We then have that
Pr(Mx(a)>0b, Lx(a) >u)=Pr(Sx(u) < Mx(a), Mx(a) >b)=
Pr (b < Sx(u) < Mx(a))+Pr(Sx(u) <b< Mx(a)). (31)

Let 7, = inf {s > 0: X(s) = b} and X*(s) = X(7 + s) — b. (X*(s), s > 0) is a
standard Brownian motion which is independent of (X(s), 0 < s <7,). Using the-
orem 1, we have

Pr(b<Sx(u) < Mx(a)) =

Pr <SX(U) >, /01 (X (5) < Sx(u)d s <a) _

Pr(SX(u) >b,/ 1(X(s) = X(u) <Sx(u) —X(u))ds<a —u). (32)

We now condition on o{X(s),0<s <wu}. Let X*(s) = X(u+s)— X(u). (X*(s),
s > 0) is a standard Brownian motion which is independent of (X(s), 0 < s < u).
We condition on Sy (u) — X (u)=c, and set 7.=inf{s>0: X*(s) =c} and X**(s) =
X*(1e + 5) — c. (X*(s), s > 0) is a standard Brownian motion which is inde-
pendent of both (X (s),0<s <u) and (X*(s),0<s <7.). We have that

Pr(/ol_u 1(X*(s) §c)ds<0z—u) _

a—u l—u—r
/ PT(TCEdT)Pr</ 1(X**(s)§0)ds<a1—u—r)
0 0

l1—u—r

and since [ 1(X**(s) <0)d s has the same (arcsine) law as

Ox++(1 —u—r), this is equal to
/ Pr(r.edr)Pr(Ox+(1—u—-r)<a—u—r)=
0

/ Pr (Tcedr)Pr( sup  X*(s)> sup X**(s)) =
0 0<s<a—u-—r a—u—r<s<l—u—r

Pr( sup X*(s)> sup X*(s), sup X*(s)>c)

0<s<a—u a—u<ls<t—u 0<s<a—u
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and so (32) is equal to

( sup X(s)—X(u)> sup X(s)—X(u),\
u<s<a a<s<l
prl sup X(s)—X(u)> sup X(s)—X(u), [—
u<s<a 0<s<u
sup X(s)>b

0<s<u

Pr(Sx(u) >b,u<0x(1) <a). (33)

Furthermore,

Pr (Sx(u) <b<MX(a)):Pr<SX(u) <b,/1 1(X (s) gb)d5<oz) =

/ua Pl"(TbEdr)Pr</01"‘ 1<X*<S)§0)<Q_r)

:/a Pr (7, € dr)Pr (Ox-(1—1) <o —1) =

Pr<u<0X(1)<a,SX(u)<b, sup X(s)>b). (34)

u<s<a

Adding (33) and (34) together, we see that (31) is equal to

Pr (u <Ox(1)<a, sup X(s)> b) =Pr(u<0x(1) <o, Sx(1)>0)

u<s<a

which leads to (29).
Since (— X (s),s >0) is a standard Brownian motion and M_x(a)=— Mx(1 —
«) almost surely, we use — X (s) instead of X (s) and we get that for b <0,

Pr(Mx(a) <b,Lx(a)>u)=Pr(u<0x(1l)<(1—-a),Sx(1)>|b|),
which leads to (30).
To see that (t — Kx(a), Mx(a) — X (1)) has the same distribution as (Lx(«),
Myx(a)), set again X(s) = X(1 — s) — X(1). Clearly (X(s), 0<s< t) is a

standard Brownian motion and we can easily see that My (o) = Mx(a) — X(1),
Mg (o) —X(1)= Mx(a) and Kg(a)=1— Lx(a). O

Remarks

1. The distribution of (6x(1), Sx(1)) is well known (see for example Karatzas
and Shreve (1988, page 102). From this and Theorem 2, we can deduce the
density of (Lx(a), Mx(«)). This is given by

Pr(Mx(a) €db, Lx(a) € du)= 7T\/%CXP(_%).

10<u<a,b>0)+10<u<l—a,b<0)]dbdu. (35)
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2. Theorem 1 also leads to an alternative expression for the distribution of
Mx(«); that is

Pr(Mx(a) edb)=Pr(Sx(1) edb,0<0x(1) <),
for b>0 and
Pr (Mx(a) €db)=Pr(Sx(1) €d|b],0<8x(1) <1 —a),
for b < 0.

3. From Theorem 1, we can immediately obtain the following corollary:

Corollary 11. For u >0,
Pr(Lx(a)>u)=Pr(u<fx(1)<a)+Pr(u<flx(1l)<1—a) (36)

and
llu<a)+1l(u<l—a)

T/ u(l—u)

Furthermore, Kx(«) has the same distribution as 1 — Lx(a).

Pr(Lx(a)edu)= du. (37)

3.2 The joint law of (Lx(a), Kx (o), Mx(ax), X (1))
Theorem 12. For the standard Brownian motion (X (s),s>0),

Pr(Lx(a)edu, Kx(a)€edv, Mx(a)edb, X(1)€da) =

20b|[b—aldudvdbda (_b_?_ (b—a)2>
(v —u)*yJud(1 —v)? 2u 2(1-v)

Vio—u—(1-0a)1-—a)l(u>0,u+(l—a)<v<l) b>0,b>a
Vie—u)(v—a)l(0<u<a<wv<l) b>0,b<a
(v—u—a)al(u>0,u+a<v<l) b<0,b>a
Vi—a—u)v—(1-a)l(0<u<l—a<v<l) b<0,b<a

For the proof of this see AD (2005).
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4 Variability orderings

One might have concluded from the last section that the median is just a spe-

cial case of a quantile option with o = % and does not merit any extra interest

from a mathematics point of view. This is not true. In this subsection we will
investigate whether the median option is cheaper than a European option. We
will also compare the median option to European options with different strike
dates (we will see that this is more appropriate) and try to compare it to geo-
metric average options.

The tool we use is the concept of stochastic variability introduced in section 1.3.
Note that if the random variable X is stochastically more variable than Y, then

exp(X) is stochastically more variable than exp(Y’), and that E((V(t) — b)+) is a

non-decreasing convex function. If we therefore compare M X(%, t) with X (t), we
can decide whether the median option on is cheaper than the European option
(remember the underlying stock price is Y (¢) = Y (0)exp (X(¢))). Also comparing

t
. d . . .
M X(%, t) with w we can decide whether median or geometric average

. .. 4. . .
options are cheaper. This is because (exp(ax) — b)" is an increasing convex func-
tion of z.

We will mostly work in discrete time; the continuous time results can follow as
limiting cases. Let . Let Xo=0 and X,, = Z?Zl Y, forn=1,2,..., where Y7,Y5, ...
is a sequence of independent and identically distributed random variables with
finite mean E(Y;) = m. In the sequel Yl(k), Yz(k) k =1, 2 are independent copies of

the sequence and X,(Lk) = Zyzl Y;(k) Let us consider M,, 3, — %in. This has the
same distribution as

1) 2)
max (Xi(1)> 4+ min (Xi(2)> - X’s — X’s =

0<i<n 0<i<n

(1) (2)
max [ XM — AT max X _ x® )=
0<i<n ¢ 2 0<i<n 2 ¢

€] (2)
max Xi(l) X ) max Xn _ anli .
0<i<n 2 0<i<n 2

X0y 0y Oy y®
Z 2 2
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and
X2 @ _ = YO _yv® i —y? v v ®
2 n—i - 2 .

Note then that conditioning on Yl(l) + Yz(l) + 4 Yn(l) + YI(Z) + Y2(2) + -4 Yn(Z) =z
(2)
all the Yi(k)’s are identically distributed (they are exchangeable) and hence X; —
&)
X@. and XT" — X'® have the same conditional distributions. Therefore

n—1 —1

n
a  xW X (@) o
maxo<i<n | X; ' — —5— ) and maxo<i<n | —5— — X,,Z; ] have the same conditional

distributions and hence

1 2
E( max (Xz(1)> + min (Xz(2)> — X’(‘ ) — X’(‘ )

0<i<n 0<i<n 2 2

X +X,(f)> —0.

From section 1.3 we can then see that maxo<i<n (XZ-(I)) + ming<i<n (Xz(2)> is

xO  x® ] )
=+ = and so M, oy, is stochastic-

therefore stochastically more variable than
ally more variable than %X%. Moreover,

E(M,.2,) :E<%X2n> =nm. (39)

By considering the limiting process as in AD (1996a) we conclude that if (X (?),
t > 0) is a process with stationary and independent increments with E(X(¢)) =

mt, we then have that M X(%, t) is stochastically more variable than %X (t) and

() )= x0) = 0

Equations (39) and (40) appear rather intuitive. However, it is hard to see how
one can prove them without the results of the previous section.

It is now natural to compare M,, 5, with other functionals of the same expectation

and Jo X@)ds

1 2n . . . 1
such as X, and o——5>""" | X; or in the continuous time case 5.X (%) -

It turns out that M, 5, is stochastically less variable than X,,. In order to prove
this first prove the following result.

Proposition 13. Let M M,, ,, = maxo<i<n, (X;) and My, =ming<;<, (X;). Let also
Y be a random variable with the same distribution as Y1 and independent of the

sequence Y1,Ys,.... Then, M, 1,41 has the same distribution as (MmmLY)+ and
— Mo i1 has the same distribution as (— Mo, —Y)"
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Let us now prove our stochastic variability result.

Proposition 14. Let Y1, Y, ... be i.i.d. random variables. Define X = (Xo, X, ...)
by

X, = YV n=1.2,.. |
i=1
0 n=>0
Then X, is stochastically more variable than M, oy,.

Proof. Recall that the random variable Z is stochastically more variable than
the random variable Y if and only if E((Z - b)+> > E((Y - b)+) for all b€ R.

Assume Yl(k), YQ(k) k=1,2 are independent copies of Y7, Y5, .... We will now pro-
ceed by induction. For n = 1, X; = Yj, M;> has the same distribution as

+ +
<Y1(1)> — ( — Yl(Z)) and for b >0,

E((Yl(l)>+ - ( - Y1<2>)+ - b)+ :E(Yl(l) - ( - Y1<2>)+ - b)+ <E(Y;-b)".

For b <0,
E(Myo—b)"=E(Myo—b)+E(— M ,+b)" =

E(X,—b) +E< - (Yf”)++ ( —Y1(2))++b)+:

M\ _y© !
E(X,—b)+E —(Yl ) Y@ ) <
+
BE(X,—b)— E( —y® +b> —B(X,—b)— B(— X, +b) = E(X,—b)".

We now prove the induction step. Suppose the proposition statement is true for
n = k. We will prove it is also true for n =F% + 1. My 242 has the same distribu-
tion as Mjy1 x+1+ Mo r+1. Using the results of the previous exercise, we see that
for b >0,

+
B(My 1 pe1+ Mogsr —b)" = E((Mkk +Y) o+ Mo — b) =
E(Mk,k"—Y -+ MO,k+1 — b)Jr < E<Mk,k +Y + MO,k-i—l _ b>+ <

E(My4Y + My, —b) " <E(Xz—b)".

A similar argument proves the case b < 0.
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By taking limits one can show the following.

Proposition 15. Let (X (t),t > 0) be a Lévy process. The median MX<é, t) is
stochastically less variable than X (%)

Note that this result does not depend on the distribution of the increments of the
process (as long as they have a finite mean). One can now compare median with
European options.

Comparing the median of a Lévy process with its average is an open problem and
probably needs some assumptions about the distribution of the increments in
order to proceed. We can make some headway in the case of the the standard

Brownian motion (B(t),t > 0). Note that then Mp %, 1) has a symmetric distri-
bution and of course E (M B( L

97
random variables, which happen to be normally distributed. We have already

1)) = 0. One can compare it to other symmetric

established that M B(é, 1) is stochastically larger than a normal random variable

with mean 0 and variance % (this is %B (1)) and stochastically smaller than a

normal random variable with mean 0 and variance % (this is B(%)) The “upper”
bound can not be improved. as we can see from the fact that

+
lim — (2 =0)

= p(Mp(31)-b)"

However, we can improve the “lower” bound.

=0.

Proposition 16. Let (B(t),t>0) be a standard Brownian motion and let Z be a
normal random wvariable with mean 0 and variance o?, with 0> < 6 — 42, We

then have that M B(%, 1) 15 stochastically larger than Z.

Proof. We only need to prove it for 2 =6 — 4y/2. By symmetry we need to prove
Jr
E(MB<%, 1) —b) >FE(Z —b)Jr for b>0 only. Set

9O =E(Z—b)" - E(MB(%, 1) _ b)+.

Differentiating we get

g'(b) = Pr(MB<%, 1) > b) _Pr(Z>b)
and once more

2

¢"(b) = — E@(b)exp( - 5) + ﬁexp( - ;722)
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where ®(b) =1 — ®(b) (see exercise 18). This has the same sign as

= 1 ,1—0o?
h(b)——(I)(b)JrEexp(—b 553 )

has the same sign as

B 51— 202 l1-0o

k(b) —exp(b = ) bv/2m ——— yo

which is a convex function with k£(0) > 0 and lim;_,, k(b) = 0o so it is either pos-
itive for all b > 0 or it is first positive then negative and then positive again.
This means that h(b) is either increasing or first increasing then decreasing and
then increasing again, We observe that for 0> = 6 — 4v/2, h(0) < 0 and
limy .o h(b) = 0, so h(b) and therefore ¢”(b) is either negative for all b >0 or
first negative then positive and then negative again. So ¢'(b) is either decreasing
or decreasing, increasing and then decreasing again. Since ¢'(0) = 0 and
limy_. ¢'(b) =0, it can not be decreasing, so it is first decreasing, then increasing
and then decreasing again and also it is first negative and then positive changing
sign only once. We then conclude that ¢(b) is first decreasing and then

Jr
increasing. Note again form exercise 18 that E(M B<%, 1)) = \/g ( 1— 1) and

2
for 02=6 — 4\/_ E(Z \/7

Note also that lim, . g(b) = 0 and hence ¢(b) has to be negative. We therefore

conclude that
Jr
E(Z-b)" < E<M3<%, 1) - b)

% (1— 1)andsog )=0.

2

for all b> 0.

O
An important corollary is the following.
Corollary 17. MB(é, 1) 18 stochastically larger than fol B(s)ds.
Proof Observe that f o, B(s)ds is normally distributed with mean zero and vari-
ance §- Since §<6 42 , the corollary follows. O

Note that é and 6 — 4v/2 are very close so the result might be a bit fortuitous.
The corollary does not generalise to other processes. It does not even generalise to

the case of a Brownian motion with drift as it is possible to find x and b such
that X (t) = pt + B(t) and

E< 01 X(s)ds—b)+>E(MX<%, 1) —b)+.
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One can see this by calculating both quantities for ©=0.1 and b=0.2.
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