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Abstract

In this paper, we consider a risk process with the arrival of claims modelled by a dynamic
contagion process, a generalisation of the Cox process and Hawkes process introduced by Das-
sios and Zhao (2011). We derive results for the infinite horizon model that are generalisations
of the Cramér-Lundberg approximation, Lundberg’s fundamental equation, some asymptotics as
well as bounds for the probability of ruin. Special attention is given to the case of exponential
jumps and two numerical examples are provided.
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1. Introduction

In the classical Cramér-Lundberg risk model, the arrival of claims is modelled by a Poisson
process. As substantially discussed in the literature, this model is often not realistic in prac-
tice and hence a variety of extensions have been studied. Many researchers, such as Björk and
Grandell (1988), Embrechts, Grandell and Schmidli (1993) had already suggested use the Cox
process to model the arrival of claims, see also the book by Grandel (1991). Schmidli (1996)
investigated the case for a Cox process with a piecewise constant intensity. More recently, Al-
brecher and Asmussen (2006) discussed a Cox process with shot noise intensity. On the other
hand, only a few researchers have proposed risk models using self-excited processes, due to the
observation of the clustering arrival of claims in reality, a similar pattern in the credit risk from
the financial market, particularly during the current economic crisis. Stabile and Torrisi (2010)
looked at the ruin problem in a model using the Hawkes process, a self-excited point process
introduced by Hawkes (1971).

To capture the clustering phenomenon as well as some common external factors involved for
the arrival of claims within one single consistent framework, in this paper, we extend further to
use the dynamic contagion process introduced by Dassios and Zhao (2011), a generalisation of
the externally excited Cox process with shot noise intensity (with exponential decay) and the
self-excited Hawkes process (with exponential decay). It could be particularly useful for mod-
elling the dependence structure of the underlying arriving events with dynamic contagion impact
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from both endogenous and exogenous factors. In this paper, we try to generalise results obtained
for the classical model.

We organise our paper as follows. Section 2 provides distributional results we will use,
mainly developed in Dassios and Zhao (2011). Section 3 formulates the problem. It also provides
numerical examples and some asymptotics that are based on simulations. In Section 4, we use
the martingale method and generalise Lundberg’s fundamental equation. We derive bounds for
the ruin probability in Section 5. In Section 6, we derive all results via a change of measure. This
makes simulations more efficient as ruin is certain under the new measure. Section 7 concentrates
on exponentially distributed claims. Our results are illustrated by two numerical examples.

2. Dynamic Contagion Process

The dynamic contagion process includes both the self-excited jumps (which are distributed
according to the branching structure of a Hawkes process with exponential fertility rate) and the
externally excited jumps (which are distributed according to a particular shot noise Cox process).
We directly use the definition of the dynamic contagion process from Dassios and Zhao (2011).

Definition 2.1 (Dynamic Contagion Process). The dynamic contagion process is a cluster point
process D on R+: The number of points in the time interval (0, t] is defined by Nt = ND(0,t]. The
cluster centers of D are the particular points called immigrants, and the other points are called
offspring. They have the following structure:

(a) The immigrants are distributed according to a Cox process A with points {Dm}m=1,2,... ∈ (0,∞)
and shot noise stochastic intensity process

a + (λ0 − a) e−δt +
∑

i≥1

Y (1)
i e−δ(t−T (1)

i )I
{
T (1)

i ≤ t
}
,

where

• a ≥ 0 is the constant reversion level;

• λ0 > 0 is a constant as the initial value of the stochastic intensity process (defined
later by (1));

• δ > 0 is the constant rate of exponential decay;

•
{
Y (1)

i

}
i=1,2,...

is a sequence of independent identical distributed positive (externally ex-
cited) jumps with distribution function H(y), y > 0, at the corresponding random
times

{
T (1)

i

}
i=1,2,...

following a homogeneous Poisson process Mt with constant inten-
sity ρ > 0;

• I is the indicator function.

(b) Each immigrant Dm generates a cluster Cm = CDm , which is the random set formed by the
points of generations 0, 1, 2, ... with the following branching structure:

the immigrant Dm is said to be of generation 0. Given generations 0, 1, ..., j in Cm, each
point T (2) ∈ Cm of generation j generates a Cox process on (T (2),∞) of offspring of gener-
ation j + 1 with the stochastic intensity Y (2)e−δ(·−T (2)) where Y (2) is a positive (self-excited)
jump at time T (2) with distribution function G(y), y > 0, independent of the points of gen-
eration 0, 1, ..., j.
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(c) Given the immigrants, the centered clusters

Cm − Dm =

{
T (2) − Dm : T (2) ∈ Cm

}
, Dm ∈ A,

are independent identical distributed, and independent of A.

(d) D consists of the union of all clusters, i.e.

D =
⋃

m=1,2,...

CDm .

Therefore, the dynamic contagion process can also be defined as a point process Nt ≡{
T (2)

k

}
k≥1

on R+, with the non-negative Ft−stochastic intensity process λt following the piece-
wise deterministic dynamics with positive jumps, i.e.

λt = a + (λ0 − a) e−δt +
∑

i≥1

Y (1)
i e−δ(t−T (1)

i )I
{
T (1)

i ≤ t
}

+
∑

k≥1

Y (2)
k e−δ(t−T (2)

k )I
{
T (2)

k ≤ t
}
, (1)

where

• {Ft}t≥0 is a history of the process Nt, with respect to which {λt}t≥0 is adapted,

•
{
Y (2)

k

}
k=1,2,...

is a sequence of independent identical distributed positive (self-excited) jumps

with distribution function G(y), y > 0, at the corresponding random times
{
T (2)

k

}
k=1,2,...

,

• the sequences
{
Y (1)

i

}
i=1,2,...

,
{
T (1)

i

}
i=1,2,...

and
{
Y (2)

k

}
k=1,2,...

are assumed to be independent of
each other.

With the aid of the piecewise deterministic Markov process theory and using the results in
Davis (1984), the infinitesimal generator of the dynamic contagion process (λt,Nt, t) acting on a
function f (λ, n, t) ∈ Ω(A) is given by

A f (λ, n, t) =
∂ f
∂t
− δ (λ − a)

∂ f
∂λ

+ ρ

(∫ ∞

0
f (λ + y, n, t)dH(y) − f (λ, n, t)

)

+λ

(∫ ∞

0
f (λ + y, n + 1, t)dG(y) − f (λ, n, t)

)
,

where Ω(A) is the domain of generatorA such that f (λ, n, t) is differentiable with respect to λ, t
for all λ, n and t, and

∣∣∣∣∣
∫ ∞

0
f (λ + y, n, t)dH(y) − f (λ, n, t)

∣∣∣∣∣ < ∞,
∣∣∣∣∣
∫ ∞

0
f (λ + y, n + 1, t)dG(y) − f (λ, n, t)

∣∣∣∣∣ < ∞.

To give an intuitive picture of this new process by stochastic intensity representation, we
present Figure 1 for illustrating how the externally excited jumps

{
Y (1)

i

}
i=1,2,...

(marked by single

arrow ↓) and self-excited jumps
{
Y (2)

k

}
k=1,2,...

(marked by double arrow l) in the intensity process
λt interact with the point process Nt.

3



0
Time t

 

 
0

1

2

3

4

Externally Excited and Self−excited Jumps in the Intensity Process λ
t
 of Dynamic Contagion Process N

t

 

 
Point Process N

t

Intensity Process λ
t

Figure 1: Externally Excited and Self-excited Jumps in Intensity Process λt of A Dynamic Contagion Process

The dynamic contagion process has some key distributional properties which will be used in
this paper and are listed as below. The corresponding proofs have been given by Dassios and
Zhao (2011) and we omit them here.

Proposition 2.1. δ > µ1G is the stationarity condition of the intensity process λt of a dynamic
contagion process, where

µ1G =:
∫ ∞

0
ydG(y).

Theorem 2.1. If δ > µ1G , then the Laplace transform of the asymptotic distribution of λt is given
by

Π̂(v) =: lim
t→∞

E
[
e−vλt

∣∣∣λ0

]
= exp

(
−

∫ v

0

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du
)
, (2)

and (2) is also the Laplace transform of the stationary distribution of the process {λt}t≥0, where

ĥ(u) =:
∫ ∞

0
e−uydH(y), ĝ(u) =:

∫ ∞

0
e−uydG(y).

Corollary 2.1. If δ > µ1G , then,

lim
t→∞

E[λt

∣∣∣λ0] =
µ1Hρ + aδ
δ − µ1G

, (3)

where

µ1H =:
∫ ∞

0
ydH(y),
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and (3) is also the mean of stationary distribution of the process {λt}t≥0.

Theorem 2.2. For any function f ∈ Ω(A), we have
∫

E
A f (λ)Π(λ)dλ = 0,

where E = [a,∞) is the domain of λ,A f (λ) is the infinitesimal generator of the dynamic conta-
gion process acting on f (λ), i.e.

A f (λ) = −δ (λ − a)
d f (λ)

dλ
+ ρ

(∫ ∞

0
f (λ + y)dH(y) − f (λ)

)
+ λ

(∫ ∞

0
f (λ + z)dG(z) − f (λ)

)
,

and Π(λ) is the density function of λ with the Laplace transform specified by (2).

Theorem 2.3. If the externally excited and self-excited jumps follow exponential distributions,
i.e. H ∼ Exp(α), G ∼ Exp(β) and δβ > 1, then, the stationary distribution of λt is given by


a + Γ1 + Γ2 for α ≥ β
a + Γ3 + B̃ for α < β and α , β − 1

δ

a + Γ4 + P̃ for α = β − 1
δ

,

where independent random variables

Γ1 ∼ Gamma
(

1
δ

(
a +

ρ

δ(α − β) + 1

)
,
δβ − 1
δ

)
;

Γ2 ∼ Gamma
(

ρ(α − β)
δ(α − β) + 1

, α

)
;

Γ3 ∼ Gamma
(

a + ρ

δ
,
δβ − 1
δ

)
;

Γ4 ∼ Gamma
(a + ρ

δ
, α

)
;

B̃ D
=

N1∑

i=1

X(1)
i ,N1 ∼ NegBin

(
ρ

δ

β − α
γ1 − γ2

,
γ2

γ1

)
, X(1)

i ∼ Exp(γ1),

γ1 = max
{
α,
δβ − 1
δ

}
, γ2 = min

{
α,
δβ − 1
δ

}
;

P̃ D
=

N2∑

i=1

X(2)
i ,N2 ∼ Poisson

(
ρ

δ2α

)
, X(2)

i ∼ Exp (α) .

Remark 2.1. B̃ follows a compound negative binomial distribution with underlying exponen-
tial jumps, and P̃ follows a compound Poisson distribution with underlying exponential jumps.
Theorem 2.3 implies that the Laplace transform of λt is given by

E
[
e−vλt

]
=



e−va
(
α
α+v

) ρ(α−β)
δ(α−β)+1

( δβ−1
δ

v+
δβ−1
δ

) 1
δ

(
a+

ρ
δ(α−β)+1

)

for α ≥ β

e−va
( δβ−1

δ

v+
δβ−1
δ

) a+ρ
δ


γ2
γ1

1−
(
1− γ2

γ1

)
γ1
γ1+v


ρ
δ

β−α
γ1−γ2

for α < β and α , β − 1
δ

e−va
(
α
α+v

) ρ+a
δ exp

[
ρ
δ2α

(
α
α+v − 1

)]
for α = β − 1

δ

. (4)
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3. Ruin Problem

We consider a company with its surplus process Xt in continuous time on a probability space
(Ω,F ,P),

Xt = x + ct −
Nt∑

i=1

Zi, t ≥ 0, (5)

where

• X0 = x ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium payment per time unit;

• Nt is a point process (N0 = 0) counting the number of cumulative arrived claims in the time
interval (0, t], driven by a dynamic contagion process with its stochastic intensity process
λt and the initial intensity λ0 = λ > 0;

• {
Zi

}
i=1,2,... is a sequence of independent identical distributional positive random variables

(claim sizes) with distribution function Z(z), z > 0, and also independent of Nt; the mean,
Laplace transform of density function and tail are denoted respectively by

µ1Z =:
∫ ∞

0
zdZ(z), ẑ(u) =:

∫ ∞

0
e−uzdZ(z), Z(x) =:

∫ ∞

x
dZ(s).

The surplus process Xt is a right-continuous function of time t.

Definition 3.1 (Ruin Time). The ruin (stopping) time τ∗ is defined by

τ∗ =:
{

inf
{
t > 0

∣∣∣Xt ≤ 0
}

inf {∅} = ∞ if Xt > 0 for all t;

in particular, τ∗ = ∞ means ruin does not occur.

We are interested in the ruin probability in finite time,

P
{
τ∗ < t

∣∣∣X0 = x, λ0 = λ
}

;

in particular, the ultimate ruin probability in infinite time,

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

=: lim
t→∞

P
{
τ∗ < t

∣∣∣X0 = x, λ0 = λ
}

;

and also the ultimate ruin probability in infinite time when the intensity process λt has stationary
distribution,

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 ∼ Π
}
,

where Π is the stationary distribution of λt given by Theorem 2.1.
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3.1. Net Profit Condition

Theorem 3.1. If δ > µ1G and the arrival of claims is driven by a dynamic contagion process,
then, the net profit condition is given by

c >
µ1Hρ + aδ
δ − µ1G

µ1Z . (6)

Proof. Obviously, we have the expectation of surplus process Xt defined by (5),

E [Xt] = x + ct − µ1ZE [λt] t.

If δ > µ1G and the net profit condition holds, by Corollary 2.1, we have

lim
t→∞

E [Xt]
t

= c − µ1Hρ + aδ
δ − µ1G

µ1Z > 0.

3.2. Simulation Examples

Before giving mathematical proofs, we can have a first glance at this ruin problem via Monte
Carlo simulation. Assume the stationarity condition for λt and net profit condition for Xt both
hold, and the two types of jump sizes and claim sizes all follow exponential distributions, i.e.
H ∼ Exp(α), G ∼ Exp(β) and Z ∼ Exp(γ). We implement the simulation algorithm for a
dynamic contagion process provided by Dassios and Zhao (2011), with parameters set by

(a, λ0, ρ, δ;α, β, γ; X0, c) = (0.7, 0.7, 0.5, 2.0; 2.0, 1.5, 1.0; 10, 1.5).

In Figure 2, we plot the ruin probability P
{
τ∗ < t

∣∣∣X0 = x, λ0 = λ
}

against the time from t = 0
to t = 400. We can observe that the probability increases and converges around 30% when time
t increases. Note that, each point is calculated based on 50, 000 simulated paths of dynamic
contagion processes. For instance, one example of simulated surplus process Xt with the under-
lying point process of claim arrival Nt and intensity process λt from time t = 0 to t = 100 is
represented by Figure 3, and the pattern of clustering arrival of claims generated by a dynamic
contagion process is also shown in the histogram. For comparison, the theoretical expectations
of λt and Nt (given by Corollary 2.1) are plotted together with their simulated paths. More
numerical examples are provided later by Section 7.3.

4. Exponential Martingales and Generalised Lundberg’s Fundamental Equation

In this section, we find some useful exponential martingales which link to the generalised
Lundberg’s fundamental equation. More importantly, they are crucial for deriving some key
results of the ruin problem in the later sections.
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by 50, 000 Simulated Dynamic Contagion Processes

Theorem 4.1. Assume δ > µ1G and the net profit condition (6), we have a martingale

e−vr Xt eηrλt e−rt, r ≥ 0,

where constants r, vr and ηr satisfy a generalised Lundberg’s fundamental equation
{ −δηr + ẑ(−vr)ĝ(−ηr) − 1 = 0
ρ
(
ĥ(−ηr) − 1

)
− r + aδηr − cvr = 0

(
c >

µ1Hρ + aδ
δ − µ1G

µ1Z , δ > µ1G

)
. (7)

If 0 ≤ r < r∗, then (7) has a unique positive solution
(
v+

r > 0, η+
r > 0

)
, where

r∗ =: ρ
(
ĥ(−η∗) − 1

)
+ aδη∗, (8)

and η∗ is the unique positive solution to

1 + δηr = ĝ(−ηr). (9)

Proof. The (Model-1 type) infinitesimal generator of the process (Xt, λt, t) acting on a function
f (x, λ, t) ∈ Ω(A) is given by

A f (x, λ, t) =
∂ f
∂t
− δ(λ − a)

∂ f
∂λ

+ c
∂ f
∂x

+ λ

(∫ ∞

y=0

∫ ∞

z=0
f (x − z, λ + y, t)dZ(z)dG(y) − f (x, λ, t)

)

+ρ

(∫ ∞

0
f (x, λ + y, t)dH(y) − f (x, λ, t)

)
. (10)

For the classification of Model-1 type and Model-2 type generators for ruin problem, see Dassios
and Embrechts (1989).

Assume the form
f (x, λ, t) = e−vr xeηrλe−rt,

and plug into the generator (10). To be a martingale, setA f (x, λ, t) = 0, then,

−r − δ(λ − a)ηr − cvr + λ

(∫ ∞

y=0

∫ ∞

z=0
evrzeηrydZ(z)dG(y) − 1

)
+ ρ

(∫ ∞

0
eηrydH(y) − 1

)
= 0,
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and rewrite as(
− δηr + ẑ(−vr)ĝ(−ηr) − 1

)
λ +

(
ρ
(
ĥ(−ηr) − 1

)
− r + aδηr − cvr

)
= 0,

holding for any λ. Hence, we have (7). The proofs of the uniqueness and the associated condi-
tions for the solution to (7) are given by Lemma 4.1 and Lemma 4.2 as below.

Lemma 4.1. Under δ > µ1G and the net profit condition (6), there are unique positive solution
η+

r and unique negative solution η−r to ηr of the generalised Lundberg’s fundamental equation
(7); In particular, for r = 0, there are unique positive solution η+

0 and solution zero.

Proof. Rewrite the generalised Lundberg’s fundamental equation (7) w.r.t. ηr,


ẑ
(

r−aδηr+ρ
(
1−ĥ(−ηr)

)
c

)
ĝ(−ηr) = 1 + δηr

−vr =
r−aδηr+ρ

(
1−ĥ(−ηr)

)
c

(
c >

µ1Hρ + aδ
δ − µ1G

µ1Z , δ > µ1G

)
.

Consider the first equation above, i.e.

f (ηr) = l(ηr), r > 0,

where

f (ηr) =: ẑ
(

r − aδηr + ρ
(
1 − ĥ(−ηr)

)
c

)
ĝ(−ηr),

l(ηr) =: 1 + δηr.
10



Obviously, f (ηr) is a strictly increasing and strictly convex function of ηr, since

∂ĥ(−u)
∂u

> 0,
∂ĝ(−u)
∂u

> 0,
∂ẑ(u)
∂u

< 0,

∂2ĥ(−u)
∂u2 > 0,

∂2ĝ(−u)
∂u2 > 0,

∂2ẑ(u)
∂u2 > 0,

and

∂ f (ηr)
∂ηr

=
−aδ − ρ ∂ĥ(−ηr)

∂ηr

c
∂ẑ(u)
∂u

∣∣∣∣∣
u=

r−aδηr+ρ

(
1−ĥ(−ηr )

)
c

ĝ(−ηr)

+ẑ
(

r − aδηr + ρ
(
1 − ĥ(−ηr)

)
c

)
∂ĝ(−ηr)
∂ηr

> 0,

∂2 f (ηr)
∂η2

r
= −ρ

c
∂2ĥ(−ηr)
∂η2

r

∂ẑ(u)
∂u

∣∣∣∣∣
u=

r−aδηr+ρ

(
1−ĥ(−ηr )

)
c

ĝ(−ηr)

+
−aδ − ρ ∂ĥ(−ηr)

∂ηr

c

[−aδ − ρ ∂ĥ(−ηr)
∂ηr

c
∂2ẑ(u)
∂u2

∣∣∣∣∣
u=

r−aδηr+ρ

(
1−ĥ(−ηr )

)
c

+2
∂ẑ(u)
∂u

∣∣∣∣∣
u=

r−aδηr+ρ

(
1−ĥ(−ηr )

)
c

∂ĝ(−ηr)
∂ηr

]

+ẑ
(

r − aδηr + ρ
(
1 − ĥ(−ηr)

)
c

)
∂2ĝ(−ηr)
∂η2

r
> 0.

Also, f (ηr) > 0, f (−∞) = 0, f (+∞) = +∞. l(ηr) is a strictly linearly increasing function of ηr.
We discuss the solutions for the two cases r > 0 and r = 0 separately as below.

• For r > 0, we have
0 < f (0) = ẑ

( r
c

)
< 1 = l(0),

and the slope of the tangent at ηr = 0,

∂l(ηr)
∂ηr

∣∣∣∣∣
ηr=0

>
∂ f (ηr)
∂ηr

∣∣∣∣∣
ηr=0

> 0.

By the stationarity condition δ > µ1G and the net profit condition (6), we have

∂ f (ηr)
∂ηr

∣∣∣∣∣
ηr=0

=
−aδ − µ1Hρ

c
∂ẑ(u)
∂u

∣∣∣∣∣
u= r

c

+ ẑ
( r
c

)
µ1G

<
−aδ − µ1Hρ

c
∂ẑ(u)
∂u

∣∣∣∣∣
u=0

+ ẑ (0) µ1G

=
aδ + µ1Hρ

c
µ1Z + µ1G

< δ =
∂l(ηr)
∂ηr

∣∣∣∣∣
ηr=0

.

It is clear that there are unique positive solution η+
r and unique negative solution η−r by

plotting f (ηr) and l(ηr), see Figure 4.
11



• For r = 0, we have
0 < f (0) = ẑ (0) = 1 = l(0),

and the slope of the tangent at ηr = 0,

∂l(ηr)
∂ηr

∣∣∣∣∣
ηr=0

>
∂ f (ηr)
∂ηr

∣∣∣∣∣
ηr=0

> 0.

By the stationarity condition and the net profit condition, we have

∂ f (ηr)
∂ηr

∣∣∣∣∣
ηr=0

<
aδ + µ1Hρ

c
µ1Z + µ1G < δ =

∂l(ηr)
∂ηr

∣∣∣∣∣
ηr=0

.

It is clear that there are unique positive solution η+
0 and solution 0 by plotting f (ηr) and

l(ηr).

In order to find the positive solution to vr, we will only consider the unique positive solution
η+

r for r ≥ 0 in the sequel.

Lemma 4.2. If 0 ≤ r < r∗,
r∗ =: ρ

(
ĥ(−η∗) − 1

)
+ aδη∗, (11)

where the constant η∗ is the unique positive solution to

1 + δηr = ĝ(−ηr), δ > µ1G ,

then, there exists a unique positive solution v+
r to vr of the generalised Lundberg’s fundamental

equation (7),

v+
r = − r − aδη+

r + ρ
(
1 − ĥ(−η+

r )
)

c
. (12)

Proof. By substituting η+
r (from Lemma 4.1) into the second equation of the generalised Lund-

berg’s fundamental equation (7), we have the solution to vr, i.e. (12). Define

V(ηr) =: − r − aδηr + ρ
(
1 − ĥ(−ηr)

)
c

.

Obviously, V(ηr) is a strictly increasing and strictly convex function of ηr, as ∂V(ηr)
∂ηr

> 0 and
∂2V(ηr)
∂η2

r
> 0; also, V(−∞) = −∞, V(+∞) = +∞; v(0) = − r

c < 0; hence, there is unique (positive)
root ηo

r > 0 such that V
(
ηo

r
)

= 0, also see Figure 4.
In order to find the unique positive solution v+

r , such that v+
r = V(η+

r ) > 0, we have the
condition η+

r > η
o
r , which also is equivalent to the condition

l
(
ηo

r
)
> f

(
ηo

r
)
, ηo

r > 0,

or,
1 − δηo

r > ĝ(−ηo
r ), ηo

r > 0,

12



note that, f
(
ηo

r
)

= ĝ
(−ηo

r
)
. Under the stationarity condition δ > µ1G , the equation 1+δηr = ĝ(−ηr)

has the unique positive solution η∗ (independent from r > 0) and the solution 0. Therefore, we
have the condition

0 < ηo
r < η

∗,

such that
1 + δηo

r > ĝ(−ηo
r ), ηo

r > 0.

We discuss the two cases r > 0 and r = 0 separately as below.

• If r = 0, we have ηo
0 = ηo

r

∣∣∣
r=0 = 0, and it is clear that η+

0 > ηo
0 > 0 holds, therefore, v+

0 > 0
exists without any condition.

• If r > 0, then the condition η∗ > ηo
r > 0 is also equivalent to the condition V(η∗) > 0 since

V(·) is a strictly increasing function, i.e.

V(η∗) = − r − aδη∗ + ρ
(
1 − ĥ(−η∗))

c
> 0.

Hence, we can obtain the upper bound r∗ for r > 0 explicitly, i.e. 0 < r < r∗, where r∗ is
given by (11), note that, r∗ > 0 as η∗ > 0, also see Figure 4.

Remark 4.1. Given the existence and uniqueness of solution (η+
r , v

+
r ) to the generalised Lund-

berg’s fundamental equation (7), we have η∗ > η+
r , since

1 + δη+
r = ẑ

(−v+
r
)

ĝ
(−η+

r
)
> ĝ(−η+

r ),

we know that, if δ > µ1G the equation 1 + δηr = ĝ(−ηr) has solution 0 and η∗ > 0, then, η+
r should

be between them, i.e. η∗ > η+
r > 0, also see Figure 4. Therefore, we have the full ranking

0 < ηo
r < η

+
r < η

∗.

Remark 4.2. In particular, for r = 0, we have a martingale e−v+
0 Xt eη

+
0 λt , where (v+

0 , η
+
0 ) is the

unique positive solution to the equations

δη+

0 = ẑ
(
−v+

0

)
ĝ
(
−η+

0

)
− 1

cv+
0 = aδη+

0 + ρ
(
ĥ(−η+

0 ) − 1
)

(
c >

µ1Hρ + aδ
δ − µ1G

µ1Z , δ > µ1G

)
.

The martingales and generalised Lundberg’s fundamental equation derived in this section
are the building blocks of the martingale method and change of measure, two key approaches
adopted in the following sections.

5. Ruin Probability via Original Measure

Theorem 5.1. The ruin probability conditional on λ0 and X0 is given by

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

=
e−v+

0 xeη
+
0 λ

E
[
e−v+

0 Xτ∗ eη
+
0 λτ∗

∣∣∣τ∗ < ∞; X0 = x, λ0 = λ
] . (13)

13



Proof. By the optional stopping theorem, a bounded martingale stopped at a stopping time is still
a martingale. Now we consider the martingale found by Theorem 4.1 stopped at the ruin time,
i.e.

e−v+
r X(τ∗∧t) eη

+
r λ(τ∗∧t) e−r(τ∗∧t), 0 ≤ r < r∗.

By the martingale property, we have

E
[
e−v+

r X(τ∗∧t) eη
+
r λ(τ∗∧t) e−r(τ∗∧t)

]
= E

[
e−v+

r X(τ∗∧t) eη
+
r λ(τ∗∧t) e−r(τ∗∧t)

∣∣∣∣∣X0 = x, λ0 = λ
]

= e−v+
r xeη

+
r λ,

and

E
[
e−v+

r Xτ∗ eη
+
r λτ∗ e−rτ∗

∣∣∣∣∣τ∗ ≤ t
]

P{τ∗ ≤ t} + E
[
e−v+

r Xt eη
+
r λt e−rt

∣∣∣∣∣τ∗ > t
]

P{τ∗ > t} = e−v+
r xeη

+
r λ,

or,

E
[
e−v+

r Xτ∗ eη
+
r λτ∗ e−rτ∗

∣∣∣∣∣τ∗ ≤ t
]

P{τ∗ ≤ t} + e−rtE
[
e−v+

r Xt eη
+
r λt

∣∣∣∣∣τ∗ > t
]

P{τ∗ > t} = e−v+
r xeη

+
r λ, (14)

where
E

[
e−v+

r Xt eη
+
r λt

∣∣∣∣∣τ∗ > t
]

P{τ∗ > t} = E
[
e−v+

r Xt eη
+
r λtI (τ∗ > t)

]
≤ E

[
eη

+
r λt

]
.

Note that, by Theorem 2.1, we have

lim
t→∞

E
[
eη

+
r λt

]
= exp

(∫ 0

−η+
r

aδu + ρ[1 − ĥ(u)]
δu + ĝ(u) − 1

du
)
< ∞,

since by Remark 4.1, for 0 < r < r∗, we have −η∗ < −η+
r < 0 where −η∗ is the negative singular

point of the integrand function above, i.e. the unique negative solution to δu + ĝ(u) − 1 = 0.
Hence, for the second term in (14),

lim
t→∞

e−rtE
[
e−v+

r Xt eη
+
r λt

∣∣∣∣∣τ∗ > t
]

P{τ∗ > t} = 0.

Let t → ∞ in (14), then, {τ∗ ≤ t} → {τ∗ < ∞}, and

E
[
e−v+

r Xτ∗ eη
+
r λτ∗ e−rτ∗

∣∣∣∣∣τ∗ < ∞
]

P{τ∗ < ∞} = e−v+
r xeη

+
r λ.

Let r → 0, we have

E
[
e−v+

0 Xτ∗ eη
+
0 λτ∗

∣∣∣∣∣τ∗ < ∞
]

P{τ∗ < ∞} = e−v+
0 xeη

+
0 λ,

then (13) follows.

Corollary 5.1. If Z ∼ Exp (γ), then,

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

=
γ − v+

0

γ

eη
+
0 λe−v+

0 x

E
[
eη

+
0 λτ∗

∣∣∣τ∗ < ∞; X0 = x, λ0 = λ
] .

14



Proof. If Z ∼ Exp (γ), due to the memoryless property of the exponential distribution, the over-
shoot −Xτ∗ > 0 then follows the same exponential distribution, i.e. −Xτ∗ ∼ Exp (γ). Hence, for
(13) we have

E
[
e−v+

0 Xτ∗ eη
+
0 λτ∗

∣∣∣τ∗ < ∞
]

= E
[
e−v+

0 Xτ∗
]
E

[
eη

+
0 λτ∗

∣∣∣τ∗ < ∞
]

=
γ

γ − v+
0
E

[
eη

+
0 λτ∗

∣∣∣τ∗ < ∞
]
.

Remark 5.1. Note that, the overshoot −Xτ∗ > 0, λτ∗ > 0, then, e−v+
0 Xτ∗ > 1, eη

+
0 λτ∗ > 1, we have

an inequality for the ruin probability,

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}
<

eη
+
0 λe−v+

0 x

E
[
eη

+
0 λτ∗

∣∣∣τ∗ < ∞; X0 = x, λ0 = λ
] < eη

+
0 λe−v+

0 x.

eη
+
0 λe−v+

0 x is a rough up bound of ruin probability, as it could be greater than one when λ0 is
relatively large. In order to obtain a more precise upper bound, it is better to find the distribution
property of E

[
eη

+
0 λτ∗

∣∣∣τ∗ < ∞
]

but it would be not easy.

Example 5.1. If Z ∼ Exp (γ), then,

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}
<

γ

γ − v+
0

eη
+
0 λe−v+

0 x.

For instance, the comparison between the boundaries and the ruin probability P
{
τ∗ < ∞

∣∣∣X0 = 10, λ0 = λ
}

simulated by 50, 000 sample paths with parameter setting

(a; ρ, δ;α, β, γ; X0, c) = (0.7; 0.5, 2.0; 2.0, 1.5, 1.0; 10, 1.5), (η+
0 , v

+
0 ) = (0.0842, 0.0932),

is given by Table 1 and Figure 5.

Table 1: Example: The Comparison between the Boundaries and the Simulated Ruin Probability

λ0 = λ 1 2 3 4 5 6 7 8 9 10 11 12
P

{
τ∗ < ∞

∣∣∣X0 = 10, λ0 = λ
}

28.83% 31.34% 34.39% 37.34% 40.01% 43.46% 46.67% 50.45% 53.34% 56.83% 60.56% 63.66%
Up Bound eη

+
0 λ0 e−v+

0 X0 42.84% 46.60% 50.69% 55.15% 59.99% 65.26% 70.99% 77.23% 84.01% 91.39% 99.42% 108.16%
Up Bound

γ−v+
0

γ eη
+
0 λ0 e−v+

0 X0 38.84% 42.26% 45.97% 50.01% 54.40% 59.18% 64.38% 70.03% 76.18% 82.88% 90.16% 98.08%

6. Ruin Probability via Change of Measure

In this section, we investigate the ruin probability and asymptotics by change of measure
via the martingale derived by Theorem 4.1. We will find that under this new measure the ruin
becomes certain, and this makes the simulation more efficient than under the original measure
where the ruin is not certain and even rare. Similar ideas of improving simulation of rare events
by a change of measure can also be found in Asmussen (1985).
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Figure 5: Simulated Ruin Probability P
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τ∗ < ∞

∣∣∣X0 = 10, λ0 = λ
}

v.s. Up Bounds

6.1. Ruin Probability by Change of Measure
Theorem 6.1. The ruin probability conditional on X0 and λ0 can be expressed under new mea-
sure P̃ by

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

= e−v+
0 xem+

0 λ̃Ẽ

Ψ
(
Xτ∗−

) e−m+
0 λ̃τ∗−

ĝ(−η+
0 )

∣∣∣∣∣∣X0 = x, λ̃0 = λ̃

 , (15)

where λ̃ =: (1 + δη+
0 )λ, m+

0 =: η+
0

δη+
0 +1 ,

Ψ(x) =:
Z(x)ev+

0 x
∫ ∞

x ev+
0 zdZ(z)

, (16)

assuming the net profit condition holds under the original measure P, and the stationarity con-
dition holds under both measures P and P̃. The parameter setting for the process (Xt, λt) under
P transforms to the new parameter setting for the process

(
Xt, λ̃t

)
under P̃ as follows:

• a↗ ã =:
(
1 + δη+

0

)
a,

• c→ c̃ =: c,

• δ→ δ̃ =: δ,

• ρ↗ ρ̃ =: ĥ(−η+
0 )ρ,

• Z(z)→ Z̃(z),

• g(u)→ ˜̃g(u) =:
g̃
(

u
1+δη+0

)

1+δη+
0

,
16



• h(u)→ ˜̃h(u) =:
h̃
(

u
1+δη+0

)

1+δη+
0

,

where

dZ̃(z) =:
ev+

0 zdZ(z)

ẑ
(
−v+

0

) , dG̃(u) =:
eη

+
0 udG(u)

ĝ
(
−η+

0

) , dH̃(u) =:
eη

+
0 udH(u)

ĥ
(
−η+

0

) , (17)

and dH̃(u) =: h̃(u)du, dG̃(u) =: g̃(u)du; d˜̃H(u) =: ˜̃h(u)du, d˜̃G(u) =: ˜̃g(u)du.

Proof. We consider the (Model-2 type) generator

A f (x, λ) = −δ(λ − a)
∂ f
∂λ

+ c
∂ f
∂x

+ λ

(∫ ∞

y=0

∫ x

z=0
f (x − z, λ + y)dZ(z)dG(y) + Z(x) − f (x, λ)

)

+ρ

(∫ ∞

0
f (x, λ + y)dH(y) − f (x, λ)

)
, x > 0. (18)

The solution of the integro-differential equationA f (x, λ) = 0 is the ruin probability

f (x, λ) = P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}
.

Change Measure from P to P̃. Substitute the function

f (x, λ) = e−v+
0 xeη

+
0 λ f̃ (x, λ)

into the generator (18), we have

− δ(λ − a)
η+

0 f̃ +
∂ f̃
∂λ

 + c
−v+

0 f̃ +
∂ f̃
∂x



+ λ

(∫ ∞

0

∫ x

0
f̃ (x − z, λ + y)ev+

0 zeη
+
0 ydZ(z)dG(y) + Z(x)ev+

0 xe−η
+
0 λ − f̃

)

+ ρ

(∫ ∞

0
f̃ (x, λ + y)eη

+
0 ydH(y) − f̃

)
= 0. (19)

Remind that, by Theorem 4.1 for r = 0, we have a F Pt −martingale e−v+
0 Xt eη

+
0 λt where (v+

0 , η
+
0 ) is

the unique positive solution to the equations

δη+

0 = ẑ
(
−v+

0

)
ĝ
(
−η+

0

)
− 1

cv+
0 = aδη+

0 + ρ
(
ĥ(−η+

0 ) − 1
)

(
c >

µ1Hρ + aδ
δ − µ1G

µ1Z , δ > µ1G

)
.

Substitute cv+
0 = aδη+

0 + ρ
(
ĥ(−η+

0 ) − 1
)

and δη+
0 = ẑ

(
−v+

0

)
ĝ
(
−η+

0

)
− 1 into (19), we have

− δ(λ − a)
∂ f̃
∂λ

+ c
∂ f̃
∂x

+ λ

(∫ ∞

0

∫ x

0
f̃ (x − z, λ + y)ev+

0 zeη
+
0 ydZ(z)dG(y) + Z(x)ev+

0 xe−η
+
0 λ − ẑ

(
−v+

0

)
ĝ
(
−η+

0

)
f̃
)

+ ρ

(∫ ∞

0
f̃ (x, λ + y)eη

+
0 ydH(y) − ĥ(−η+

0 ) f̃
)

= 0.
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Change measure (Esscher transform) by (17), and rewrite as

− δ(λ − a)
∂ f̃
∂λ

+ c
∂ f̃
∂x

+ ẑ
(
−v+

0

)
ĝ
(
−η+

0

)
λ


∫ ∞

0

∫ x

0
f̃ (x − z, λ + y)dZ̃(z)dG̃(y) + Z(x)

ev+
0 xe−η

+
0 λ

ẑ
(
−v+

0

)
ĝ
(
−η+

0

) − f̃



+ ĥ(−η+
0 )ρ

(∫ ∞

0
f̃ (x, λ + y)dH̃(y) − f̃

)
= 0.

Since ẑ
(
−v+

0

)
ĝ
(
−η+

0

)
= 1 + δη+

0 , we have

− δ(λ − a)
∂ f̃
∂λ

+ c
∂ f̃
∂x

+ (1 + δη+
0 )λ


∫ ∞

0

∫ x

0
f̃ (x − z, λ + y)dZ̃(z)dG̃(y) + Z(x)

ev+
0 xe−η

+
0 λ

ẑ
(
−v+

0

)
ĝ
(
−η+

0

) − f̃



+ ĥ(−η+
0 )ρ

(∫ ∞

0
f̃ (x, λ + y)dH̃(y) − f̃

)
= 0.

Note that,

Z̃(x) =:
∫ ∞

x
dZ̃(z) =

∫ ∞

x

ev+
0 zdZ(z)

ẑ
(
−v+

0

) =

∫ ∞
x ev+

0 zdZ(z)

ẑ
(
−v+

0

) ,

we have

Z(x)
ev+

0 xe−η
+
0 λ

ẑ(−v+
0 )ĝ(−η+

0 )
=

Z(x)ev+
0 x

∫ ∞
x ev+

0 zdZ(z)

∫ ∞
x ev+

0 zdZ(z)

ẑ
(
−v+

0

) e−η
+
0 λ

ĝ(−η+
0 )

= Ψ(x)
e−η

+
0 λ

ĝ(−η+
0 )

Z̃(x),

where Ψ(x) is defined by (16). Hence, we have

− δ(λ − a)
∂ f̃
∂λ

+ c
∂ f̃
∂x

+ (1 + δη+
0 )λ

(∫ ∞

0

∫ x

0
f̃ (x − z, λ + y)dZ̃(z)dG̃(y) + Ψ(x)

e−η
+
0 λ

ĝ(−η+
0 )

Z̃(x) − f̃
)

+ ĥ(−η+
0 )ρ

(∫ ∞

0
f̃ (x, λ + y)dH̃(y) − f̃

)
= 0. (20)

This integro-differential equation has the solution

f̃ (x, λ) = Ẽ
Ψ(Xτ∗− )

e−η
+
0 λτ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

∣∣∣∣∣∣λ0 = λ, X0 = x
 .

It is similar to the expectation of a Gerber-Shiu penalty function (see Gerber and Shiu (1998)).
Therefore, by comparing (20) with (18), we have the parameters for the process (Xt, λt) under P
transformed to the parameters for the process (Xt, λt) under P̃ as follows:

• a→ ã = a,
18



• c→ c̃ = c,

• δ→ δ̃ = δ,

• ρ→ ρ̃ = ĥ(−η+
0 )ρ,

• Z(z)→ Z̃(z),

• G(y)→ G̃(y),

• H(y)→ H̃(y),

and the ruin probability is given by

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

= e−v+
0 xeη

+
0 λẼ

Ψ(Xτ∗− )
e−η

+
0 λτ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

∣∣∣∣∣∣X0 = x, λ0 = λ

 .

Expression by λ̃. Alternatively, we can express the results above w.r.t. λ̃ where λ̃ = (1 + δη+
0 )λ.

Rewrite (20) as

− δ
(̃
λ − (1 + δη+

0 )a
) ∂ f̃

∂λ̃
+ c

∂ f̃
∂x

+ λ̃



∫ ∞

0

∫ x

0
f̃
(
x − z, λ̃ + (1 + δη+

0 )y
)

dZ̃(z)dG̃(y) + Ψ(x)
e
− η+0
δη+0 +1

λ̃

ĝ(−η+
0 )

Z̃(x) − f̃



+ ĥ(−η+
0 )ρ

(∫ ∞

0
f̃
(
x, λ̃ + (1 + δη+

0 )y
)

dH̃(y) − f̃
)

= 0.

Given dH̃(y) = h̃(y)dy and dG̃(y) = g̃(y)dy, change variable by u = (1 + δη+
0 )y, we have the

equation of f̃
(̃
λ, x

)
,

− δ
(̃
λ − (1 + δη+

0 )a
) ∂ f̃

∂λ̃
+ c

∂ f̃
∂x

+ λ̃



∫ ∞

0

∫ x

0
f̃
(
x − z, λ̃ + u

)
dZ̃(z)

g̃
(

u
1+δη+

0

)

1 + δη+
0

du + Ψ(x)
e
− η+0
δη+0 +1

λ̃

ĝ(−η+
0 )

Z̃(x) − f̃



+ ĥ(−η+
0 )ρ



∫ ∞

0
f̃
(
x, λ̃ + u

) h̃
(

u
1+δη+

0

)

1 + δη+
0

du − f̃

 = 0. (21)

This integro-differential equation has the solution

f̃ (x, λ̃) = Ẽ

Ψ
(
Xτ∗−

) e
− η+0
δη+0 +1

λ̃τ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

∣∣∣∣∣∣λ0 = λ, X0 = x

 .

Therefore, by comparing (21) with (18), we have the parameters for the process (Xt, λt) under P
transformed to the parameters for the process

(
Xt, λ̃t

)
under P̃ as follows:
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• a↗ ã =
(
1 + δη+

0

)
a,

• c→ c̃ = c,

• δ→ δ̃ = δ,

• ρ↗ ρ̃ = ĥ(−η+
0 )ρ,

• Z(z)→ Z̃(z),

• g(u)→ ˜̃g(u) =
g̃
(

u
1+δη+0

)

1+δη+
0

,

• h(u)→ ˜̃h(u) =
h̃
(

u
1+δη+0

)

1+δη+
0

,

and the ruin probability is given by

P
{
τ∗ < ∞

∣∣∣X0 = x, λ0 = λ
}

= e−v+
0 xeη

+
0 λẼ

Ψ
(
Xτ∗−

) e−m+
0 λ̃τ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

∣∣∣∣∣∣X0 = x, λ0 = λ



= e−v+
0 xem+

0 λ̃Ẽ

Ψ
(
Xτ∗−

) e−m+
0 λ̃τ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

∣∣∣∣∣∣X0 = x, λ̃0 = λ̃

 , m+
0 =

η+
0

δη+
0 + 1

.

By Theorem 6.3 (derived later in this section), if the net profit condition holds under P and the
stationarity condition holds under P and P̃, then the net profit condition can not hold under P̃, i.e.
I (τ∗ < ∞) = 1, hence, we have the ruin probability (15).

Remark 6.1. If Z ∼ Exp(γ), then, the expression of the ruin probability (15) can be much
simplified, as Ψ(x) is a constant, i.e.

Ψ(x) =
e−γxev+

0 x
∫ ∞

x ev+
0 zγe−γzdz

=
γ − v+

0

γ
.

6.2. Generalised Cramér-Lundberg Approximation for Exponentially Distributed Claims
Based on Theorem 6.1, if Z ∼ Exp(γ) and the initial intensity follows the stationary distribu-

tion under P̃, i.e. λ̃ ∼ Π, then, the ruin probability is given by

P
{
τ∗ < ∞

∣∣∣X0 = x
}

=
γ − v+

0

γĝ(−η+
0 )
Ẽ
[
em+

0 λ̃
]
Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣X0 = x
]

e−v+
0 x.

Now, we further generalise the Cramér-Lundberg approximation.

Theorem 6.2. If the claim sizes follows exponential distribution and the initial intensity follows
the stationary distribution under P̃, i.e. Z̃ ∼ Exp(̃γ) and λ̃ ∼ Π, then, the generalised Cramér-
Lundberg approximation is given by

P
{
τ∗ < ∞

∣∣∣X0 = x
}
∼ Ce−v+

0 x, x→ ∞,
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where

C =:
γ − v+

0

γĝ(−η+
0 )
Ẽ
[
em+

0 λ̃
]

1
γ̃
Ẽ

[
e−m+

0 λ̃λ̃
]
− c̃Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣X0 = 0
]

1
γ̃
Ẽ[̃λ] − c̃

. (22)

Proof. Use the new set of parameters under P̃ given by Theorem 6.1, and rewrite (21) as

− δ
(̃
λ − ã

) ∂ f̃

∂λ̃
+ c̃

∂ f̃
∂x

+ λ̃


∫ ∞

0

∫ x

0
f̃
(
x − z, λ̃ + u

)
dZ̃(z)d˜̃G(u) + Ψ(x)

e−m+
0 λ̃

ĝ(−η+
0 )

Z̃(x) − f̃



+ ρ̃

(∫ ∞

0
f̃
(
x, λ̃ + u

)
d˜̃H(u) − f̃

)
= 0.

If Z̃ ∼ Exp(̃γ), γ̃ = γ − v+
0 under P̃ (equivalent to Z ∼ Exp(γ) under P), then, by Remark 6.1, we

have

− δ
(̃
λ − ã

) ∂ f̃

∂λ̃
+ c̃

∂ f̃
∂x

+ λ̃


∫ ∞

0

∫ x

0
f̃
(
x − z, λ̃ + u

)
γ̃e−γ̃zdzd˜̃G(u) +

γ − v+
0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

e−γ̃x − f̃



+ ρ̃

(∫ ∞

0
f̃
(
x, λ̃ + u

)
d˜̃H(u) − f̃

)
= 0.

Take Laplace transform w.r.t. x, i.e.

ˆ̃f (w, λ̃) =: L
{
f̃ (x, λ̃)

}
=

∫ ∞

0
f̃ (u, λ̃)e−wudu,

we have

L

∂ f̃ (x, λ̃)
∂x

 = w ˆ̃f (w, λ̃) − f̃ (0, λ̃),

L
{∫ x

0
f̃ (x − z, λ̃ + u)̃γe−γ̃zdz

}
=

γ̃

γ̃ + w
ˆ̃f (w, λ̃ + u),

L
{
e−γ̃x

}
=

1
γ̃ + w

,

then,

− δ
(̃
λ − ã

) ∂ ˆ̃f (w, λ̃)

∂λ̃
+ c̃

(
w ˆ̃f (w, λ̃) − f̃ (0, λ̃)

)

+ λ̃


γ̃

γ̃ + w

∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃G(u) +
γ − v+

0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

1
γ̃ + w

− ˆ̃f (w, λ̃)



+ ρ̃

(∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃H(u) − ˆ̃f (w, λ̃)
)

= 0,
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or,

Ã ˆ̃f (w, λ̃) + c̃
(
w ˆ̃f (w, λ̃) − f̃ (0, λ̃)

)
+ λ̃

−
w

γ̃ + w

∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃G(u) +
γ − v+

0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

1
γ̃ + w

 = 0.

If λ̃ ∼ Π, then,

Ẽ
Ã ˆ̃f (w, λ̃) + c̃

(
w ˆ̃f (w, λ̃) − f̃ (0, λ̃)

)
+ λ̃

−
w

γ̃ + w

∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃G(u) +
γ − v+

0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

1
γ̃ + w


 = 0,

and

lim
w→0

Ẽ
Ã ˆ̃f (w, λ̃) + c̃

(
w ˆ̃f (w, λ̃) − f̃ (0, λ̃)

)
+ λ̃

−
w

γ̃ + w

∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃G(u) +
γ − v+

0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

1
γ̃ + w


 = 0.

Since
C̃ =: lim

x→∞
f̃ (x, λ̃) = lim

w→0
w ˆ̃f (w, λ̃),

lim
w→0

w
γ̃ + w

∫ ∞

0

ˆ̃f (w, λ̃ + u)d˜̃G(u) =

∫ ∞

0
lim
w→0

w
γ̃ + w

ˆ̃f (w, λ̃ + u)d˜̃G(u) =

∫ ∞

0

1
γ̃

C̃d˜̃G(u) =
C̃
γ̃
,

and by Theorem 2.2, we also have E
[
Ã ˆ̃f (0, λ̃)

]
= 0, then,

Ẽ
̃c

(
C̃ − f̃ (0, λ̃)

)
+ λ̃

−
C̃
γ̃

+
γ − v+

0

γ

e−m+
0 λ̃

ĝ(−η+
0 )

1
γ̃


 = 0,

and

C̃ =
γ − v+

0

γĝ(−η+
0 )

1
γ̃
Ẽ

[
e−m+

0 λ̃λ̃
]
− c̃Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣̃λ0 = λ̃ ∼ Π, X0 = 0
]

1
γ̃
Ẽ[̃λ] − c̃

, (23)

note that, by definition,

Ẽ
[
f̃ (0, λ̃)

]
=

γ − v+
0

γĝ(−η+
0 )
Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣̃λ0 = λ̃ ∼ Π, X0 = 0
]
.

Hence, we have the generalised Cramér-Lundberg constant (22) for λ̃ ∼ Π, as

C =: lim
x→∞

P
{
τ∗ < ∞

∣∣∣X0 = x
}

e−v0 x = lim
x→∞

Ẽ
[
em+

0 λ̃ f̃ (x, λ̃)
]

= Ẽ
[
em+

0 λ̃
]
C̃.

Remark 6.2. For the Cramér-Lundberg constant (22), by Theorem 2.1 and Corollary 2.1, we
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can explicitly calculate the terms

Ẽ[̃λ] =
µ1˜̃H

ρ̃ + ã̃δ

δ̃ − µ1˜̃G

,

Ẽ
[
em+

0 λ̃
]

= exp


∫ 0

−m+
0

ã̃δu + ρ̃[1 − ˆ̃̃
h(u)]

δ̃u +
ˆ̃̃g(u) − 1

du

 ,

Ẽ
[
λ̃e−m+

0 λ̃
]

= − d
dm
Ẽ
[
e−mλ̃]

∣∣∣∣∣
m=m+

0

=
ã̃δm+

0 + ρ̃[1 − ˆ̃̃
h(m+

0 )]

δ̃m+
0 +

ˆ̃̃g(m+
0 ) − 1

exp

−
∫ m+

0

0

ã̃δu + ρ̃[1 − ˆ̃̃
h(u)]

δ̃u +
ˆ̃̃g(u) − 1

du

 .

Also, by Theorem 6.3 for the net profit condition under the measure P̃, we have

1
γ̃
Ẽ[̃λ] − c̃ > 0.

6.3. Net Profit Condition under P and P̃
Theorem 6.3. If the net profit condition and the stationarity condition both hold under P, i.e.

c >
µ1Hρ + aδ
δ − µ1G

µ1Z , δ > µ1G ,

and the stationarity condition also holds under the new measure P̃, i.e. δ̃ > µ1˜̃G
, then, under P̃,

we have
µ1˜̃H

ρ̃ + ã̃δ

δ̃ − µ1˜̃G

µ1Z̃
> c̃, (24)

and the ruin becomes certain (almost surely), i.e.

P̃ {τ∗ < ∞} =: lim
t→∞

P̃ {τ∗ ≤ t} = 1.

Proof. By the transformation between two measures from Theorem 6.1, we have

µ1Z̃
=: Ẽ [Zi] =

∫ ∞

0
zdZ̃(z) =

∫ ∞

0
z

ev+
0 zdZ(z)

ẑ
(
−v+

0

) =
1

ẑ
(
−v+

0

)
∫ ∞

0
zev+

0 zdZ(z) =
ẑ′

(
−v+

0

)

ẑ
(
−v+

0

) .

Change variable y = 1
1+δη+

0
u, then,

µ1˜̃H
= Ẽ

[
Y (1)

]
=

∫ ∞

0
u

h̃
(

u
1+δη+

0

)

1 + δη+
0

du =

∫ ∞
0 ue

η+0
1+δη+0

u
h
(

1
1+δη+

0
u
)

du
(
1 + δη+

0

)
ĥ(−η+

0 )
=

1 + δη+
0

ĥ(−η+
0 )

∫ ∞

0
yeη

+
0 ydH(y);

µ1˜̃G
= Ẽ

[
Y (2)

]
=

1 + δη+
0

ĝ(−η+
0 )

∫ ∞

0
yeη

+
0 ydG(y) = ẑ(−v+

0 )ĝ′(−η+
0 ).

(
∵ ẑ(−v+

0 )ĝ(−η+
0 ) = 1 + δη+

0

)
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Net Profit Condition via the Lundberg Fundamental Equation

Figure 6: Net Profit Condition via the Generalised Lundberg Fundamental Equation

The mean of self-excited jump sizes under P̃ is greater than the one under P, since

µ1˜̃G
> ĝ′(−η+

0 ) =

∫ ∞

0
yeη

+
0 ydG(y) >

∫ ∞

0
ydG(y) = µ1G .

Hence,

µ1˜̃H
ρ̃ + ã̃δ

δ̃ − µ1˜̃G

µ1Z̃

=
ρ
∫ ∞

0 yeη
+
0 ydH(y) + aδ

δ − ẑ(−v+
0 )ĝ′(−η+

0 )
1 + δη+

0

ẑ(−v+
0 )

∫ ∞

0
zev+

0 zdZ(z)
(
∵ ẑ(−v+

0 )ĝ(−η+
0 ) = 1 + δη+

0

)

= ẑ′(−v+
0 )ĝ(−η+

0 )
ĥ′(−η+

0 )ρ + aδ
δ − ẑ(−v+

0 )ĝ′(−η+
0 )
. (25)

From the generalised Lundberg’s fundamental equation, we have

1 + δη+
0 = ẑ


−aδη+

0 + ρ
(
1 − ĥ(−η+

0 )
)

c

 ĝ(−η+
0 ).

If the net profit condition and stationarity condition both holds under P, the right-hand-side
function is a strictly increasing and convex function of η+

0 as obviously a convex function of a
24



function convex function is still a convex function; it was also proved formally in the proof of
Lemma 4.1. Hence, as shown in Figure 6, at the point η+

0 the slope of the left-hand-side function
is greater than the slope of the right-hand-side function, i.e.

d
dη

(
1 + δη

)∣∣∣∣∣∣
η=η+

0

<
d
dη

ẑ

−aδη + ρ

(
1 − ĥ(−η)

)

c

 ĝ(−η)


∣∣∣∣∣∣
η=η+

0

,

or,

δ < −


aδ + ρ
dĥ(−η+

0 )
dη+

0

c


dẑ(u)

du

∣∣∣∣∣
u=
−aδη+0 +ρ(1−ĥ(−η+0 ))

c

ĝ(−η+
0 ) + ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

= −


aδ + ρ
dĥ(−η+

0 )
dη+

0

c


dẑ(u)

du

∣∣∣∣∣
u=−v+

0

ĝ(−η+
0 ) + ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

=


aδ + ρ

dĥ(−η+
0 )

dη+
0

c


dẑ(−v+

0 )
dv+

0
ĝ(−η+

0 ) + ẑ(−v+
0 )

dĝ(−η+
0 )

dη+
0

,

and

c
(
δ − ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

)
<

aδ + ρ
dĥ(−η+

0 )
dη+

0


dẑ(−v+

0 )
dv+

0
ĝ(−η+

0 ).

Since the stationarity condition also holds under P̃, i.e.

δ > ẑ(−v+
0 )

dĝ(−η+
0 )

dη+
0

,

then,

c <
aδ + ρ

dĥ(−η+
0 )

dη+
0

δ − ẑ(−v+
0 ) dĝ(−η+

0 )
dη+

0

ĝ(−η+
0 )

dẑ(−v+
0 )

dv+
0

,

and by (25), we have (24).

Remark 6.3. If the net profit condition and the stationarity condition hold under P, but the
stationarity condition does not hold under P̃, i.e. δ̃ < µ1˜̃G

, then, the intensity λ̃t under P̃ will
increase arbitrarily. It does not mean the measures are not equivalent, as we are only considering
them till a fixed time T anyway in the optional stopping theorem; also, ruin does occur with
probability one and pretty fast (which will manifest itself in the simulation).

In particular, for the special case of shot noise intensity, interestingly , we find a conjugate
relationship between the expected loss rates under the two measures.

Corollary 6.1. For the shot noise case with H ∼ Exp(α) and Z ∼ Exp(γ), if the net profit
condition holds under the original measure P, i.e.

c >
ρ

δαγ
,
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then, under the new measure P̃, we have

c̃ <
ρ̃

δ̃α̃γ̃
,

and
ρ

δαγ

ρ̃

δ̃α̃γ̃
= c2. (26)

Proof. In particular, for the shot noise case with jump-size distributions H ∼ Exp(α) and Z ∼
Exp(γ) (by setting a = 0 and ĝ(·) = 1 in Theorem 6.3), we have the parameters transformed by

• c→ c̃ = c,

• δ→ δ̃ = δ,

• ρ↗ ρ̃ = α
α−η+

0
ρ,

• γ ↘ γ̃ = γ − v+
0 ,

• α↘ α̃ =
α−η+

0
1+δη+

0
,

where the constants are restricted by the generalised Lundberg’s fundamental equation

δη+

0 =
γ

γ−v+
0
− 1

cv+
0 = ρ

(
α

α−η+
0
− 1

)
(
c >

ρ

δαγ

)
.

The net profit condition holds under P, i.e. c > ρ
δαγ

, but under P̃ we have ρ̃

δ̃α̃γ̃
> c̃, since

ρ̃

δ̃α̃γ̃
=

α
α−η+

0
ρ

α−η+
0

1+δη+
0

(
γ − v+

0

)
δ

=
αρ

δ

1 + δη+
0

(α − η+
0 )2 γ

δη+
0 +1

(
∵ γ − v+

0 =
γ

δη+
0 + 1

)

=
αρ

δγ

(
1 + δη+

0

α − η+
0

)2

=
αρ

δγ

(
cδγ
ρ

)2

=
δαγ

ρ
c2

(
∵ c =

1 + δη+
0

α − η+
0

ρ

δγ

)

>
δαγ

ρ

ρ

δαγ
c = c̃.

Hence, we also find (26).
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7. Example: Jumps with Exponential Distributions

To represent the previous results in explicit forms, in this section, we further assume the
externally excited and self-excited jumps in the intensity process λt and the claim sizes all follow
exponential distributions, i.e. H ∼ Exp(α), G ∼ Exp(β) and Z ∼ Exp(γ), with the density
functions

h(y) = αe−αy, g(y) = βe−βy, z(z) = γe−γz, y, z;α, β, γ > 0,

and the Laplace transforms

ĥ(u) =
α

α + u
, ĝ(u) =

β

β + u
, ẑ(u) =

γ

γ + u
.

7.1. Generalised Lundberg’s Fundamental Equation
We discuss the general case 0 ≤ r < r∗ and the special case r = 0 for the generalised

Lundberg’s fundamental equation (from Theorem 4.1) respectively.

Case 0 ≤ r < r∗. By Theorem 4.1, we have the generalised Lundberg’s fundamental equation
for 0 ≤ r < r∗,


γ

γ−vr

β
β−ηr

= 1 + δηr

−vr =
r−aδηr+ρ

(
1− α

α−ηr

)

c

(
vr < γ, ηr < (α ∧ β); c >

β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1
)
,

or, rewrite it w.r.t. ηr as

1 + δηr =
cγβ(α − ηr)(

aδη2
r − (γc + ρ + aδα + r)ηr + γcα + αr

)
(β − ηr)

, ηr < (α ∧ β),

vr =
ηr

c

(
ρ

α − ηr
+ aδ

)
− r

c
, vr < γ,

with parameters restricted by

c >
β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1.

Solve (9) of Lemma 4.2 and substitute the unique negative solution η∗ =
δβ−1
δ

into (8), we
obtain the constant r∗,

r∗ = (δβ − 1)
(
a +

ρ

δ(α − β) + 1

)
.

Case r = 0. Set r → 0, we have the generalised Lundberg’s fundamental equation for r = 0,


γ
γ−v0

β
β−η0

= 1 + δη0

−v0 =
−aδη0+ρ

(
1− α

α−η0

)

c

(
v0 < γ, η0 < (α ∧ β); c >

β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1
)
,

or, rewrite w.r.t. η0 as

1 + δη0 =
cγβ(α − η0)(

aδη2
0 − (γc + ρ + aδα)η0 + γcα

)
(β − η0)

, η0 < (α ∧ β),

v0 =
η0

c

(
ρ

α − η0
+ aδ

)
, v0 < γ,
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with parameters restricted by

c >
β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1.

The results of case r = 0 here will be used later in Section 7.3 for numerical calculations.

7.2. Ruin Probability and Generalised Cramér-Lundberg Approximation via Measure P̃
The Corollary 7.1 below is an example of Theorem 6.1 and Theorem 6.2 by additionally

assuming the exponential distributions.

Corollary 7.1. If H ∼ Exp(α), G ∼ Exp(β), Z ∼ Exp(γ), α ≥ β, the net profit condition holds
under P, and stationarity condition holds under P and P̃, and the initial intensity follows the
stationary distribution under P̃, i.e. λ̃ D= ã + Γ̃1 + Γ̃2 where

Γ̃1 ∼ Gamma
1

δ̃

(
ã +

ρ̃

δ̃(α̃ − β̃) + 1

)
,
δ̃β̃ − 1

δ̃

 , Γ̃2 ∼ Gamma
 ρ̃(α̃ − β̃)

δ̃(α̃ − β̃) + 1
, α̃

 ,

then, we have the ruin probability

P
{
τ∗ < ∞

∣∣∣X0 = x
}

=
γ − v+

0

γ

β − η+
0

β
Ẽ
[
em+

0 λ̃
]
Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣X0 = x
]

e−v+
0 x, (27)

and the generalised Cramér-Lundberg approximation

P
{
τ∗ < ∞

∣∣∣X0 = x
}
∼ Ce−v+

0 x, x→ ∞,

where

C =:
γ − v+

0

γ

β − η+
0

β
Ẽ
[
em+

0 λ̃
]

1
γ̃
Ẽ

[
e−m+

0 λ̃λ̃
]
− c̃Ẽ

[
e−m+

0 λ̃τ∗−

∣∣∣∣∣X0 = 0
]

1
γ̃
Ẽ[̃λ] − c̃

. (28)

The transformation from P to P̃ is given by

• a↗ ã =:
(
1 + δη+

0

)
a,

• c→ c̃ =: c,

• δ→ δ̃ =: δ,

• ρ↗ ρ̃ =: α
α−η+

0
ρ,

• γ ↘ γ̃ =: γ − v+
0 ,

• β↘ β̃ =: β−η+
0

1+δη+
0
,

• α↘ α̃ =: α−η+
0

1+δη+
0
.
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Proof. If H ∼ Exp(α), G ∼ Exp(β), Z ∼ Exp(γ), by Theorem 2.3 for the case when α ≥ β, we
have the Laplace transform

Ẽ
[
e−m+

0 λ̃
]

= e−m+
0 ã

(
α̃

α̃ + m+
0

) ρ̃(α̃−β̃)
δ̃(α̃−β̃)+1


δ̃β̃−1
δ̃

m+
0 +

δ̃β̃−1
δ̃



1
δ̃

(
ã+

ρ̃

δ̃(α̃−β̃)+1

)

.

Use Theorem 6.1 and Theorem 6.2, the ruin probability and generalised Cramér-Lundberg ap-
proximation can be derived immediately.

We only discuss the case when α ≥ β for instance. It is similar to derive the corresponding
results for other cases when α < β and we omit them here.

Remark 7.1. We can calculate explicitly for the terms in (27) and (28) of Corollary 7.1,

Ẽ
[
em+

0 λ̃
]

= em+
0 ã

(
α̃

α̃ − m+
0

) ρ̃(α̃−β̃)
δ̃(α̃−β̃)+1


δ̃β̃−1
δ̃

δ̃β̃−1
δ̃
− m+

0



1
δ̃

(
ã+

ρ̃

δ̃(α̃−β̃)+1

)

,

Ẽ
[
e−m+

0 λ̃λ̃
]

= e−m+
0 ã

(
α̃

α̃ + m+
0

) ρ̃(α̃−β̃)
δ̃(α̃−β̃)+1


δ̃β̃−1
δ̃

m+
0 +

δ̃β̃−1
δ̃



1
δ̃

(
ã+

ρ̃

δ̃(α̃−β̃)+1

)

ã̃δ +
ρ̃

α̃+m+
0

δ̃ − 1
β̃+m+

0

,

Ẽ[̃λ] =

ρ̃
α̃

+ ã̃δ

δ̃ − 1
β̃

,

except the term Ẽ
[
e−m+

0 λ̃τ∗−

∣∣∣∣∣λ0 = λ̃ ∼ Π, X0 = x
]
. However, this term can be easily estimated by

simulation under P̃ where ruin becomes certain. The procedure of estimation is discussed in
Section 7.3.

7.3. Numerical Examples
For the purpose of simulation, the event of ruin is indicated by comparing the loss with the

initial reserve X0 = x, namely, ruin occurs if

sup
t>0

ct −
Nt∑

i=i

Zi

 ≥ X0.

Hence, the ruin probability is rewritten as

P
{
τ∗ < ∞

∣∣∣X0 = x
}

= P

sup
t>0

ct −
Nt∑

i=i

Zi

 ≥ x

 .

As discussed in Remark 7.1, for exponential distribution case when α ≥ β of Corollary 7.1,
all terms have explicit formulas except the one below that relies on simulation

Ẽ
[
e−m+

0 λ̃τ∗−

∣∣∣∣∣̃λ0 = λ̃ ∼ Π, X0 = x
]

= lim
k→∞

e−m+
0 λ̃τ∗1− + e−m+

0 λ̃τ∗2− + ... + e−m+
0 λ̃τ∗k−

k
,

where k is the number of simulations.
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Remark 7.2. Under the original measure P, the event of ruin is rare and particularly it is hard
to simulate an infinitely long path (t = ∞) for estimating P{τ∗ < t = ∞

∣∣∣X0 = x} precisely. Thus
we alternatively implement the simulation under the measure P̃ where ruin becomes certain and
hence the simulation is much faster, particularly for X0 = 0.

We provide two numerical examples based on 500, 000 simulations with different parameter
settings in Section 7.3.1 and Section 7.3.2, respectively. For each example, we compare the
simulated ruin probability and the estimated Cramér constant under P and P̃ based on Corollary
7.1.

7.3.1. Numerical Example 1
Simulation under P The parameters under original measure P are set by

(a, ρ, δ;α, β, γ; c) = (0.7, 0.5, 3; 2.5, 1, 1; 1.5).

Then, we can obtain (η+
0 , v

+
0 ) = (0.0811, 0.1247), the unique solution of the generalised Lund-

berg’s fundamental equation (given by Case r = 0 of Section 7.1). It is easy to check that α ≥ β,
the stationarity condition and the net profit condition all hold, as

δ = 3 >
1
β

= 1, c = 1.5 >
ρ
α

+ aδ

δ − 1
β

1
γ

= 1.15, ⇒ I (τ∗ < ∞) < 1.

Calculate the ruin probability P{τ∗ < ∞
∣∣∣X0 = x} based on the simulation under P with λ0 ∼ Π,

i.e. λ0
D
= a + Γ1 + Γ2, where

Γ1 ∼ Gamma
(

1
δ

(
a +

ρ

δ(α − β) + 1

)
,
δβ − 1
δ

)
, Γ2 ∼ Gamma

(
ρ(α − β)

δ(α − β) + 1
, α

)
.

Since P{τ∗ < ∞
∣∣∣X0 = x} ∼ Ce−v0 x, the Cramér constant C can be estimated by the ratio

P{τ∗ < ∞
∣∣∣X0 = x}/e−v+

0 x for a large X0 = x. The probability P{τ∗ < ∞
∣∣∣X0 = x} and the ratio for

C estimation are given by the first and second rows of Table 2 and the plotted by the first and
second graphs of Figure 7. Alternatively, it could be more convenient to look at the results by
taking logarithm as

ln
(
P{τ∗ < ∞

∣∣∣X0 = x}
)
∼ ln C − v0x, x→ ∞.

The results are given by the fourth and fifth rows of Table 2 and plotted by the third graph of
Figure 7.

Table 2: Example 1: Numerical Results

X0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
P

{
τ∗ < ∞

∣∣∣X0
}

76.90%56.56%42.85%32.93%25.45%19.75%15.35%11.93% 9.29% 7.24% 5.63% 4.38% 3.42% 2.66% 2.07% 1.62%
C Estimation 76.90%72.58%70.57%69.59%69.03%68.75%68.56%68.40%68.34%68.30%68.14%68.14%68.13%68.10%68.04%68.10%

PP̃
{
τ∗ < ∞

∣∣∣X0
}

78.71%57.76%43.60%33.42%25.84%20.06%15.56%12.10% 9.42% 7.33% 5.71% 4.44% 3.47% 2.70% 2.10% 1.64%
ln P

{
τ∗ < ∞

∣∣∣X0
}

-0.263 -0.570 -0.847 -1.111 -1.368 -1.622 -1.874 -2.126 -2.376 -2.626 -2.878 -3.127 -3.377 -3.627 -3.877 -4.126
ln(66.93%) − v0X0 -0.402 -0.651 -0.900 -1.150 -1.399 -1.649 -1.898 -2.148 -2.397 -2.647 -2.896 -3.145 -3.395 -3.644 -3.894 -4.143

30



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8
Simulated Ruin Probabilities under Measure P and P~

 

 

0 5 10 15 20 25 30
0.65

0.7

0.75

0.8
Estimated Cramer Constant under Measure P and Measure P~

 

 

0 5 10 15 20 25 30
−5

−4

−3

−2

−1

0

X
0
=x

ln( P(τ* ∞ | X
0
=x) ) ~ lnC − v

0
 x,  x → ∞

 

 

Simulated Ruin Probability (Measure P)

Simulated Ruin Probability (Measure P~)

Estimated C (Measure P)

Estimated C (Measure P~)

ln( Simulated P(τ* ∞ | X
0
=x) ) 

ln(66.93%)−v
0
x

−v
0
x

66.93%

Figure 7: Example 1: Simulated Ruin Probabilities and Estimation for the Cramér Constant C under Measure P and P̃
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Remark 7.3. The accuracy deceases when X0 = x increases, as both of the numerator the ruin
probability P{τ∗ < ∞

∣∣∣X0 = x} and the denominator e−v+
0 x are approaching very closely to 0. The

ruin probability P{τ∗ < ∞
∣∣∣X0 = x} with a high initial reserve becomes harder to be estimated

precisely.

Simulation under P̃ Under the new measure P̃, by the transformation from Corollary 7.1,
the new parameter setting is given by

(̃a, ρ̃, δ̃; α̃, β̃, γ̃; c̃) = (0.8703, 0.5168, 3; 1.9455, 0.7391, 0.8753; 1.5000).

Then, we can obtain m+
0 = 0.0652. It is easy to check the stationarity condition holds but the net

profit condition does not hold and ruin is certain, as

δ̃ = 3 >
1

β̃
= 1.3530, c̃ = 1.5 <

ρ̃
α̃

+ ã̃δ

δ̃ − 1
β̃

1
γ̃

= 1.9954, ⇒ I (τ∗ < ∞) = 1.

We can also calculate
Ẽ
[
em+

0 λ̃
]

= 1.1261, Ẽ
[
e−m+

0 λ̃λ̃
]

= 1.4625,

explicitly, and estimate

Ẽ
[
e−m+

0 λ̃τ∗−

∣∣∣∣∣̃λ0 = λ̃ ∼ Π, X0 = 0
]
≈ 86.98%

from the simulation under P̃ given by third row of Table 3. Note that, under P̃, ruin is certain, i.e.
P̃ {τ∗ < ∞} = 1 and Ẽ[λ̃t] = 1.7466.

Table 3: Example 1: Ruin Simulation under P̃ with X0 = 0

Time T 5 10 20 40 80 100 150 200 250 300 350 400
P̃ {τ∗ < T } 78.23% 87.23% 93.22% 97.01% 99.17% 99.44% 99.84% 99.94% 99.98% 99.99% 100.00% 100.00%
Ẽ[̃λτ∗ ] 1.1195 1.7354 2.5672 3.5823 4.6133 4.8776 5.2838 5.4970 5.4613 5.4577 5.6493 5.5630

Ẽ[e−m+
0 λ̃τ∗

]
0.8913 0.8813 0.8767 0.8723 0.8710 0.8709 0.8701 0.8696 0.8709 0.8698 0.8703 0.8699

Hence, C̃ ≈ 59.4328% (defined by (23)), and the estimated Cramér constant C = 1.1261 ×
59.4328% = 66.93%, then,

P
{
τ∗ < ∞

∣∣∣X0 = x
}
∼ 66.93%e−0.1247x, x→ ∞.

Here C is consistent with the result (round 68% in Table 2) obtained earlier by simulation under
the original measure P.

The comparison between the ruin probability PP̃
{
τ∗ < ∞

∣∣∣X0

}
(calculated by (27) of Corollary

7.1) simulated under P̃ and the ruin probability P
{
τ∗ < ∞

∣∣∣X0

}
simulated directly under P is given

by the first and third rows of Table 2 and the first graph of Figure 7, and the results are very close.
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Remark 7.4. To compare with the classical Poisson model, given E[λt] = 1.15 for the dynamic
contagion case in Example 1, we also set the constant intensity λ̄ = 1.15 for the Poisson model,
and the corresponding Cramér constant can be then calculated exactly by

C =
λ̄

cγ
=

1.15
1.5 × 1

= 76.67%.

7.3.2. Numerical Example 2
Similarly, we provide another numerical example by using a different set of parameters. The

results are given by Table 4, Table 5, Table 6 and Figure 8.

Remark 7.5. By comparing the simulation of ruin under the original measure P (given by Figure
2) and under the alternative measure P̃ (given by the first row of Table 3 or Table 6), it becomes
evident that the simulation is more efficient under P̃ as much more events of ruin are realised.
For instance, for time T = 100 in Table 6, ruin is almost certain as P̃ {τ∗ < T } ≈ 1.

Table 4: Example 2: Parameters under Measure P and P̃

a ρ δ α β γ c Stationarity Net Profit
Measure P 0.7 0.5 3 2 1.5 1 1.5 Yes Yes
Measure P̃ 1.0026 0.5388 3 1.2957 0.9467 0.7724 1.5 Yes No

η+
0 v+

0 m+
0 Ẽ[em+

0 λ̃
] Ẽ[e−m+

0 λ̃λ̃
] Ẽ[e−m+

0 λ̃τ∗−
∣∣∣̃λ0 = λ̃ ∼ Π, X0 = 0

]
Ẽ[λ̃t] C̃ C

0.1441 0.2276 0.1006 1.2019 1.3974 83.30% 1.7615 50.06% 60.17%

Table 5: Example 2: Numerical Results

X0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
P

{
τ∗ < ∞

∣∣∣X0
}

68.65%41.52%25.72%16.12%10.16% 6.42% 4.05% 2.58% 1.64% 1.03% 0.65% 0.41% 0.26% 0.17% 0.11% 0.07%
C Estimation 68.65%65.45%63.93%63.17%62.78%62.50%62.23%62.43%62.42%62.14%61.95%62.02%62.28%63.23%62.74%62.44%

PP̃
{
τ∗ < ∞

∣∣∣X0
}

69.89%41.79%25.76%16.09%10.13% 6.40% 4.05% 2.56% 1.62% 1.03% 0.65% 0.41% 0.26% 0.17% 0.11% 0.07%
ln P

{
τ∗ < ∞

∣∣∣X0
}

-0.376 -0.879 -1.358 -1.825 -2.286 -2.746 -3.206 -3.658 -4.113 -4.573 -5.031 -5.485 -5.936 -6.376 -6.839 -7.299
ln(60.17%) − v0X0 -0.508 -0.963 -1.418 -1.874 -2.329 -2.784 -3.239 -3.694 -4.150 -4.605 -5.060 -5.515 -5.970 -6.426 -6.881 -7.336

Table 6: Example 2: Ruin Simulation under P̃ with X0 = 0

Time T 5 10 20 40 80 100 150 200 250 300 350 400
P̃ {τ∗ < T } 85.23% 92.94% 97.50% 99.36% 99.93% 99.97% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Ẽ[̃λτ∗ ] 1.0488 1.5517 2.1127 2.6248 2.9161 2.9408 3.0033 2.9541 3.0213 3.0096 2.9674 3.0206
Ẽ[e−mλ̃τ∗ ] 0.8455 0.8396 0.8357 0.8335 0.8332 0.8329 0.8327 0.8330 0.8329 0.8331 0.8331 0.8330
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34



References

[1] Albrecher, H., Asmussen, S. (2006). Ruin Probabilities and Aggregrate Claims Distributions for Shot Noise Cox
Processes. Scandinavian Actuarial Journal. 2: 86-110.

[2] Asmussen, S. (2000). Ruin Probabilities. World Scientific.
[3] Asmussen, S. (1985). Conjugate Processes and the Simulation of Ruin Problems. Stochastic Processes and their

Applications . 20: 213-229.
[4] Björk, T., Grandell, J. (1988). Exponential Inequalities for Ruin Probabilities in the Cox Case. Scandinavian Actu-

arial Journal. 77-111.
[5] Dassios, A., Embrechts, P. (1989). Martingales and Insurance Risk. Communications in Statistics-Stochastic Mod-

els. 5(2): 181-217.
[6] Dassios, A., Jang, J. (2003). Pricing of Catastrophe Reinsurance and Derivatives Using the Cox Process with Shot

Noise Intensity. Finance & Stochastics. 7(1): 73-95.
[7] Dassios, A., Zhao, H. (2011). A Dynamic Contagion Process. Advances in Applied Probability. 43(3): 1-33. to

appear.
[8] Davis, M.H.A. (1984). Piecewise Deterministic Markov Processes: A General Class of Nondiffusion Stochastic

Models. Journal of the Royal Statistical Society B. 46: 353-388.
[9] Davis, M.H.A. (1993). Markov Model and Optimization. Chapman and Hall.

[10] Embrechts, P., Wouters, L. (1990). Simulating Risk Solvency. Insurance: Mathematics and Economics. 9: 141-148.
[11] Embrechts, P., Grandell, J., Schmidli, H. (1993). Finite-time Lundberg Inequalities in the Cox Case. Scandinavian

Actuarial Journal. 1: 17-41.
[12] Embrechts, P., Schmidli, H. (1994). Ruin Estimation for a General Insurance Risk Model. Advances in Applied

Probability. 26: 404-422.
[13] Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. Huebner.
[14] Gerber, H.U., Shiu, E.S.W. (1996). Actuarial Bridges to Dynamic Hedging and Option Pricing. Insurance: Mathe-

matics and Economics. 18: 183-218.
[15] Gerber, H.U., Shiu, E.S.W. (1997). The Joint Distribution of the Time of Ruin, the Surplus Immediately before

Ruin, and the Deficit at Ruin. Insurance: Mathematics and Economics. 21: 129-137.
[16] Gerber, H.U., Shiu, E.S.W. (1998). On the Time Value of Ruin. North American Actuarial Journal. 2(1): 48-78.
[17] Grandel, J. (1991). Aspects of Risk Theory. Springer.
[18] Hawkes, A.G. (1971). Spectra of Some Self-exciting and Mutually Exciting Point Processes. Biometrika. 58(1),

83-90.
[19] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J. (1999). Stochastic Processes for Insurance and Finance. Wiley,

Chichester.
[20] Schmidli, H. (1996). Lundberg Inequalities for a Cox Model with a Piecewise Constant Intensity. Journal of Applied

Probability. 33(1): 196-210.
[21] Stabile, G., Torrisi, G.L. (2010). Risk Processes with Non-stationary Hawkes Claims Arrivals. Methodology and

Computing in Applied Probability. 12, 415-429.

35


