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Abstract

In this paper, we study the excursion times of a Brownian motion with
drift below and above a given level by using a simple two states semi-
Markov model. In mathematical finance, these results have an important
application in the valuation of path dependent options such as Parisian
options. Based on our results, we introduce a new type of Parisian options,
single barrier two-sided Parisian options, and give an explicit expression
for the Laplace transform of its price formula.
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1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-
Picqué and Yor [7]. A Parisian option is a special case of path dependent
options. Its payoff does not only depend on the final price of the underlying
asset, but also its price trajectory during the whole life span of the option. More
precisely, a Parisian option will be either initiated or terminated upon the price
reaching a predetermined barrier level L and staying above or below the barrier
for a predetermined time D before the maturity date T .

There are two different ways of measuring the time spent above or below the
barrier, corresponding to the excursion time and the occupation time defined
below. The excursion time below (above) the barrier starts counting from 0
each time the process crosses the barrier from above (below) and stops counting
when the process crosses the barrier from below (above). The occupation time
up to a specific time t adds up all the time the process spend below (above)
the barrier; it is therefore the summation of all excursion time intervals before
time t. In [7] the Parisian options related to the occupation time are called
cumulative Parisian options. In this paper, we focus on the Parisian options
based on excursion time.
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The owner of a Parisian down-and-out option loses the option if the under-
lying asset price S reaches the level L and remains constantly below this level
for a time interval longer than D. For a Parisian down-and-in option the same
event gives the owner the right to exercise the option. The owner of a cumulative
Parisian down-and-out option loses the option if the total time the underlying
asset price S stays below L up to the end of the contract for longer than D.
For details on the pricing of Parisian options see [7], [12], [15] and [11]. For
cumulative Parisian options see [7] and since these are related to the occupation
times and hence the quantiles of the process, also see [1], [9] and [13]. In this
paper, we focus on the Parisian option defined upon the excursion time.

From the description above, we can see that the key for pricing a Parisian
option is the derivation of the distribution of the excursion time. As in [7] we
reduce the problem to finding the Laplace transform of the first time the length
of the excursion reaches level D. In [7] this was obtained by using the Brownian
meander and the Azéma martingale (see [3]). A restriction of this technique is
that it relies heavily on the properties of standard Brownian motions; therefore
the result cannot be extended to other processes easily. It is also hard to see
how it can be used for the pricing of the more complicated options that we will
introduce.

In this paper, we are going to study the excursion time in a more general
framework using a simple semi-Markov model consisting of two states indicating
whether the process is above or below a fixed level L . By applying the model
to a Brownian motion, we can, for the first time, get the explicit form of the
Laplace transforms for the prices of the Parisian options defined in [7]. One can
then invert the Laplace transform using techniques as in [12].

Furthermore, we introduce a new type of Parisian options, named single-
barrier two-sided Parisian option. In contrast to the Parisian options mentioned
above, we consider the excursions both below and above the barrier. Let us
look at two examples, depending on whether the condition is that the required
excursions above and below the barrier have to both happen before the maturity
date or that either one of them happens before the maturity. In one example,
the owner of a Parisian Max Out option loses the option if the underlying asset
price S has both an excursion above the barrier for longer than d1 and below
the barrier for longer than d2 before the maturity of the option. In another
example, the owner of a Parisian Min Out option loses the right to exercise
the option if there is either an excursion above the barrier for longer than d1

or below the barrier for longer than d2 before the maturity. Later on, we will
give the explicit forms of the Laplace transforms for the prices of this type of
options.

In Section 2 we give the mathematical definitions and set out the model.
We also introduce a pair of new processes, perturbed Brownian motions, which
have the same behavior as a Brownian motion except that each time when they
hit 0, they jump towards the other side of 0 by size ε. In Section 3 we present an
important lemma for the perturbed Brownian motions together with its proof,
which will be used in the following sections. We give our main results applied
to Brownian motions in Section 4, including the Laplace transforms for the
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stopping times we define for both Brownian motions with drift and standard
Brownian motions, which are vital for the pricing. In Section 5 we focus on
pricing our newly defined Parisian options by using the results in Section 4. As
a special case, we also give the explicit form of the Laplace transform for the
price of the Parisian options studied in [7] for the first time. In [7] these were
given in the form of double integrals. Using a different approach yields explicit
results in our paper (see remark after corollary 4.3 later).

2 Definitions

We are going to use the same definition for the excursion as in [7], [8] and [14].
Let L be the level of the barrier and assume S is the price of the underlying
asset following a geometric Brownian motion:

dSt = rStdt + σStdWt, S0 = x, x > 0, (1)

where Wt with W0 = 0 is a standard Brownian motion under a risk neutral
measure Q. As in [7], we define

gS
L,t = sup{s ≤ t | Ss = L}, dS

L,t = inf{s ≥ t | Ss = L} (2)

with the usual convention, sup{∅} = 0 and inf{∅} = ∞. The trajectory between
gS

L,t and dS
L,t is the excursion of process S, which straddles time t. Assuming

d1 > 0, d2 > 0, we now define

τS
1,L = inf

{
t > 0 | 1{St>L}

(
t− gS

L,t

) ≥ d1

}
, (3)

τS
2,L = inf

{
t > 0 | 1{St<L}

(
t− gS

L,t

) ≥ d2

}
, (4)

τS
L = τS

1,L ∧ τS
2,L. (5)

τS
1,L is therefore the first time that the length of the excursion of the process S

above the barrier L reaches given level d1; τS
2,L corresponds to the one below L;

and τS
L is the smaller of τS

1,L and τS
2,L.

Assume r is the risk-free rate, T is the term of the option, K is the strike
price, S is the underlying asset price defined as above. If we have an up-out
Parisian call option with the barrier L, its price can be expressed as:

Pup−out−call = e−rT EQ

(
1{τS

1,L>T} (ST −K)+
)

;

and the price of a down-in Parisian put option with the barrier L is:

Pdown−in−put = e−rT EQ

(
1{τS

2,L<T} (K − ST )+
)

.

Without loss of generality, from now on, we assume L = 0. We simplify the
expressions of τS

0 , τS
1,0 and τS

2,0 by τS , τS
1 and τS

2 .
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From (1) we can see that in order to study the excursion of the asset price
S we just need to study the excursion of the Brownian motion W . However,
the peculiar properties of the sample path of the Brownian motion result in
many difficulties. A major problem is the occurrence of an infinite number of
very small excursions. In order to solve these problems we introduce a pair of
new processes, perturbed Brownian motions, X± as follow. Assume Wµ is a
Brownian motion with non-negative drift and it starts from 0 and set ε = ±η,
where η > 0. Define a sequence of stopping times

δ0 = 0,
σn = inf {t > δn |Wµ

t = −ε} ,
δn+1 = inf {t > σn |Wµ

t = 0} ,

where n = 0, 1, · · · . Now define

X±
t =

{
Wµ

t + ε, if δn ≤ t < σn

Wµ
t , if σn ≤ t < δn+1

.

When ε = η, we denote the process by X+ and in the case when ε = −η, we
have process X− (see Figure 1 and Figure 2). By introducing the jumps to the
original Brownian motion, we get this pair of processes X± which have a very
clear structure of excursions above and below 0, i.e. the excursions above and
below 0 alternate with the length of each excursion greater than 0. In the later
section we prove that the Laplace transforms of the variables defined based on
X± converge to those based on Wµ as η goes to 0. As a result, we can obtain
the results for the Brownian Motion by carrying out the calculations for X± and
taking the limit η → 0; for more details see Theorem 4.1. Hence we will focus
on studying the excursions of X± in the rest of this section and next section.

From the description of the excursion above, it is clear that we are actually
considering two states, the state when the process is above the barrier and the
state when it is below. For each state, we are interested in the time the process
spends in it. We introduce a pair of new processes based on X±.

Z±t =
{

1, if X±
t > L

2, if X±
t < L

.

In this definition, we deliberately ignore the situation when Z±t = L. It is
because the processes Z± satisfy

∫ t

0

1{Z±u =L}du = 0.

We can now express the variables defined above in terms of Z±:

g±L,t = sup
{
s ≤ t | Z±s 6= Z±t

}
, (6)

d±L,t = inf
{
s ≥ t | Z±s 6= Z±t

}
, (7)
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Figure 1: The Sample Path of X+
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τ±1 = inf
{

t > 0 | 1{Z±t =1}
(
t− g±L,t

)
≥ d1

}
, (8)

τ±2 = inf
{

t > 0 | 1{Z±t =2}
(
t− g±L,t

)
≥ d2

}
, (9)

τ± = τ±1 ∧ τ±2 . (10)

We then define
V ±

t = t− g±L,t,

the time Z± have spent in their current states. It is easy to see that both
(Z+

t , V +
t ) and (Z−t , V −

t ) are Markov processes. Z± are therefore semi-Markov
processes with the state space {1, 2}, where 1 stands for the state when Z± are
above the barrier and 2 corresponds to the state below the barrier.

Furthermore, we set U±
i,k, i = 1, 2 and k = 1, 2, · · · to be the time Z± spend

in state i when they visit i for the kth time. And we have, for each given i and
k,

U±
i,k = V ±

d±L,t

= d±L,t − g±L,t, for some t.

Notice that given i, U±
i,k, k = 1, 2, · · · , are i.i.d. We therefore define the transi-

tion densities for Z±:

p±ij(t) = lim
∆t→0

P (t < U±
i,k < t + ∆t)
∆t

,

P±ij (t) = P (U±
i,k < t), P̄±ij (t) = P (U±

i,k > t).

We have

P±ij (t) =
∫ t

0

p±ij(s)ds = 1− P̄±ij (t),

which is actually the probability that the process will stay in state i for no more
than time t. More precisely, according to the definition of Z±, we actually have
the transition densities for Z± as follows:

p+
12(s) = p−12(s) =

η√
2πs3

exp
{
− (η + µs)2

2s

}
, (11)

p+
21(s) = p−21(s) =

η√
2πs3

exp
{
− (η − µs)2

2s

}
. (12)

For simplicity, we set

p12(s) = p+
12(s) = p−12(s), p21(s) = p+

21(s) = p−21(s).

Similarly, we have

Pij(t) = P+
ij (t) = P−ij (t), P̄ij(t) = P̄+

ij (t) = P̄−ij (t).
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3 An Important Lemma

In this section, we will present an important lemma for X± together with its
proof.

Lemma 1 For the perturbed Brownian motion X+, we have the following re-
sults:

E
(
exp

{−α1τ
+
1 − α2τ

+
2

}
1{τ+

1 <τ+
2 }

)
(13)

=
e−α1d1−α2d2 P̄21(d2)

∫∞
d1

e−α2sp12(s)ds

G(d1, d2)
,

E
(
exp

{−α1τ
+
1 − α2τ

+
2

}
1{τ+

1 >τ+
2 }

)
(14)

=
e−α1d1−α2d2 P̄12(d1)

∫∞
d2

e−α1sp21(s)ds
∫ d1

0
e−(α1+α2)sp12(s)ds

G(d1, d2)
;

and for X− we have

E
(
exp

{−α1τ
−
1 − α2τ

−
2

}
1{τ−1 <τ−2 }

)
(15)

=
e−α1d1−α2d2 P̄21(d2)

∫∞
d1

e−α2sp12(s)ds
∫ d2

0
e−(α1+α2)sp21(s)ds

G(d1, d2)
,

E
(
exp

{−α1τ
−
1 − α2τ

−
2

}
1{τ−1 >τ−2 }

)
(16)

=
e−α1d1−α2d2 P̄12(d1)

∫∞
d2

e−α1sp21(s)du

G(d1, d2)
,

where

G(d1, d2) =

{
1−

∫ d1

0

e−(α1+α2)sp12(s)ds

∫ d2

0

e−(α1+α2)sp21(s)ds

}

{
1−

∫ ∞

0

e−α2sp12(s)ds

∫ d2

0

e−α2sp21(s)ds

}
.

Proof: Let Ai
j denotes the event that the first time the length of the ex-

cursion above L reaches d1 happens during the ith excursion above L, and the
first time the length of the excursion below L reaches d2 happens during the
jth excursion below L. So we have,

E
(
exp

{−α1τ
+
1 − α2τ

+
2

}
1{τ+

1 <τ+
2 }

)

=
∞∑

j=1

j∑

i=1

E
(
exp

{−α1τ
+
1 − α2τ

+
2

} ∣∣∣Ai
j

)
P

(
Ai

j

)
,
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and

E
(
exp

{−α1τ
+
1 − α2τ

+
2

}
1{τ+

1 >τ+
2 }

)

=
∞∑

j=1

∞∑

i=j+1

E
(
exp

{−α1τ
+
1 − α2τ

+
2

} ∣∣∣Ai
j

)
P

(
Ai

j

)
.

Since excursions above and below alternate, given event Ai
j , τ+

1 is comprised of
i− 1 full excursions below L with the length less than d2, i− 1 full excursions
above barrier L with the length less than d1 and the last one with the length
d1. We have

τ+
1

∣∣∣Ai
j = U+

1,1 + U+
1,2 + · · ·+ U+

1,i−1 + U+
2,1 + U+

2,2 + · · ·+ U+
2,i−1 + d1,

where U+
1,k < d1 for k = 1, · · · , i − 1, U+

2,k < d2 for k = 1, · · · , j − 1, U+
1,i ≥ d1

and U+
2,j ≥ d2. For simplicity, we denote the above condition of U+

n,k’s by C.
Similarly, for τ+

2 , we have

τ+
2

∣∣∣Ai
j = U+

1,1 + U+
1,2 + · · ·+ U+

1,j + U+
2,1 + U+

2,2X + · · ·+ U+
2,j−1 + d2,

where U+
n,k’s satisfy the condition C.

More importantly, due to the Markov property of X+, these excursions are
independent of each other. U+

1,n’s have distribution P12; U+
2,n’s have distribution

P21. As a result, when i ≤ j,

E
(
exp

{−α1τ
+
1 − α2τ

+
2

} ∣∣∣Ai
j

)

= E

(
exp

{
−α1

{
i−1∑

k=1

(
U+

1,k + U+
2,k

)
+ d1

}

−α2

{
j−1∑

k=1

(
U+

1,k + U+
2,k

)
+ U+

1,j + d2

}}∣∣∣C
)

= e−α1d1−α2d2

{∫ d1

0

e−(α1+α2)s
p12(s)
P12(d1)

ds

}i−1 {∫ ∞

d1

e−α2s p12(s)
P̄12(d1)

ds

}

{∫ ∞

0

e−α2sp12(s)ds

}j−i
{∫ d2

0

e−α2s p21(s)
P21(d2)

ds

}j−i

{∫ d2

0

e−(α1+α2)s
p21(s)
P21(d2)

ds

}i−1

,

and
P (Ai

j) = P12(d1)i−1P21(d2)j−1P̄12(d1)P̄21(d2).
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We have therefore

E
(
exp

{−α1τ
+
1 − α2τ

+
2

}
1{τ+

1 <τ+
2 }

)

=
∞∑

j=1

j∑

i=1

E
(
exp

{−α1τ
+
1 − α2τ

+
2

} ∣∣∣Ai
j

)
P

(
Ai

j

)

=
e−α1d1−α2d2 P̄21(d2)

∫∞
d1

e−α2up12(s)ds

G(d1, d2)
.

The proof of the case when τ+
1 > τ+

2 and the proof of (15) and (16) follow
the same steps.

2

Remark: We can get E
(
exp

{−α1τ
+
1 − α2τ

+
2

})
by adding up (13) and (14)

and E
(
exp

{−α1τ
−
1 − α2τ

−
2

})
by adding up (15) and (16).

4 Main Results

In this section we show how to obtain results for standard Brownian motions
through X±.

In order to simplify the expressions, we define

Ψ(x) = 2
√

πxN
(√

2x
)
−√πx + e−x2

,

where N (.) is the cumulative distribution function for the standard Normal
distribution.

Theorem 1 For a Brownian motion Wµ with Wµ
0 = 0, µ ≥ 0, τW µ

1 , τW µ

2 and
τW µ

defined as in (3), (4) and (5) with St = Wµ
t , we have following Laplace

transforms:

E
(
e−βτW µ

1{τW µ
1 <τW µ

2 }
)

=
e−βd1

{√
d2Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) ,

(17)

E
(
e−βτW µ

1{τW µ
1 >τW µ

2 }
)

=
e−βd2

{√
d1Ψ

(
µ
√

d2
2

)
− µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) ,

(18)

E
(
e−βτW µ )

(19)

=
e−βd1

{√
d2Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}
+ e−βd2

{√
d1Ψ

(
µ
√

d2
2

)
− µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) .
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For a standard Brownian motion, the special case when µ = 0, we have

E
(
e−βτW

1{τW
1 <τW

2 }
)

=
√

d2e
−βd1

√
d2Ψ

(√
βd1

)
+
√

d1Ψ
(√

βd2

) , (20)

E
(
e−βτW

1{τW
1 >τW

2 }
)

=
√

d1e
−βd2

√
d2Ψ

(√
βd1

)
+
√

d1Ψ
(√

βd2

) , (21)

E
(
e−βτW

)
=

√
d2e

−βd1 +
√

d1e
−βd2

√
d2Ψ

(√
βd1

)
+
√

d1Ψ
(√

βd2

) . (22)

Proof: According to the definitions of X± we have

X−
t ≤ Wµ

t ≤ X+
t .

Furthermore, for any two processes satisfying Y (1) ≤ Y (2), the longest excursion
of Y (1) above a barrier before any fixed time is not longer than the one of Y (2);
and the longest excursion of Y (1) below a barrier before any fixed time is not
shorter than the one of Y (2). Together with the definition of τ±1 and τ±2 we have
therefore

τ+
1 ≤ τW µ

1 ≤ τ−1 , τ+
2 ≥ τW µ

2 ≥ τ−2 .

Notice that E
(
e−βτS

1 1{τS
1 <τS

2 }
)

is a decreasing function of τS
1 and an increasing

function of τS
2 ; and E

(
e−βτS

2 1{τS
1 >τS

2 }
)

is a decreasing function of τS
2 and an

increasing function of τS
1 , we have therefore

E
(
e−βτ+

1 1{τ+
1 <τ+

2 }
)
≥ E

(
e−βτW µ

1 1{τW µ
1 <τW µ

2 }
)
≥ E

(
e−βτ−1 1{τ−1 <τ−2 }

)

(23)
and

E
(
e−βτ+

2 1{τ+
1 >τ+

2 }
)
≤ E

(
e−βτW µ

2 1{τW µ
1 >τW µ

2 }
)
≤ E

(
e−βτ−2 1{τ−1 >τ−2 }

)
.

(24)
According to (11), (12) and Lemma 3.1, we can actually calculate that

E
(
e−βτ+

1 1{τ+
1 <τ+

2 }
)

=
e−βd1 P̄12(d1)

1− ∫ d1

0
e−βsp12(s)ds

∫ d2

0
e−βsp21(s)ds

,

E
(
e−βτ−1 1{τ−1 <τ−2 }

)
=

e−βd1 P̄12(d1)
∫ d2

0
e−βsp21(s)ds

1− ∫ d1

0
e−βsp12(s)ds

∫ d2

0
e−βsp21(s)ds

,

where

P̄12(d1) = 1− e−2ηµN

(
µ
√

d1 − η√
d1

)
−N

(
−µ

√
d1 − η√

d1

)
,
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∫ d1

0

e−βup12(u)du = e
−
“

µ+
√

2β+µ2
”

η
N

(√
(2β + µ2) d1 − η√

d1

)

+e

“√
2β+µ2−µ

”
η
N

(
−

√
(2β + µ2) d1 − η√

d1

)
,

∫ d2

0

e−βup21(u)du = e

“
µ−
√

2β+µ2
”

η
N

(√
(2β + µ2) d2 − η√

d2

)

+e

“
µ+
√

2β+µ2
”

η
N

(
−

√
(2β + µ2) d2 − η√

d2

)
.

By taking the limit as η → 0 we have

lim
η→0

E
(
e−βτ+

1 1{τ+
1 <τ+

2 }
)

= lim
η→0

E
(
e−βτ−1 1{τ−1 <τ−2 }

)

=
e−βd1

{√
d2Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) .

Both bounds suggested by (23) have the same limit, so

E
(
e−βτW µ

1{τW µ
1 <τW µ

2 }
)

= E
(
e−βτW µ

1 1{τW µ
1 <τW µ

2 }
)

= lim
η→0

E
(
e−βτ+

1 1{τ+
1 <τ+

2 }
)

= lim
η→0

E
(
e−βτ−1 1{τ−1 <τ−2 }

)

=
e−βd1

{√
d2Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) .

The equation (18) can be proved using the same arguments. Adding up (17)
and (18) gives (19).

2

Remark: A similar result for a standard Brownian motion, i.e. µ = 0 in
the case when double barriers are considered can be found in [2].

If we let β → 0, we get the following remarkable results.

Corollary 1.1 The probability that Wµ achieves an excursion above 0 with
length as least d1 before it achieves an excursion below 0 with length at least d2

is

P
(
τW µ

1 < τW µ

2

)
=

√
d2Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

√
d2Ψ

(
µ
√

d1
2

)
+
√

d1Ψ
(

µ
√

d2
2

) . (25)
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Similarly, for a standard Brownian motion we have

P
(
τW
1 < τW

2

)
=

√
d2√

d1 +
√

d2

, (26)

P
(
τW
1 > τW

2

)
=

√
d1√

d1 +
√

d2

. (27)

Remark 1: The result stated by (26) has also been obtained in [2]. However,
the result for Brownian motions with drift, (25) is presented here for the first
time.

Remark 2: If we set d1 = d2 = d in (25), we have for a standard Brownian
motion

P
(
τW
1 < τW

2

)
= P

(
τW
1 > τW

2

)
=

1
2
,

which can be explained by the symmetry of standard Brownian motions;
Remark 3: For a Brownian motion with positive drift, by setting d1 = d2 =

d in (26) and (27), we have

P
(
τW µ

1 < τW µ

2

)
=

1
2

+
µ
√

dπ
2

Ψ
(

µ2d
2

) >
1
2
, P

(
τW µ

1 > τW µ

2

)
=

1
2
−

µ
√

dπ
2

Ψ
(

µ2d
2

) <
1
2
,

because it has a tendency to move upwards.

If we only consider the excursion below 0, we have the following results.

Corollary 1.2 For a Brownian motion Wµ with Wµ
0 = 0 and τW µ

2 defined as
in (4) with St = Wµ

t , we the have the Laplace transform for τW µ

2 :

E
(
e−βτW µ

2

)
=

e−βd2

{
Ψ

(
µ
√

d2
2

)
− µ

√
d2π
2

}

Ψ
(√

(2β+µ2)d2
2

)
+

√
(2β+µ2)d2

2

. (28)

When µ = 0, we have the result for a standard Brownian motion:

E
(
e−βτW

2

)
=

e−βd2

Ψ
(√

βd2

)
+
√

πβd2

. (29)

Proof: When d1 →∞, we have τ1 →∞, therefore τS → τS
2 .

As a result, we have

E
(
e−βτS

2

)
= lim

d1→∞
E

(
e−βτS

)
.

2

Remark: As one of the most important results, (29) has been obtained in
[7]. But the result for Brownian motions with drift, (28) is presented here for
the first time.
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So far we have been considering the case when the process starts from 0 and
the barrier level is set to be 0. In practice, however, the barrier is different from
the starting point of the underlying asset price in most cases. Therefore, in
order to price the options, we introduce the follower theorems and corollaries.

Theorem 2 For a Brownian motion Wµ with Wµ
0 = 0 and barrier L = l, the

Laplace transform of τW µ

l is given by
when l < 0,

E
(
e−βτW µ

l

)
(30)

= e−βd1

{
1− e2µlN

(
µ
√

d1 +
l√
d1

)
−N

(
−µ

√
d1 +

l√
d1

)}

+
{

e

“
µ+
√

2β+µ2
”

l
N

(√
(2β + µ2) d1 +

l√
d1

)

+e

“
µ−
√

2β+µ2
”

l
N

(
−

√
(2β + µ2) d1 +

l√
d1

)}

e−βd1
√

d2

{
Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}
+ e−βd2

√
d1

{
Ψ

(
µ
√

d2
2

)
− µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) .

when l > 0,

E
(
e−βτW µ )

(31)

= e−βd2

{
1−N

(
µ
√

d2 − l√
d2

)
− e2µlN

(
−µ

√
d2 − l√

d2

)}

+
{

e

“
µ−
√

2β+µ2
”

l
N

(√
(2β + µ2) d2 − l√

d2

)

+e

“
µ+
√

2β+µ2
”

l
N

(
−

√
(2β + µ2) d2 − l√

d2

)}

e−βd1
√

d2

{
Ψ

(
µ
√

d1
2

)
+ µ

√
d1d2π

2

}
+ e−βd2

√
d1

{
Ψ

(
µ
√

d2
2

)
− µ

√
d1d2π

2

}

√
d2Ψ

(√
(2β+µ2)d1

2

)
+
√

d1Ψ
(√

(2β+µ2)d2
2

) .

Proof: We only prove the case when l < 0. The same arguments apply to the
case when l > 0. Define

Tl = inf {t ≥ 0 | Wµ
t = l} .

The left hand side of (30) can be expressed as follow

E
(
e−βτW µ

l

)
= E

(
e−βτW µ

l 1{Tl≥d1}
)

+ E
(
e−βτW µ

l 1{Tl<d1}
)

.
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Moreover, we have

E
(
e−βτW µ

l 1{Tl≥d1}
)

= e−βd1P (Tl ≥ d1)

= e−βd1

{
1− e2µlN

(
µ
√

d1 +
l√
d1

)
−N

(
−µ

√
d1 +

l√
d1

)}
.

E
(
e−βτW µ

l 1{Tl<d1}
)

= E

(
e
−β
“

Tl+τ
fW µ

l

”
1{Tl<d1}

)

= E
(
e−βTl1{Tl<d1}

)
E

(
e−βτ

fW µ

l

)
= E

(
e−βTl1{Tl<d1}

)
E

(
e−βτW µ )

,

where W̃µ stands for the Brownian motion starting from l. We have obtained
E

(
e−βτW µ )

in Theorem 4.1. We also have that

E
(
e−βTl1{Tl<d1}

)

=
∫ d1

0

e−βs −l√
2πs3

exp
{
− (l − µs)2

2s

}
ds

= e

“
µ+
√

2β+µ2
”

l
N

(√
(2β + µ2) d1 +

l√
d1

)
+ e

“
µ−
√

2β+µ2
”

l
N

(
−

√
(2β + µ2) d1 +

l√
d1

)
.

We have therefore proved (30).
2

We will now extend Theorem 4.4 to obtain the distribution of W at an expo-
nential time. This will be an application of (30), (31) and Girsanov’s theorem.

Theorem 3 For a standard Brownian motion W with W0 = 0, and τW
l defined

as in (5) with St = Wt, we have the following result:
For the case l ≥ 0, when x ≥ l,

P
(
WeT ∈ dx, τW < T̃

)
=

{
a(d2)e−

√
2γ(x−l) + b1p(x− l, d1, d2)

}
dx; (32)

when x < l

P
(
WeT ∈ dx, τW < T̃

)
=

{
a(d2)e

√
2γ(x−l) + b1p(l − x, d2, d1)

}
dx; (33)

For the case l < 0, when x ≥ l,

P
(
WeT ∈ dx, τW < T̃

)
=

{
a(d1)e−

√
2γ(x−l) + b2p(x− l, d1, d2)

}
dx; (34)

when x < l

P
(
WeT ∈ dx, τW < T̃

)
=

{
a(d1)e

√
2γ(x−l) + b2p(l − x, d2, d1)

}
dx; (35)
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where T̃ is a random variable independent of W , with an exponential distribution
of parameter γ and

a(x) =
√

2
γ

{
e−
√

2γlN

(
− l√

x
+

√
2γx

)
− e

√
2γlN

(
l√
x

+
√

2γx

)}
,

b1 = e−
√

2γlN

(
− l√

d2

+
√

2γd2

)
+ e

√
2γlN

(
− l√

d2

−
√

2γd2

)
,

b2 = e
√

2γlN

(
l√
d1

+
√

2γd1

)
+ e−

√
2γlN

(
l√
d2

−
√

2γd1

)
,

p(x, y, z) =
γ
√

2πyze−
√

2γ(x−l)

√
zΨ

(√
γy

)
+
√

yΨ
(√

γz
)

{
e−γy

2
√

πγy
+

e−γz

2
√

πγz
+ N

(
x− l√

y
−

√
2γy

)

−N
(
−

√
2γy

)
−N

(
−

√
2γz

)
− e2

√
2γ(x−l)N

(
−x− l√

y
−

√
2γy

)}
.

Proof: see appendix.
2

Similarly, we can obtain the result when we only consider the excursion
below the barrier by taking the limit d1 →∞.

Corollary 3.1 For a standard Brownian motion W with W0 = 0 and τW
2 de-

fined as in (4) with St = Wt, we have the following results:
For the case l ≥ 0, when x ≥ l,

P
(
WeT ∈ dx, τW < T̃

)
=

{
a′2e

−√2γ(x−l) + b′1q1(x− l)
}

dx; (36)

when x < l

P
(
WeT ∈ dx, τW < T̃

)
=

{
a′2e

√
2γ(x−l) + b′1q2(x− l)

}
dx; (37)

For the case l < 0, when x ≥ l,

P
(
WeT ∈ dx, τW < T̃

)
=

{
a′1e

−√2γ(x−l) + b′2q1(x− l)
}

dx; (38)

when x < l

P
(
WeT ∈ dx, τW < T̃

)
=

{
a′1e

√
2γ(x−l) + b′2q2(x− l)

}
dx; (39)

where
a′1 =

2
γ

{
e−
√

2γl − e
√

2γl
}

, a′2 = a (d2) ,

b′1 = b1, b′2 = e
√

2γl,
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q1(x) =
√

γ

2
e−
√

2γx

(
1− 2

√
πγd2

2
√

πγd2N
(√

2γd2

)
+ e−γd2

)
,

q2(x) =
γe
√

2γx
√

2πd2

2
√

πγd2N
(√

2γd2

)
+ e−γd2

{
e−γd2

2
√

πγd2

+ N

(
− x√

d2

−
√

2γd2

)

−N
(
−

√
2γd2

)
− e−2

√
2γxN

(
x√
d2

−
√

2γd2

)}
;

and where T̃ is a random variable , independent of W , with an exponential
distribution of parameter γ.

Remark: By using this result, we can calculate the explicit form of the
Laplace transform of the price of the Parisian option defined in [7]. This ap-
proach is different from [7], where they try to find the Laplace transform of τW

2

and the density of WτW
2

, and the Laplace transform is given in form of double
integral. Our approach produces explicit expressions without integrals.

5 Pricing Parisian Options

The result presented by (29) has been obtained in [7] and used to price Parisian
options which consider the excursions at only one side of the barrier. Here we
want to introduce the new Parisian options, considering the excursions at both
sides of the barrier.

For example, we want to price a Parisian call option, the owner of which will
obtain the right to exercise it when either the length of the excursion above the
barrier reaches d1, or the length of the excursion below the barrier reaches d2

before T . Its price formula is given by

Pmin−call−in = e−rT EQ

(
(ST −K)+ 1{τS

L <T}
)

,

where S is the underlying stock price, L is the barrier level, Q denotes the risk
neutral measure. The subscript min-call-in means it is a Call option which will
be triggered when the minimum of two stopping times, τS

1,L and τS
2,L, is less

than T , i.e. τS
L < T . We assume S is a geometric Brownian motion defined as

in (1). Set

m =
1
σ

(
r − 1

2
σ2

)
, b =

1
σ

ln
(

K

x

)
, l =

1
σ

ln
(

L

x

)
, Yt = mt + Wt.

We have

St = x exp
{(

r − 1
2
σ2

)
t + σWt

}
= x exp {σ(mt + Wt)} = xeσYt .

By applying Girsanov’s Theorem, we have

Pmin−call−in = e−(r+ 1
2 m2)T EP

[(
xeσYT −K

)+
emYT 1{τY

l <T}
]
,
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where P is a new measure, under which Yt is a standard Brownian motion with
Y0 = 0. And we define

P ∗min−call−in = e(r+ 1
2 m2)T Pmin−call−in.

We are going to show that we can obtain the Laplace transform of P ∗min−call−in

w.r.t T , denoted by LT .
First of all, we have

EP

[(
xeσY eT −K

)+
emY eT 1{τY

l <eT}
]

=
∫ ∞

b

(xeσy −K) emyP
(
YeT ∈ dy, τY

l < T̃
)

=
∫ ∞

0

γe−γT

∫ ∞

b

(xeσy −K) emyP
(
YT ∈ dy, τY

l < T
)
dT

= γ

∫ ∞

0

e−γT EP

[(
xeσYT −K

)+
emYT 1{τY

l <T}
]
dT

= γLT

Hence we have

LT =
1
γ

∫ ∞

b

(xeσy −K) emyP
(
YeT ∈ dy, τY

l < T̃
)

.

By using the results in Theorem 4.5, this Laplace transform can be calculated
explicitly.

When b ≥ 0, i.e. L ≥ x, we have

LT =
xf(σ + m)−Kf(m)√

d2Ψ
(√

γd1

)
+
√

d1Ψ
(√

γd2

) ,

where

f(x) =
√

2πd1d2e
b(x−√2γ)

√
2γ − x

{
e−γd1

2
√

πγd1
+

e−γd2

2
√

πγd2

+N

(
b√
d1

−
√

2γd1

)
−N

(
−

√
2γd1

)
−N

(
−

√
2γd2

)}

+
√

2πd1d2

{
e(x+

√
2γ)b

√
2γ + x

N

(
− b√

d1

−
√

2γd1

)

+
2xe

(x2−2γ)d1
2

2γ − x2
N

(
x
√

d1 − b√
d1

)




;

when b < 0, i.e. L < x, we have

LT =
xg(σ + m)−Kg(m)√

d2Ψ
(√

γd1

)
+
√

d1Ψ
(√

γd2

) ,
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where

g(x) =
√

2πd1d2

{
eb(x+

√
2γ)

√
2γ + x

[
N

(
−

√
2γd1

)
+ N

(
−

√
2γd2

)

−N

(
− b√

d2

−
√

2γd2

)
− e−γd1

2
√

πγd1

− e−γd2

2
√

πγd2

]

−e(x−√2γ)b

√
2γ − x

N

(
b√
d2

−
√

2γd2

)

+
2x

2γ − x2

[
e
(x2−2γ)d2

2

(
N

(
x
√

d2 − b√
d2

)
−N

(
x
√

d2

))

−e
(x2−2γ)d1

2 N
(
x
√

d1

)]
+

2
√

2γ

2γ − x2

[
e−γd1

2
√

πγd1
+

e−γd2

2
√

πγd2

]}
.

A special case is when we only consider the excursions below the barrier.
The results can be calculated based on corollary 4.6.

When L ≥ x, we have

LT =

(
1√
2γ

−
√

2πd2

2
√

πγd2N
(√

2γd2

)
+ e−γd2

) (
xe(σ+m−√2γ)b

√
2γ − σ −m

− Ke(m−√2γ)b

√
2γ −m

)
;

when L < x, we have

LT =
xh(σ + m)−Kh(m)

2
√

πγd2N
(√

2γd2

)
+ e−γd2

,

where

h(x) =
eb(x+

√
2γ)

√
2γ + x

{√
2πd2

[
N

(
−

√
2γd2

)
−N

(
− b√

d2

−
√

2γd2

)]
− e−γd2

√
2γ

}

+
2e−γd2

2γ − x2
−

√
2πd2

{
e(x−√2γ)b

√
2γ − x

N

(
b√
d2

−
√

2γd2

)

+
2xe

(x2−2γ)d2
2

2γ − x2

[
N

(
x
√

d2 − b√
d2

)
−N

(
x
√

d2

)]




.

Remark 1: It is the first time we manage to get the explicit expressions
for the Laplace transforms of the option prices even for the one-sided excursion
case. In [7] an expression involving double integrals is provided.

Remark 2: The prices can be calculated by numerical inversion of the
Laplace transforms.

So far, we have shown how to obtain the Laplace transform of

P ∗min−call−in = e(r+ 1
2 m2)T Pmin−call−in.

18



For
Pmin−call−out = e−rT EQ

(
(ST −K)+1{τS

L >T}
)

,

we can get the result from the relationship that

Pmin−call−out = e−rT EQ

{
(ST −K)+

}− Pmin−call−in.

Furthermore, if we set
τ̃Y
L = τY

1,L ∨ τY
2,L,

we can define another type of Parisian options by τ̃Y
L :

Pmax−call−in = e−rT EQ

(
(ST −K)+1{τ̃S

L <T}
)

.

In order to get its pricing formula, we should use the following relationship:

1{τ̃S
L <T} = 1{τS

1,L<T} + 1{τS
2,L<T} − 1{τS

L <T}.

We have therefore

Pmax−call−in = Pup−in−call + Pdown−in−call − Pmin−call−in.

Similarly, from

Pmax−call−out = e−rT EQ

{
(ST −K)+

}− Pmax−call−in,

we can work out Pmax−call−out.

6 Appendix

We prove Theorem 4.5 in this section. Let T be the final time. According to
the definition of Ψ(x), we have

Ψ(x) = 2
√

πxN
(√

2x
)
−√πx + e−x2

=
√

πx−√πxErfc (x) + e−x2
.

It is not difficult to show that

E
(
e−βτW µ )

= E

(∫ ∞

0

βe−βT 1{τW µ
<T}dT

)
.

By Girsanov’s theorem, this is equal to
∫ ∞

0

βe−(β+ 1
2 µ2)T E

(
eµWT 1{τW <T}

)
dT.

Setting γ = β + 1
2µ2 gives

E
(
e−βτW µ )

=
∫ ∞

0

(γ − 1
2
µ2)e−γT E

(
eµWT 1{τW <T}

)
dT

=
γ − 1

2µ2

γ
E

(
eµW eT 1{τW <eT}

)
,
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where T̃ is a random variable, independent of W , with an exponential distribu-
tion of parameter γ. Assume µ > 0. We have therefore when l ≥ 0

E
(
eµW eT 1{τW <eT}

)

=
γ

γ − 1
2µ2

E
(
e−βτW µ )

=
γe−γd2

γ − 1
2µ2

e
d2
2 µ2

{
N

(
−µ

√
d2 +

l√
d2

)
− e2lµN

(
−µ

√
d2 − l√

d2

)}

+
γ

{
e−
√

2γlN
(√

2γd2 − l√
d2

)
+ e

√
2γlN

(
−√2γd2 − l√

d2

)}
eµl

(
γ − 1

2µ2
) {√

d2Ψ
(√

γd1

)
+
√

d1Ψ
(√

γd2

)}
[
e−(γ−µ2

2 )d1

{√
d2Ψ

(
µ

√
d1

2

)
+ µ

√
d1d2π

2

}

+e−(γ−µ2

2 )d2

{√
d1Ψ

(
µ

√
d2

2

)
− µ

√
d1d2π

2

}]

=
γe−γd2

γ − 1
2µ2

e
d2
2 µ2

{
N

(
−µ

√
d2 +

l√
d2

)
− e2lµN

(
−µ

√
d2 − l√

d2

)}

+
γ

{
e−
√

2γlN
(√

2γd2 − l√
d2

)
+ e

√
2γlN

(
−√2γd2 − l√

d2

)}
eµl

(
γ − 1

2µ2
) {√

d2Ψ
(√

γd1

)
+
√

d1Ψ
(√

γd2

)}
[
e−γd1

{√
2πd1d2µe

d1
2 µ2

+
√

d2

{
1−

√
d1

2
πµe

d1
2 µ2

Erfc

(√
d1

2
µ

)}}

+e−γd2
√

d1

{
1−

√
d2

2
πµe

d2
2 µ2

Erfc

(√
d2

2
µ

)}]
.

We will now invert the moment generating function above. We have that

e
d2
2 µ2

N

(
−µ

√
d2 +

l√
d2

)
=

∫ ∞

l

eµx 1√
2πd2

e−
x2
2d2 dx,

e
d2
2 µ2

e2lµN

(
−µ

√
d2 − l√

d2

)
=

∫ ∞

l

eµx 1√
2πd2

e−
(x−2l)2

2d2 dx,

µ

γ − µ2

2

=
∫ ∞

0

eµxe−
√

2γxdx−
∫ 0

−∞
eµxe

√
2γxdx,

1

γ − µ2

2

=
∫ ∞

0

eµx 1√
2γ

e−
√

2γxdx +
∫ 0

−∞
eµx 1√

2γ
e
√

2γxdx,

e
d1
2 µ2

=
∫ ∞

−∞
eµx 1√

2πd1

exp
{
− x2

2d1

}
dx,
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1−
√

di

2
πµe

di
2 µ2

Erfc

(√
di

2
µ

)
=

∫ 0

−∞
eµx−x

di
e
− x2

2di dx.

The inversion of e
d2
2 µ2

γ−µ2
2

N
(
−µ
√

d2 + l√
d2

)
is given below.

For x ≥ l,
∫ ∞

l

1√
2πd2

e−
y2

2d2
1√
2γ

e−
√

2γ(x−y)dy =
eγd2e−

√
2γx

√
2γ

N

(
− l√

d2

+
√

2γd2

)
;

For x < l,
∫ ∞

l

1√
2πd2

e−
y2

2d2
1√
2γ

e
√

2γ(x−y)dy =
eγd2e

√
2γx

√
2γ

N

(
− l√

d2

−
√

2γd2

)
.

The inversion of e
d2
2 µ2

e2lµ

γ−µ2
2

N
(
−µ
√

d2 − l√
d2

)
is given below.

For x ≥ l,
∫ ∞

l

1√
2πd2

e−
(y−2l)2

2d2
1√
2γ

e−
√

2γ(x−y)dy =
eγd2e2l

√
2γe−

√
2γx

√
2γ

N

(
l√
d2

+
√

2γd2

)
;

For x < l,
∫ ∞

l

1√
2πd2

e−
(y−2l)2

2d2
1√
2γ

e
√

2γ(x−y)dy =
eγd2e−2l

√
2γe

√
2γx

√
2γ

N

(
l√
d2

−
√

2γd2

)
.

The inversion of µe
d1
2 µ2

γ−µ2
2

is

∫ ∞

0

e−
√

2γy 1√
2πd1

e−
(x−y)2

2d1 dy −
∫ 0

−∞
e
√

2γy 1√
2πd1

e−
(x−y)2

2d1 dy

= eγd1

{
e−
√

2γxN

(
x√
d1

−
√

2γd1

)
− e

√
2γxN

(
− x√

d1

−
√

2γd1

)}
.

The inversion of
1−
q

di
2 πµe

di
2 µ2Erfc

„q
di
2 µ

«

γ−µ2
2

is given below.

For x > 0,
∫ 0

−∞

−y

di
e
− y2

2di
1√
2γ

e−
√

2γ(x−y)dy =
e−
√

2γx

√
2γ

− eγdi−
√

2γx
√

2πdiN
(
−

√
2γdi

)
;

For x < 0,
∫ x

−∞

−y

di
e
− y2

2di
1√
2γ

e−
√

2γ(x−y)dy +
∫ 0

x

−y

di
e
− y2

2di
1√
2γ

e
√

2γ(x−y)dy

=
e
√

2γx

√
2γ

− eγdi−
√

2γx
√

2πdiN

(
x√
di

−
√

2γdi

)

+eγdi+
√

2γx
√

2πdi

{
N

(√
2γdi

)
−N

(
x√
di

+
√

2γdi

)}
.

Consequently, we can get Theorem 4.5.
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