
The Distribution of Loss in Two-Treatment
Biased-Coin Designs

Anthony C. Atkinson ∗

The London School of Economics, London WC2A 2AE, UK

February 12, 2002

Abstract

The paper compares randomised rules of the biased-coin type for
the sequential allocation of treatments in a clinical trial. An important
characteristic is the loss, which measures the increase in the variance of
parameter estimates due to the imbalance caused by randomisation.
Simulations are used to find the small sample distribution of loss.
For some rules a simple chi-squared approximation to the asymptotic
distribution holds well down to very small sample sizes.
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1 Introduction

Patients for a clinical trial arrive sequentially and are each to be given one
of t treatments in a parallel group trial. The statistical literature describes
many rules for deciding which treatment should be allocated to the patient
who has just arrived. Examples are the minimisation rule of Pocock and
Simon (1975) and the “biased-coin” rule of Efron (1971). It is however not
known exactly how many patients there will be. If recruitment of patients
ceases when the trial is unbalanced, the variance of the estimated treatment
effects will be larger than if the trial were balanced. Burman (1996) expresses
this increase in terms of a “loss”. A comparison of several allocation rules
is given by Atkinson (2002) who uses simulation to find the expected value
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of the loss and of the allocation bias for each. However, the allocations are
restrictedly randomised. Consequently the loss will have a distribution over
repetitions of each allocation rule. As Cox (1982) has commented, it is little
consolation to an experimenter confronted with an unbalanced randomiza-
tion to claim that, on average, the randomization scheme used produces good
results. Accordingly, this paper studies the distribution of loss for represen-
tative allocation schemes. In many cases surprisingly simple results, based
on the chi-squared distribution, are obtained.

The context of the design of sequential clinical trials is given, for example
by Senn (1997, Chapter 6) and Matthews (2000). A summary is in Senn
(2000, §2.1). Smith (1984b) and Burman (1996) study the properties of
families of biased-coin designs, with an emphasis on asymptotic properties
including the expected loss. Recent references to the clinical use of biased-
coin designs are collected by Atkinson (2002, §2). The design problem is that,
since it is not known when recruitment to the trial will stop, the sequential
allocation of treatments should be made so that the trial is always reasonably
balanced. This balance should be achieved for each prognostic factor so that,
if these factors are included in the analysis, the effect of the treatments will be
estimated with minimum variance. If randomisation is included, the design
is not forced to be completely balanced: stopping the trial at an arbitrary
point will then lead to a slight increase in the variance of the parameter
estimates.

In general, increasing randomisation will reduce the possibility of bias and
will increase the variance of estimates. Seven different schemes are compared
in this paper, for four and nine prognostic factors. The numerical compar-
isons are for two treatments. But the simulation methods and analytical
results are applicable to any number of treatments.

The linear model theory on which the comparisons of designs are based is
introduced in §2, where the increase in the variance of estimated treatment
effects due to randomisation is derived as a loss, expressed as the number of
patients on whom information is unavailable. The seven allocation schemes
are defined in §3. Simulation results for the distribution of loss are in §4.
The paper concludes, in §5, with a discussion of the distribution of loss and
of the importance of various kinds of bias.
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2 Modelling and Design

2.1 A Regression Model

It is assumed that each of n patients receives one of t treatments which is
allocated in the knowledge of a vector of prognostic factors, but in ignorance
of the outcome of the earlier allocations. In many trials the response will
approximately normally distributed, perhaps after transformation, so it is
appropriate to use the regression model

E(Yn) = αj + zT
n θ, (1)

when the patient receives treatment j and has a vector zn of q−1 prognostic
factors: the θ are nuisance parameters. If there are only two treatments,
interest is assumed to be solely in the difference between α1 and α2.

The responses of the first n patients are therefore modelled by

E(Yn) = Gnψ = Hnα + Znθ, (2)

with Hn the n × t matrix of indicator variables for the treatments with
one non-zero entry per row, and Zn is the n × (q − 1) matrix of prognostic
factors, including any interactions and higher-order terms. The subscript n
will only be used when it is necessary to distinguish between quantities for
the (n + 1)st patient for whom a treatment allocation is required and those
for the n patients to whom treatments have already been allocated.

For any t, interest is in contrasts between the α, the mean level of response
being an additional nuisance parameter making q nuisance parameters in all.
Let KT be a (t − 1) × t matrix of contrasts orthogonal to the mean. An
example is given by Atkinson (1982). For t = 2 these contrasts reduce to
the difference between treatments. Since the volume of the normal theory
confidence ellipsoid for least squares estimates of the contrasts is unaffected
by non-singular linear transformations of the contrasts, the exact form of
K is unimportant, provided the contrasts span the t − 1 dimensional space
orthogonal to the overall mean. Because the θ in (2) are nuisance parameters,
the contrasts need augmenting by a (t− 1)× (q − 1) matrix of zeroes

AT = (KT 0) (3)

to reflect interest solely in contrasts in the treatment parameters. If specific
contrasts are of interest, K can be modified accordingly.
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2.2 Estimation and Loss

Estimation of the parameters in the model is by least squares. The volume of
the confidence ellipsoid for the linear combinations of the α from the model
including the prognostic factors is proportional to the square root of the
determinant

|AT (GTG)−1A| = |KT{HTH −HTZ(ZTZ)−1ZTH}−1K|. (4)

This generalized variance is minimized by a balanced design, in which both
an equal number of patients is allocated to each treatment, and there is
balance over all prognostic factors so that HTZ = 0. We compare designs
using a loss derived from (4).

With two treatments the parameter of interest is ∆ = α1−α2. Following
Smith (1984a) the model (2) can be written

E(Y ) = a∆ + 1βo + Zθ = a∆ + Fβ, (5)

where a is the n× 1 vector of allocations with elements +1 and -1, and the
constant term and covariates are included in the n × q matrix F . Then (4)
becomes

var(∆̂) = σ2{aTa− aTF (F TF )−1F Ta}−1. (6)

In (6) aTa = n, so that we obtain the revealing form

var(∆̂) =
σ2

n− aTF (F TF )−1F Ta
=

σ2

n− Ln

, (7)

where Ln is the loss after n trials.
If the design is exactly balanced, Ln is zero. Otherwise the loss of in-

formation is expressed in terms of number of patients. For the randomized
designs studied here Ln is a random variable. There are theoretical and sim-
ulation results on the expectation E(Ln) = Ln. The results of Smith (1984a)
and of Smith (1984b) provide asymptotic values L∞ for the expected value
of the loss. Burman (1996) focused attention on non-asymptotic expected
values Ln, using simulation to study small sample properties. Simulations,
which are an extension of those of Burman are used by Atkinson (1999b) to
study the progress of the expected value of the loss towards its asymptotic
value both for t = 2 and t = 3. He also gives the extension of (7) to the
comparison of t treatments. Here we are interested in the distribution of the
values Ln around Ln when t = 2.
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2.3 Biased-Coin Designs and Optimality

Optimum design theory is helpful in constructing and describing many of the
designs which have been suggested for sequential clinical trials.

If the vector of allocation and prognostic factors for the (n+1)st patient is
gn+1, Gn+1 in (2) is formed by adding the row gT

n+1 toGn. This vector includes
both the indicator for the allocated treatment and also zn+1, the vector of
prognostic factors for the new patient, which are given, not chosen. The
experimental region consists solely of points corresponding to allocation of
the jth treatment, j = 1, . . . , t. In the iterative construction of DA-optimum
designs to minimize the generalized variance (4), the next trial would be
added where the variance

dA(j, n, zn+1) = gT
n+1(G

T
nGn)−1A{AT (GT

nGn)−1A}−1AT (GT
nGn)−1gn+1 (8)

is a maximum over the design region. In §3 we call this the deterministic
design rule. To provide a randomised form of this iterative construction,
Atkinson (1982) suggests allocating treatment j with probability

πA(j|zn+1) =
dA(j, n, zn+1)∑t

j=1 dA(j, n, zn+1)
. (9)

In (9) the variances dA(.) could be replaced by any monotone function ψ{dA(.)}.
In Atkinson (1999a) it is shown that the version of the general Bayesian
biased-coin procedure of Ball, Smith, and Verdinelli (1993) which uses DA-
optimality leads to

ψ(u) = (1 + u)1/γ,

with γ a parameter to be elucidated from the experimenter. The simulations
in Atkinson (2002) show how the bias and loss for this family of rules depends
on the value of γ.

3 Allocation Rules

For those allocation rules depending on the variances dA(j, n, zn+1), balance
is more nearly achieved by allocating the treatment for which dA(j, n, zn+1),
j = (1, 2) is larger. In the absence of prognostic factors, treatment 1 would
be allocated if n2 > n1. By extension of this result, treatment one can be
described as being “under represented” if dA(1, n, zn+1) > dA(2, n, zn+1).

The allocation rules are expressed in terms of probabilities

π(1) = prob [an+1 = 1|{dA(1, n, zn+1) > dA(2, n, zn+1)}],
that is the probability of allocating the “under-represented” treatment one.
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D: Deterministic (Sequential Design Construction)

πD(1) = 1.

The treatment with larger variance dA(j, n, zn+1) is always selected. Asymp-
totically, for any reasonable distribution over time of prognostic factors, the
design will be balanced over the factors and there will be no loss: L∞ = 0.

R: Completely Randomized

πR(1) = 0.5,

with L∞ = q, the number of nuisance parameters, including the constant.
The result that randomisation over q variates causes an expected increase in
variance of q goes back at least to Cox (1951).

These two rules represent the extremes of rules which aim for balance
over both the short and long term. The losses of the other rules considered
here are bounded by these values.

E: Efron’s Biased-Coin

The “under-represented” treatment is allocated with a probability greater
than one half. In particular Efron (1971) elucidated the properties of the
rule

πE(1) = 2/3,

although without covariates. Again, as for the deterministic rule with co-
variates, L∞ = 0. Values other than 2/3 will give a different rate of conver-
gence to L∞ and a different probability that the clinician can guess correctly
which treatment will be allocated next. Some investigations of the prop-
erties of schemes with values other than 2/3 are given by Burman (1996).
A biased-coin randomization of a‘peculiar’ deterministic allocation rule for
several factors is presented by Efron (1980).

A: DA-Optimality

With two treatments the biased-coin allocation of Atkinson (1982) according
to (9) becomes

πA(1) =
dA(1, n, zn+1)∑2

j=1 dA(j, n, zn+1)
.

Burman (1996) shows that L∞ = q/5.
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C: Balanced Covariates

This rule does not depend on the variances dA(j, n, zn+1). The values of
the q − 1 covariates are dichotomised about their individual medians, giving
2q−1 possible cells in which the value of zn+1 could lie. The under-represented
treatment in the cell indicated by zn+1 is then allocated, the probability being
0.5 if the numbers of the two treatments are equal. Even if the numbers
receiving treatment 1 and treatment 2 are equal in all cells, Ln will not be
identically zero, since the criterion takes no account of the observed values of
the z, merely categorising them as above or below the median. A potential
practical problem is that the value of the median of each covariate is assumed
known. The value of the loss will be inflated if the median is incorrect or if
the distribution of the covariates is skewed. Some numerical illustrations of
the effect of the resulting inflation of loss are in Atkinson (2002).

A randomised version of the rule could have a biased coin within each
cell. If q is not small, the large number of cells may be sparsely filled. There
will then be a lack of balance over the margins of the table.

M: Minimisation - Pocock and Simon

The family of rules introduced by Pocock and Simon (1975) are concerned
with marginal balance. For the ith element of the covariate vector zn+1 let
k(i, n + 1) be 1 if the element is below the median and 2 if it is above. The
marginal totals m(i, k, j) record the number of times a patient with level
k of the ith covariate is allocated treatment j. A simple, non-randomised
rule exemplified by Pocock and Simon calculates the effect on the balance of
allocating treatment 1 as

C1 =
q∑

i=2

|m{i, k(i, n+ 1), 2} −m{i, k(i, n+ 1), 1} − 1|,

with the effect of allocating treatment 2 being

C2 =
q∑

i=2

|m{i, k(i, n+ 1), 2} −m{i, k(i, n+ 1), 1}+ 1|.

Treatment 1 is allocated if C1 < C2 and vice versa, with random allocation
when C1 = C2. A biased-coin version of this rule, in which the treatments
allocated with some probability such as 2/3 , rather than certainty, is widely
used. Recent examples are surveyed in Atkinson (2002).
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B: A Bayesian Biased-Coin

Ball, Smith, and Verdinelli (1993) suggest that the probabilities of treatment
selection πB(j|zn+1) be chosen to maximize a utility which combines both the
variance of parameter estimates and randomness in proportions determined
by a parameter γ. The rule depends upon a function of the information
matrix. If this is that for DA-optimality, Atkinson (1999a) shows that

πB(j|zn+1) =
{1 + dA(j, n, zn+1)}1/γ

∑t
k=1{1 + dA(k, n, zn+1)}1/γ

. (10)

When γ = 0, the sequential allocation is non-random, reducing to the deter-
ministic rule. As γ →∞, the procedure tends towards the random allocation
rule R. These two values of γ thus provide procedures which respectively
minimize variance by maximising balance and minimize potential bias by
maximising randomness. Provided γ > 0, the procedure leads, with a speed
depending on the value of γ, to random allocation and a loss of q as n→∞.

4 The Distribution of Loss

4.1 Expected Loss

The distribution of loss is investigated by simulating series of clinical trials for
up to 200 trials using these seven allocation rules. Table 1 gives the average
loss for each rule over 1,000 trials when n = 200. Also given are the values
of L∞, when these are known. The covariates are taken to be independently
and identically normally distributed with zero mean.

The results show that the losses are mostly close to their asymptotic
values, especially when q = 5. The deterministic rule has forced balance,
with a loss close to zero. For randomisation and DA-optimality the losses are
near to q and q/5 and, for the Bayes rule, γ is sufficiently large that the rule
is approaching random allocation.

The plots of these losses as functions of n are in Fig. 1, both for q = 5 and
for q = 10. They show that the losses for most rules have levelled out after
an initially high start when there are so few observations that the design
is unbalanced. The arbitrary rules C and M have reached stable values for
q = 5, but not for q = 10. Particularly for C, most designs are far from
balance. Efron’s rule at n = 200 is still decreasing towards its asymptotic
value of zero. The Bayes rules are the only ones for which the loss increases
with n, after an initial decline.

These results divide the allocation rules into three groups - those for which
the asymptotic value is non-zero, those for which it is zero and the rules C
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Allocation Rule Average Loss Average Loss Asymptotic
q = 5 q = 10 Value L∞

DA-optimality A 1.028 2.0937 q/5
Covariate Balance C 1.634 8.015 ?
Deterministic D 0.054 0.211 0
Efron’s Biased Coin E 0.542 1.913 0
Bayes B (γ = 0.1) 3.573 7.229 q
Minimisation M 1.522 3.598 ?
Random R 4.898 9.886 q

Table 1: Average losses from 1,000 simulations of 200 patient clinical trials
for five and ten nuisance parameters - four and nine covariates. Also given,
where known, are the asymptotic values of the loss L∞

and M, dependent on the categorisation of the covariates, for which L∞ is
not known.

4.2 A Chi-squared Approximation

We now consider the distribution of the losses summarized in Table 1 and
Fig. 1. The left-hand panel of Fig. 2 gives boxplots of the distributions of
loss for rule A at eight values of n from 25 to 200. The means of these
distributions initially decrease gradually, but comparison with Fig. 1 shows
that the large decrease in the mean has already occurred by n = 25. The
shape of the eight distributions appears similarly skewed.

Since loss is a non-negative quantity we try a standard approximation to
non-negative skewed distributions which is a scaled chi-squared distribution
on ν degrees of freedom. The scaling is estimated so that the distribution
has the correct mean, that is we assume

Ln ∼ (Ln/ν)χ
2
ν . (11)

An idea of ν can be found by QQ plots of the empirical distribution of loss
against a selection of χ2 distributions. The right-hand panel of Fig. 2 shows
the results for n = 200 and ν = 5. There are 1,000 observations. The plot is
acceptably straight and a little straighter than those for ν equal to four or
six, although in all cases the eye is drawn to the 1% of the trials in the top
right-hand corner of the plot. In later sections we estimate ν by maximum
likelihood.
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Figure 1: Loss Ln for seven strategies for sequential allocation of treatments
with t = 2 and q = 5 and 10: A, DA-optimality; B, Bayesian biased coin,
γ = 0.1; C, Covariate Balance; D, Deterministic; E, Efron’s Biased Coin; M
Minimisation and R, Random. Means of 1,000 simulations

Fig. 3 shows similar results for Efron’s biased coin. The boxplots show
how the losses again decrease, more rapidly than those in Fig. 2. The right-
hand panel of the figure indicates that ν = 3 is a good approximation to
the distribution of loss when n = 200. The results, again for q = 5, for the
Bayes rule with γ = 0.1 in Fig. 4 show how, for this rule, the average loss
increases with n. Again ν = 5 provides a good chi-squared approximation to
the distribution when n = 200.

Similar support for an approximating chi-squared distribution is obtained
from the simulations when n = 10. Fig. 5 shows the boxplots and QQ plot
for random allocation when n = 10. There is no noticeable trend of the
expected loss with n - it remains close to ten - and the QQ plot for ν = 10
indicates that the distribution fits well. The greatest contrast to this is the
pair of plots in Fig. 6 for the deterministic rule: the average loss decreases
sharply with n as does the spread of the distribution. When n = 200, a good
fit is obtained with ν = 13.
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Figure 2: Distribution of loss for DA-optimality when q = 5: (a) boxplots of
the distribution of loss Ln; (b) QQ plot of L200 against χ2

5. 1,000 simulations

4.3 Five Nuisance Parameters

These preliminary results suggest that for some, if not all, of the rules, the
degrees of freedom ν may be equal to q, the number of nuisance parameters.
This would match the suggestion of Cox for random allocation. We now
determine for which allocation rules ν = q provides a good approximation to
the distribution of loss.

The QQ plots shown in the figures are each for one sample of 1,000 trials
from which the value of ν can be estimated. These simulations were repeated
100 times, giving 100 estimates of ν for selected n and the seven rules. The
estimates were found by maximizing the likelihood and tested for equality
to q using a likelihood ratio test, which will have an asymptotic chi-squared
distribution on one degree of freedom. This maximum likelihood test is
more complicated than that which arises in the gamma family of generalized
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Figure 3: Distribution of loss for Efron’s biased coin when q = 5: (a) box-
plots of the distribution of loss Ln; (b) QQ plot of L200 against χ2

3. 1,000
simulations

linear models, when comparisons are between nested models with the same
dispersion parameter, that is, value of ν.

The mean values of the 100 estimates of ν when n = 200 and q = 5 are
given in Table 2. Plots of the mean values for eight values of n, together
with asymptotic 95% confidence intervals for ν, are plotted in Fig. 7. These
results extend those implied in the QQ plots of the earlier figures. Above
n = 50 the deterministic rule D has a value of ν around 6. The values for
rules C and M decrease to around 4, whereas Efron’s biased coin decreases
steadily to around three. However, for three rules, A, B and R, the estimates
seem to have stabilized around ν = 5.

The narrowness of the confidence intervals in the figure shows that the
conclusions are clear of random error from the simulations. This conclusion
is confirmed by the values of the statistics for testing ν = 5, which are
summarized in Table 3 and plotted in Fig. 8. This figure chiefly shows the
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Figure 4: Distribution of loss for the Bayesian biased coin with γ = 0.1 when
q = 5: (a) boxplots of the distribution of loss Ln; (b) QQ plot of L200 against
χ2

5. 1,000 simulations

value for E increasing steadily to around 160. The values for the rules M, D
and C are also significantly high when compared with the null χ2

1 distribution.
Fig. 9 shows the evolution of the statistics that are not significant at n = 200.
Both rules B and A settle down early on to being well approximated by a
chi-squared on five degrees of freedom. Random allocation, R, initially is not
so well approximated, due to the lack of balance the rule sometimes gives
when there are few patients. The major conclusion is that for three rules, A,
B and R, the degrees of freedom are very close to five.

4.4 Ten Nuisance Parameters

The results with q = 10 are similar to those for q = 5, but less sharp, since
the increase in q requires an increase in n for asymptotic results to start to
hold. The values for the estimates of ν in Table 2 show that for five out of
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Allocation Rule Average d.f. Average d.f
q = 5 q = 10

DA-optimality A 5.08 10.28
Covariate Balance C 4.28 10.36
Deterministic D 6.04 12.74
Efron’s Biased Coin E 3.10 6.15
Bayes B (γ = 0.1) 5.11 10.26
Minimisation M 4.05 9.16
Random R 5.14 10.51

Table 2: Average degrees of freedom for the chi-squared approximation to
the distribution of loss when n = 200. Average of 100 repetitions of 1,000
simulations of 200 patient clinical trials for five and ten nuisance parameters
- four and nine covariates

Allocation Rule Average l.r. Average l.r
q = 5 q = 10

DA-optimality A 0.99 1.23
Covariate Balance C 15.87 1.54
Deterministic D 20.00 29.20
Efron’s Biased Coin E 160.64 154.97
Bayes B (γ = 0.1) 1.60 1.24
Minimisation M 28.53 5.36
Random R 1.92 2.36

Table 3: Average likelihood ratio test for testing that the degrees of freedom
of the chi-squared approximation to the distribution of loss are equal to q.
Average of 100 repetitions of 1,000 simulations of 200 patient clinical trials
for five and ten nuisance parameters - four and nine covariates
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Figure 5: Distribution of loss for random allocation when q = 10: (a) box-
plots of the distribution of loss Ln; (b) QQ plot of L200 against χ2

10. 1,000
simulations

seven of the rules the estimate has almost exactly doubled. Only for rules
C and M is the increase rather more than twice. The values for the test
statistics in Table 3 also show that doubling the number of covariates affects
procedures C and M differently from the others, for which the test statistics
are little changed in value. In particular the distribution of loss for rule C is
now well approximated by the χ2

10 distribution.
The plot of estimates of ν in Fig. 10 shows that rules D and E have

estimates far from ten. That for M, just above 9, is perhaps slowly increasing.
The other four rules A, B, C and R all have similar approximations. At
n = 200, the value of the test statistic for R is 2.36, the largest for these
four rules. However, the final plot, Fig. 11, shows that the ratio for R is still
decreasing at n = 200. An asymptotic chi-squared distribution for the loss
on q degrees of freedom is acceptable for these four rules when q = 10.
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5 Discussion

The conclusion from this study is clear. The distribution of loss divides the
rules into three groups.

The first group contains the rules A, B and R for which L∞ is either q/5
or q. Then we can be explicit about the degrees of freedom in (11) and state
that

Ln ∼ (Ln/q)χ
2
q = LnFq,∞. (12)

The results of the likelihood ratio tests when q = 5 in Fig. 9 show that this
approximation holds for B when n is at least 25, for A when n ≥ 50 and for R
when n ≥ 75. Larger minimum sample sizes are indicated by the results for
q = 10 in Fig. 11: 50 for B, 75 for A and 150 for R, roughly twice the sample
sizes required for q = 5. These results illustrate the rate of convergence to
the asymptotic results implicit in Smith (1984a).
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Figure 7: Mean estimates of ν and 95% confidence intervals from 100 esti-
mates based on simulations of 1,000 trials with q = 5. C, Covariate Balance;
D, Deterministic; E, Efron’s Biased Coin and M Minimisation

The second group of rules, D and E, are those for which L∞ = 0. Over
the range of values of n studied the results show that the distribution of loss
is well approximated by a chi-squared distribution, but that the degrees of
freedom depend on n, especially for E. Figures 7 and 10 show this dependence.
For n = 200 and q = 5, ν is around 6 for D when q = 5 and around 3 for E.
As Table 2 indicates, these values roughly double when q = 10.

Finally there are the rules C and M, which are not based on the linear
model (1). Theoretical results for these rules have not yet been obtained, so
that the values of L∞ are not known. The results here establish chi-squared
approximations to the distributions of loss for these rules. For q = 5 they
behave similarly, with a value of ν around 4. But doubling the value of q has
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a very different effect on the two rules: in particular for C the expected loss
and the degrees of freedom of the chi-squared distribution for n = 200 much
more than double.

The deterministic strategy D minimizes loss while excluding randomiza-
tion. The effect of randomization is most easily quantified using “selection
bias”, introduced by Blackwell and Hodges (1957). This is the probability
that the allocation of the treatment to the next patient can be correctly
guessed. It is one for D, 0 for complete randomization and has intermediate
values for the other rules - for example, one third for rule E. An asymptotic
expression for the mean selection bias which includes rules A and B is given
by Smith (1984a, p.1033). Simulations of expected selection bias for the
non-asymptotic sample sizes studied in this paper are in Atkinson (2002).

Of course, in a double-blind trial the clinician is not able to guess the next
treatment to be allocated and so is unable to influence which patient receives
which treatment. This is even more so in the case of a multi-centre trial in
which treatments are allocated centrally. Selection bias should therefore be
considered as a calculable surrogate for all the reasons for which randomness
is required. Efron (1971) and Steele (1980) show that biased-coin designs
give good protection against smooth trends and short-range cyclical patterns.
Smith (1984b) extends this work and includes correlated errors. Taves (2001)
gives a further discussion of reasons for randomisation in clinical trials and
Matthews (2000, §2.2) considers the various biases which may arise.

In general, designs with small expected loss have high expected selection
bias, and vice versa. Atkinson (2002) uses simulation to study the admissibil-
ity of allocation rules measured by expected loss and expected selection bias.
A rule with higher loss and higher bias than another rule is inadmissible. The
need for a systematic comparison of rules, to which this paper is intended
to make a contribution, is highlighted by the claim of Treasure and MacRae
(1998) that minimisation forms a “platinum standard”. Unfortunately, the
form of minimisation given here, rule M, is inadmissible.

The calculations described in this paper assume that the observations
are normally distributed, perhaps after transformation. However, provided
the treatment effects are moderate, the results should extend to generalized
linear models in the same manner as Cox (1988) argued that factorial de-
signs extend to such models. The technical point is that, if the treatment
effects are moderate, the variation in response will not be large. Then the
iterative weights used in least squares fitting will have similar values for all
observations. As a consequence, maximum likelihood estimation is close to
unweighted least squares. Whatever the appropriate model it is however
necessary to take account of the distribution of loss as well as its average
value.
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Figure 8: Loglikelihood ratio test for ν = 5: means and 95% confidence
intervals from 100 estimates based on simulations of 1,000 trials with q = 5.
C, Covariate Balance; D, Deterministic; E, Efron’s Biased Coin and M
Minimisation
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Figure 9: Loglikelihood ratio test for ν = 5: means and 95% confidence
intervals from 100 estimates based on simulations of 1,000 trials with q = 5.
A, DA-optimality; B, Bayesian biased coin and R, Random
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Figure 10: Mean estimates of ν and 95% confidence intervals from 100 esti-
mates based on simulations of 1,000 trials with q = 10. D, Deterministic; E,
Efron’s Biased Coin and M Minimisation
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Figure 11: Loglikelihood ratio test for ν = 10: means and 95% confidence
intervals from 100 estimates based on simulations of 1,000 trials with q = 10.
M Minimisation and R, Random
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