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Abstract

In this paper, we study the excursion time and occupation time of
a Markov process below or above a given level by using a simple two
states semi-Markov model. In mathematical finance, these results have
an important application in the valuation of path dependent options such
as Parisian options and cumulative Parisian options. We introduce a
new type of Parisian option, single barrier two-sided Parisian option and
extend the concept of a ruin probability in ruin theory to a Parisian type
of ruin probability.
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1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-
Picque and Yor [6]. A Parisian option is a special case of path dependent
option. Its payoff does not only depend on the final price of the underlying
asset, but also its price trajectory during the whole life span of the option.
More precisely, a Parisian option will be either initiated or exterminated upon
reaching a predetermined barrier level L and staying above or below the level
for a predetermined time D before the maturity date T .

There are two different ways of measuring the time spent above or below the
barrier corresponding to the excursion time and the occupation time defined
below. The excursion time below (above) the barrier starts counting from 0
each time the process crosses the barrier from above (below) and stops counting
when the process crosses the barrier from below (above). The occupation time
up to a specific time t adds up all the time the process spend below (above)
the barrier; it is therefore the summation of all excursion time intervals before
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time t. In [6] the Parisian options related to the occupation time are called
cumulative Parisian options. Therefore the owner of a Parisian Down-and-
out option loses the option if the underlying asset price S reaches the level L
and remains constantly below this level for a time interval longer than D. For
a Parisian Down-and-in option the same event gives the owner the right to
exercise the option. The owner of a cumulative Parisian Down-and-out option
loses the option if the total time the underlying asset price S stays below L
up to the end of the contract for longer than D. For details on the pricing of
Parisian options see [6], [11], [13] and [10]. For cumulative Parisian options see
[6] and since these are related to the occupation time and hence the quantiles
of the process, also see [1], [8] and [12].

From the description above, we can see that the key for pricing a Parisian
option (a cumulative Parisian option) is the derivation of the distribution of
the excursion time (the occupation time). As in [6], we reduce the problem
to finding the Laplace transform of the first time the length of the excursion
reaches level D. In [6] this was obtained by using the Brownian meander and
the Azema martingale (see [2]). A restriction of this technique is that it relies
heavily on the properties of Brownian motion; therefore the result cannot be
extended to other processes easily. It is also hard to see how it can be used for
the pricing of slightly more complicated options that we will introduce.

In this paper, we are going to study the excursion and occupation times in
a more general framework using a simple semi-Markov model consisting of two
states indicating whether the process is above or below a fixed level L . By
applying the model to a Brownian motion, we can get the Laplace transform
which is used in pricing Parisian options defined in [6]. One can then invert
using techniques as in [11].

Furthermore, we introduce a new type of Parisian option, named single bar-
rier two-sided Parisian options. In contrast to the Parisian options mentioned
above, we consider the excursions both below and above the barrier. For ex-
ample, the owner of this type of Parisian Out option loses the option if the
underlying asset process S has either an excursion above the barrier for longer
than d1 or below barrier for longer than d2 before the maturity of the option.
And the owner of a Parisian In option gains the right to exercise the option if
the same event happens. Later on, we will give the Laplace transform of the
first time this event happens which can be used to price this type of options.

We also obtain a result which we call Parisian type ruin probability for a
Brownian motion with a positive drift. For a stochastic process S, we define
T0 = inf{t > 0 |St < 0}. Suppose that S is a Brownian motion with a positive
drift, which can be used as an approximation to the surplus of an insurer (see
for example [9] Chapter 1). In risk theory, the ruin probability is defined as
P (T0 < ∞), i.e. the probability that the event of ruin, {∃t > 0 |St < 0},
happens. We extend the concept of ruin to a Parisian type of ruin, which refers
to the event that S falls below 0 and stays below 0 constantly for at least a
time D. The Parisian type ruin probability is the probability that this event
ever happens. From a regulatory point of view this might be a more reliable
measure of insolvency than a very short lived cash flow problem.
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In §2 we give the mathematical definitions and model setting. In §3 we
present an important lemma together with its proof, which will be used in the
following sections. We will give our main results applied to Brownian motion
in §4, as well as introduce our newly-defined Parisian options and Parisian type
ruin probabilities.

2 Definitions

We are going to use the same definition for the excursion as in [6] and [7]. Let
S be a stochastic process and L be the level of the barrier. As in [6], we define

gS
L,t = sup{s ≤ t | Ss = L}, dS

L,t = inf{s ≥ t | Ss = L} (1)

with the usual convention, sup{∅} = 0 and inf{∅} = ∞. The trajectory between
gS

L,t and dS
L,t is the excursion of process S which straddles time t. Assuming

d1 > 0, d2 > 0, we now define

τS
1 = inf{t > 0 | 1{St>L}(t− gS

L,t) ≥ d1}, (2)

τS
2 = inf{t > 0 | 1{St<L}(t− gS

L,t) ≥ d2}, (3)

τS = τS
1 ∧ τS

2 . (4)

τS
1 is therefore the first time that the length of the excursion of process S above

the barrier L reaches given level d1; τS
2 corresponds to the one below the barrier

L; and τS is the smaller of τS
1 and τS

2 .
Assume r is the risk-free rate, T is the term of the option, St is the price

of its underlying asset, K is the strike price. If we have an up-out Parisian call
option with barrier L, its price can be expressed as:

P = e−rT E
(
1{τS

1 >T} (ST −K)+
)

;

and the price of a down-in Parisian put option with barrier L is:

P = e−rT E
(
1{τS

2 <T} (K − ST )+
)

.

Furthermore, we define

LS
1,t =

∫ t

0

1{Su>L}du, LS
2,t =

∫ t

0

1{Su<L}du.

LS
1,t is the total time that the process spends above level L up to time t, i.e. the

occupation time above level L by time t; and LS
2,t corresponds to the one below

L.
From the description above, it is clear that we are actually considering two

states, the state when the process is above the barrier and the state when it is
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below. For each state, we are interested in the time the process spends in it.
Based on this point of view, we introduce the semi-Markov model.

First of all, we define

ZS
t =

{
1, if St > L
2, if St < L

.

We can now express the variables defined above in terms of Zt:

gS
L,t = sup{s ≤ t | ZS

s 6= Zt}, (5)

dS
L,t = inf{s ≥ t | ZS

s 6= Zt}, (6)

τS
1 = inf{t > 0 | 1{ZS

t =1}(t− gS
L,t) ≥ d1}, (7)

τS
2 = inf{t > 0 | 1{ZS

t =2}(t− gS
L,t) ≥ d2}, (8)

LS
1,t =

∫ t

0

1{ZS
u =1}du, (9)

LS
2,t =

∫ t

0

1{ZS
u =2}du. (10)

We then define
V S

t = t− gS
L,t,

the time ZS
t has spent in the current state. It is easy to prove that (ZS

t , V S
t ) is

a Markov process. ZS
t is therefore a semi-Markov process with the state space

{1, 2}, where 1 stands for the state when the stochastic process S is above the
barrier and 2 corresponds to the state below the barrier.

Furthermore, we set US
i,k, i = 1, 2 and k = 1, 2, · · · to be the time ZS spends

in state i when it visits i for the kth time. And we have, for each given i and k,

US
i,k = V S

dS
L,t

= dS
L,t − gS

L,t, for some t.

Notice that given i, US
i,k, k = 1, 2, · · · , are i.i.d. We therefore define the transi-

tion density for ZS :

pij(t) = lim
∆t→0

P (t < US
i,k < t + ∆t),

Pij(t) = P (US
i,k < t), P̄ij(t) = P (US

i,k > t).

We have

Pij(t) =
∫ t

0

pij(s)ds = 1− P̄ij(t),

which is actually the probability that the process will stay in state i for no more
than time t. Notice that for some stochastic processes S and certain k, we have
P (US

i,k = ∞) > 0 (we adopt the convention US
i,k = ∞ if the process never leaves

state i at its kth excursion); therefore
∫ +∞
0

pij(s)ds < 1, i.e. with a positive
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probability, the process will stay in state i forever. Hence, it is not necessary
the case that P̄ij(t) =

∫ +∞
t

pij(s)ds.
Moreover, in the definition of ZS , we deliberately ignore the situation when

St = L. The reason is that we only consider the processes, which
∫ t

0

1{Su=L}du = 0.

Also, when L is the regular point of the process (see [5] for definition), we
have to deal with the degeneration of pij . Take Brownian Motion as an example.
Assume Wµ

t = µt + Wt with µ ≥ 0, where Wt is a standard Brownian Motion.
Setting x0 to be its starting point, we know its density for the first hitting time
of level L is

px0 =
|L− x0|√

2πt3
exp

{
− (L− x0 − µt)2

2t

}

(see [4]). According to the definition of the transition density, p12(t) = p21(t) =
pL(t) = 0. Obviously, when µ = 0 the same happens to the standard Brownian
Motion Wt.

Without loss of generality, from now on, we assume L = 0. In order to solve
the above problem, we introduce a new processe X

(ε)
t , ε > 0 as follow. Assume

Wµ
0 = ε. Define a sequence of stopping times

δ0 = 0,

σn = inf{t > δn |X(ε)
t = 0},

δn+1 = inf{t > σn |X(ε)
t = ε},

where n = 0, 1, · · · . The new process is given by
{

X
(ε)
t = Wµ

t if δn ≤ t < σn

X
(ε)
t = Wµ

t − ε if σn ≤ t < δn+1

.

It is actually a process which starts from ε and has the same behavior as the
related Brownian Motion expect that each time when it hits the barrier 0, it
will have a jump towards the opposite side of the barrier with size ε (see Figure
1). Its excursions above L and below L alternate.

From the definition, it is clear that 0 becomes an irregular point for X
(ε)
t ,

which converges to Wµ
t with Wµ

0 = 0 almost surely for all t. We prove in the
appendix that the Laplace transforms of the variables defined based on X

(ε)
t

converge to those based on Wµ
t . As a result, we can obtain the results for the

Brownian Motion by carrying out the calculation for X
(ε)
t and take the limit

ε → 0.
For X

(ε)
t , we can define the ZX , τX

1 , τX
2 , τX LX

1,t and LX
2,t as in (5)-(10).

For ZX , we have

p12(t) =
ε√

2πt3
exp

{
− (ε + µt)2

2t

}
,

p21(t) =
ε√

2πt3
exp

{
− (ε− µt)2

2t

}
.
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Figure 1: A sample path of X
(ε)
t

Clearly, all the arguments above apply to the standard Brownian motion,
which is a special case of Wµ

t when µ = 0.

3 An Important Lemma

In this section, we will present an important lemma regarding to the excursion
and occupation times, together with its proof.

Lemma 1 For X
(ε)
t , the joint Laplace transform for the occupation time above

and below 0 up to τX is given by

E
(
e
−αLX

1,τX−βLX

2,τX

)
=

e−αd1 P̄12(d1) + e−βd2 P̄21(d2)
∫ d1

0
e−βup12(u)du

1− ∫ d1

0
e−αsp12(s)ds

∫ d2

0
e−βsp21(s)ds

. (11)

Proof: We are going to consider the case when τS
1 < τS

2 and the case when
τS
1 > τS

2 respectively. We have

E
(
e
−αLS

1,τS−βLS
2,τS

)
= E

(
e
−αLS

1,τS−βLS
2,τS 1{τS

1 <τS
2 }

)
+E

(
e
−αLS

1,τS−βLS
2,τS 1{τS

1 >τS
2 }

)
.

Ai
k denotes the event that the first time the length of the excursion in state i

reaches di happens during the kth excursion in this state, and it happens before
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the length of the excursion in other states reaches the required levels, i.e.
{
A1

k

}
=

{
τS
1 < τS

2 , τS
1 is achieved in the kth excursion in state 1

}
,

{
A2

k

}
=

{
τS
1 > τS

2 , τS
2 is achieved in the kth excursion in state 2

}
.

So we have, for example,

E
(
e
−αLS

1,τS−βLS
2,τS 1{τS

1 <τS
2 }

)
=

∞∑

k=1

E
(
e
−αLS

1,τS−βLS
2,τS

∣∣∣A1
k

)
P

(
A1

k

)

=
∞∑

k=1

E

(
e
−αLS

1,τS
1
−βLS

2,τS
1

∣∣∣A1
k

)
P

(
A1

k

)
.

Notice that given A1
k, LS

1,τS
1

is comprised of k − 1 full excursions above barrier

L with the length less than d1 and last one with the length d1; and LS
2,τS

1
is

comprised of k full excursions below L with the length less than d2, i.e.

LS
1,τS

1
|A1

k = US
1,1 + US

1,2 + · · ·+ US
1,k−1 + d1, US

1,1 < d1, · · · , US
1,k−1 < d1;

LS
2,τS

1
|A1

k = US
2,1 + US

2,2 + · · ·+ US
2,k−1, US

2,1 < d2, · · · , US
2,k−1 < d2.

More importantly, US
1,n’s have distribution P12; US

2,n’s have distribution P21 and
all these variables are independent of each other. As a result,

E

(
e
−αLS

1,τS
1
−βLS

2,τS
1

∣∣∣A1
k

)

= E
(
e−α(Pk−1

n=1 US
1,n+d1)−β

Pk−1
n=1 US

2,n

∣∣∣US
1,1 < d1, · · · , US

1,k−1 < d1, U
S
2,1 < d2, · · · , US

2,k−1 < d2

)

= e−αd1

{∫ d1

0

e−αu p12(u)
P12(d1)

du

}k−1 {∫ d2

0

e−βu p21(u)
P21(d2)

du

}k−1

.

Also
P (A1

k) = P12(d1)k−1P21(d2)k−1P̄12(d1).

We have therefore

E
(
e
−αLS

1,τS−βLS
2,τS 1{τS

1 <τS
2 }

)

=
∞∑

k=1

e−αd1

{∫ d1

0

e−αu p12(u)
P12(d1)

du

}k−1 {∫ d2

0

e−βu p21(u)
P21(d2)

du

}k−1

P12(d1)k−1P21(d2)k−1P̄12(d1)

=
e−αd1 P̄12(d1)

1− ∫ d1

0
e−αsp12(s)ds

∫ d2

0
e−βsp21(s)ds

.
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Similarly, we have for the case when τS
1 > τS

2

E
(
e
−αLS

1,τS−βLS
2,τS 1{τS

1 >τS
2 }

)

=
∞∑

k=1

E
(
e
−αLS

1,τS−βLS
2,τS

∣∣∣A2
k

)
P

(
A2

k

)

=
∞∑

k=1

E

(
e
−αLS

1,τS
2
−βLS

2,τS
2

∣∣∣A2
k

)
P

(
A2

k

)

=
∞∑

k=1

e−βd2

{∫ d1

0

e−αu p12(u)
P12(d1)

du

}k {∫ d2

0

e−βu p21(u)
P21(d2)

du

}k−1

P12(d1)k−1P21(d2)k−1P̄21(d2)

=
e−βd2 P̄21(d2)

∫ d1

0
e−αup12(u)du

1− ∫ d1

0
e−αsp12(s)ds

∫ d2

0
e−βsp21(s)ds

.

Therefore

E
(
e
−αLS

1,τS−βLS
2,τS

)
=

e−αd1 P̄12(d1) + e−βd2 P̄21(d2)
∫ d1

0
e−βup12(u)du

1− ∫ d1

0
e−αsp12(s)ds

∫ d2

0
e−βsp21(s)ds

.

2

From lemma 1 we can derive several interesting results. We show some of
them here.

Firstly, noticed that LX
1,τX + LX

2,τX = τX , we can easily obtain the Laplace
transform of τX :

E
(
e−βτX

)
=

e−βd1 P̄12(d1) + e−βd2 P̄21(d2)
∫ d1

0
e−βsp12(s)ds

1− ∫ d1

0
e−βsp12(s)ds

∫ d2

0
e−βsp21(s)ds

. (12)

If we are only interested in the excursion at one side of the barrier, we can
set the required length of excursion at another side to be +∞. For example,
when d1 → +∞, τS

1 → +∞ according to its definition. We have therefore

τS = τS
1 ∧ τS

2 → τS
2 ,

and hence
LS

i,τS → LS
i,τS

2
, i = 1, 2.

We also know that
∣∣∣e−αLS

1,τS−βLS
2,τS

∣∣∣ < 1, for any α ≥ 0, β ≥ 0.

By the dominated convergence theorem, we have

E

(
e
−αLS

1,τS
1
−βLS

2,τS
1

)
= E

(
lim

d1→∞
e
−αLS

1,τS−βLS
2,τS

)
= lim

d1→∞
E

(
e
−αLS

1,τS−βLS
2,τS

)
.

8



As a result, we can deduce that

E

(
e
−αLX

1,τX
2
−βLX

2,τX
2

)
=

e−βd2 P̄21(d2)
∫ +∞
0

e−αsp12(s)ds

1− ∫ +∞
0

e−αsp12(s)ds
∫ d2

0
e−βsp21(s)ds

. (13)

Also, by using LX
1,τX

2
+ LX

2,τX
2

= τX
2 , we get

E
(
e−βτX

2

)
=

e−βd2 P̄21(d2)
∫ +∞
0

e−βsp12(s)ds

1− ∫ +∞
0

e−βsp12(s)ds
∫ d2

0
e−βsp21(s)ds

. (14)

We can also derive the results for the other side by setting d2 → +∞.

4 Examples

In this section, we are going to apply the results to the Brownian Motion Wµ
t =

µt + Wt, with Wµ
0 = 0 and µ ≥ 0.

In §?? we have stated that the main difficulty with the Brownian Motion
is that its origin point is regular, i.e. the probability that Wµ

t will return to
the origin at arbitrarily small time is 1. We have therefore introduced the new
processes (X(ε)

t , ZX
t ), with transition densities for ZX

t

p12(t) =
ε√

2πt3
exp

{
− (ε + µt)2

2t

}
, p21(t) =

ε√
2πt3

exp
{
− (ε− µt)2

2t

}
.

In order to simplify expressions, we define

Ψ(x) = 2
√

πxN
(√

2x
)
−√πx + e−x,

where N (.) is the cumulative distribution function for a standard Normal Dis-
tribution.

From lemma 1 we have

E
(
exp

{
−αLX

1,τX − βLX
2,τX

})
=

e−αd1 P̄12(d1) + e−βd2 P̄21(d2)
∫ d1

0
e−βup12(u)du

1− ∫ d1

0
e−αsp12(s)ds

∫ d2

0
e−βsp21(s)ds

.

Since X
(ε)
t → Wµ

t a.s., when we calculate the limit as ε → 0,

E
(
exp

{
−αLX

1,τX − βLX
2,τX

})
→ E

(
e
−αLW µ

1,τW µ−βLW µ

2,τW µ

)

(see the appendix). As a result, for a Brownian Motion with drift we have

E

(
e
−αLW µ

1,τW µ−βLW µ

2,τW µ

)
(15)

=
e−αd1

{√
d2Ψ

(
µ2d1

2

)
+ µ

√
d1d2π

2

}
+ e−βd2

{√
d1Ψ

(
µ2d2

2

)
− µ

√
d1d2π

2

}

√
d2Ψ

{
(2α+µ2)d1

2

}
+
√

d1Ψ
{

(2β+µ2)d2
2

} .
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If we set µ = 0, we can get the result for the standard Brownian motion

E
(
e
−αLW

1,τW −βLW
2,τW

)
=

√
d2e

−αd1 +
√

d1e
−βd2

√
d2Ψ(αd1) +

√
d1Ψ(βd2)

. (16)

By setting α = β in (15) and (16), we have our first important result.

Theorem 1 For a Brownian Motion Wµ
t with Wµ

0 = 0, τW µ

1 , τW µ

2 and τW µ

have been defined in §?? (2), (3) and (4) with St = Wµ
t . We then have

E
(
e−βτW µ

1{τW µ
1 <τW µ

2 }
)

=
e−βd1

{√
d2Ψ

(
µ2d1

2

)
+ µ

√
d1d2π

2

}

√
d2Ψ

{
(2β+µ2)d1

2

}
+
√

d1Ψ
{

(2β+µ2)d2
2

} , (17)

E
(
e−βτW µ

1{τW µ
1 >τW µ

2 }
)

=
e−βd2

{√
d1Ψ

(
µ2d2

2

)
− µ

√
d1d2π

2

}

√
d2Ψ

{
(2β+µ2)d1

2

}
+
√

d1Ψ
{

(2β+µ2)d2
2

} . (18)

E
(
e−βτW µ )

=
e−βd1

{√
d2Ψ

(
µ2d1

2

)
+ µ

√
d1d2π

2

}
+ e−βd2

{√
d1Ψ

(
µ2d2

2

)
− µ

√
d1d2π

2

}

√
d2Ψ

{
(2β+µ2)d1

2

}
+
√

d1Ψ
{

(2β+µ2)d2
2

} . (19)

For a standard Brownian Motion, the special case when µ = 0, we have

E
(
e−βτW

1{τW
1 <τW

2 }
)

=
√

d2e
−βd1

√
d2Ψ(βd1) +

√
d1Ψ(βd2)

, (20)

E
(
e−βτW

1{τW
1 >τW

2 }
)

=
√

d1e
−βd2

√
d2Ψ(βd1) +

√
d1Ψ(βd2)

, (21)

E
(
e−βτW

)
=

√
d2e

−βd1 +
√

d1e
−βd2

√
d2Ψ(βd1) +

√
d1Ψ(βd2)

. (22)

According to the definition, τW µ

is the first time of either the length of the
excursion above 0 reaches d1 or the length of the excursion below 0 reaches d2.
The results in theorem 1 are what we need to price our newly-defined single-
barrier two-sided Parisian options.

Letting β → 0, we have the following remarkable results.

Corollary 1.1 The probability that Wµ
t achieves an excursion above 0 with the

length as least d1 before it achieves an excursion below 0 with the length at least
d2 is

P
(
τW µ

1 < τW µ

2

)
=

√
d2Ψ

(
µ2d1

2

)
+ µ

√
d1d2π

2

√
d2Ψ

(
µ2d1

2

)
+
√

d1Ψ
(

µ2d2
2

) ; (23)
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And the probability of its opposite event is given by

P
(
τW µ

1 > τW µ

2

)
=

√
d1Ψ

(
µ2d2

2

)
− µ

√
d1d2π

2

√
d2Ψ

(
µ2d1

2

)
+
√

d1Ψ
(

µ2d2
2

) . (24)

Similarly, for a standard Brownian motion

P
(
τW
1 < τW

2

)
=

√
d2√

d1 +
√

d2

, (25)

P
(
τW
1 > τW

2

)
=

√
d1√

d1 +
√

d2

. (26)

Remark 1: If we set d1 = d2 = d in (23), (24), (25) and (26), we have for
a standard Brownian motion

P
(
τW
1 < τW

2

)
= P

(
τW
1 > τW

2

)
=

1
2
,

which can be well explained by the symmetry of the standard Brownian motion;
Remark 2: For a Brownian motion with positive drift,

P
(
τW µ

1 < τW µ

2

)
=

1
2

+
µ
√

dπ
2

Ψ
(

µ2d
2

) >
1
2
, P

(
τW µ

1 > τW µ

2

)
=

1
2
−

µ
√

dπ
2

Ψ
(

µ2d
2

) <
1
2
,

because it has a tendency to move upwards.
Moreover, by setting d1 = d2 = d, we can get the result for a reflected

Brownian motion Rµ
t = |Wµ

t |.
Theorem 2 For a reflected Brownian Motion Rµ

t = |Wµ
t | with Rµ

0 = 0, We
have

E
(
e−βτRµ )

=
e−βd

{
Ψ

(
µ2d
2

)
+ µ

√
dπ
2

}

Ψ
{

(2β+µ2)d
2

}
− µ

√
πd
2

. (27)

When µ = 0, we have

E
(
e−βτR

)
=

e−βd

Ψ(βd)
. (28)

Now we are going to concentrate on the excursion below the barrier. The
results for the excursion above the barrier can be easily obtained by the same
methods.

11



In §?? we have proved that, in order to get the results regarding to the
excursion below the barrier, we just need to set d1 → +∞. From (13), we have

E
(
exp

{
−αLW µ

1,τW µ
2

− βLW µ

2,τW µ
2

})

= lim
ε→0

E

(
exp

{
−αLX(ε)

1,τX(ε)
2

− βLX(ε)

2,τX(ε)
2

})

= lim
ε→0

e−βd2 P̄21(d2)
∫ +∞
0

e−αsp12(s)ds

1− ∫ +∞
0

e−αsp12(s)ds
∫ d2

0
e−βsp21(s)ds

=
e−βd2

{
Ψ

(
µ2d2

2 −
√

πµ2d2
2

)}

Ψ
{

(2β+µ2)d2
2

}
+

√
π(2α+µ2)d2

2

. (29)

When µ = 0, we have

E
(
exp

{
−αLW

1,τW
2
− βLW

2,τW
2

})
=

e−βd2

Ψ(βd2) +
√

παd2

. (30)

These can also be verified by setting d1 → +∞ in (15) and (16). Followed by
(29) and (30) we can get the result applied in pricing Parisian options by setting
α = β and using the relation τW

2 = LW
1,τW

2
+ LW

2,τW
2

.

Theorem 3 For a Brownian Motion Wµ
t with Wµ

0 = 0, τW µ

2 has been defined
in §??, (3) with St = Wµ

t . We then have

E
(
e−βτW µ

2

)
=

e−βd2

{
Ψ

(
µ2d2

2

)
− µ

√
d2π
2

}

Ψ
{

(2β+µ2)d2
2

}
+

√
(2β+µ2)d2

2

. (31)

When µ = 0, we have

E
(
e−βτW

2

)
=

e−βd2

Ψ(βd2) +
√

πβd2

. (32)

The result presented by (32) has been obtained in [6] for Parisian option pricing
by a very different technique which can only be applied for a standard Brownian
motion.

By setting β → 0 in (31), we can calculate the Parisian type ruin probability:

Corollary 3.1 For a Brownian motion Wµ, µ ≥ 0 and Wµ
0 = 0, the probability

that the length of the excursion below 0 ever reaches d2 is

P
(
τW µ

2 < ∞
)

= 1− µ

1√
2πd2

e−
µ2d2

2 + µN
(
µ
√

d2

) . (33)
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As a result, for a Brownian motion with positive drift, with probability

µ

1√
2πd2

e−
µ2d2

2 + µN (µ
√

d2)

the process will never stay in state 2, i.e. below the barrier, for longer than
d2, while for a standard Brownian motion (µ = 0), this event will happen with
probability 0.

We hereby introduce a new type of ruin probability, the Parisian type ruin
probabilities. As what we have briefly mentioned in §1, if T0 = inf{t > 0 |St <
0}, i.e. the first time the process hits 0, we have, in risk theory, P (T0 < ∞) as
the ruin probability. Here we extend this concept and define the Parisian type
ruin probabilities to be

P (τS
2 < ∞),

i.e the probability that the event that the process falls below 0 and stays below
0 constantly for at least d2 ever happens. Therefore, the Parisian type ruin
probability for a Brownian motion with positive drift is given by (33). From an
operational point of view, this is a more realistic model of insolvency as it gives
the company an opportunity to put its finances back in order.

5 Appendix

We will now show that we can take limits of Laplace transforms when ε → 0
as we did earlier. We have studied the following variables: τS

1 ,τS
2 , τS , LS

1,τS ,
LS

1,τS
1
, LS

1,τS
2
, LS

2,τS , LS
2,τS

1
and LS

2,τS
2
. In order to simplify the notations, we

define RS = (RS
1 , RS

2 , · · · , RS
9 ), where RS

i , i = 1, 2, · · · , 9, stand for each of the
above variables.

Firstly, according to the definition of X(ε), we know that

X
(ε)
t

a.s−→ Wµ
t , for all t.

Therefore,
RX(ε)

i
a.s−→ RW µ

i , for i = 1, 2, · · · , 9.

So for given non-negative constants βi, i = 1, 2, · · · , 9,

exp

{
−

9∑

i=1

βiR
X(ε)

i

}
a.s−→ exp

{
−

9∑

i=1

βiR
W
i

}
.

Since RX(ε)

i ≥ 0, we also have,
∣∣∣∣∣ exp

{
−

9∑

i=1

βiR
X(ε)

i

}∣∣∣∣∣ < 1.
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By the Dominated Convergence Theorem,

E

(
exp

{
−

9∑

i=1

βiR
W
i

})
= E

(
lim
ε→0

exp

{
−

9∑

i=1

βiR
X(ε)

i

})
= lim

ε→0
E

(
exp

{
−

9∑

i=1

βiR
X(ε)

i

})
.

When µ = 0, we can get the same conclusion for the standard Brownian motion
by the above argument.
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