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Abstract

We propose a Large Deviation approximation for the loss distribution of a credit portfolio and compare
it as well as higher order Saddle-point and Edgeworth expansions with the standard recursion method for
the pricing of CDO tranches.

1 Introduction

The most common approach to value synthetic CDO tranches is still via "Base Correlation” or "Local Correla-
tion” models. Both approaches are described in [17] and [27],[2]. Those "static models” are simple extensions
of the Gaussian copula, (cf Li [20] , Roncalli [21] ). As the value of a CDO tranche is the sum of call-spreads
on the Loss distribution of the underlying pool, one only need to compute this loss distribution for arbitrary
future times. In this framework, the loss distribution is computed via a numerical integration (cf. [23]):
L= [L(Z)¢(Z)dZ where Z is Gaussian. Conditionally on Z, the common market factor of the model,
L = L (Z) is the loss distribution of a portfolio of independent names : we will focus here on the computation
of this quantity using various expansion methods. We will look in particular at the higher order expansions
results for the Saddle-point method and the Normal proxy, also called Jarrow- Rudd method.

The first section introduces the notations used later.

Next, The second part exploits various extensions of the Saddle-point approximation, up to the 8th order.

In the third part we expand the distribution around the Normal case : this method is similar to Jarrow-
Rudd approach, based on Edgeworth expansions of the loss distribution, but initially applied to option
pricing (cf. [16]).

In the fourth part, we propose a large deviation approximation based on the results of Akahira, K.
Takahashi (cf. [9]).

All this numerical methods are compared with the benchmark recursion. They could be as well compared
with the standard FFT method. In order to avoid numerical error, one can combine them with a Esscher
transform, as described in the last Appendix. This technic prevents “aliasing” in the loss distribution com-
putation.

In the last part, we apply those expansion formulas on a credit portfolio and compare the robustness of
the methods, depending on the correlation level and seniority of the Tranches.
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2 Notations

Let n be the number of credit entities in the basket.
We define :

e 7; : the default time of entity 4.

® X;(t) = 1(r,<p : the default time indicator for time horizon t.

pi(t) =1 —exp (— fot i (8) ds) is the default probability up to time ¢ for name i with an intensity
model:

gi (t) =1 —p; (t) is the survival probability for name 1.

We define the counting process at time ¢ by:
X (t) =) X (t) with X; () = 1{7,<s}-
i=1
e N (z) is the CDF of the N (0,1) Gaussian variable:

N = [ s andaﬁ(x):“pg?) )

p? (t) is the conditional probability on the common factor Z = z (cf [23] for more details on this
convention). For example, p? (t) can be one of the following expressions:

If we use the framework of ”one factor |Gaussian| copula” or Base correlation, with correlation z, we

have:
N1 (p; (t) — \/ﬁ2>
i)

If we use the framework of the Local correlation (cf [27])or Random Loading Factor (cf [2]) with a
correlation z — p(z), with values in [0, 1], where z is N (0,1), we have:

H™ (i (1) p(z)z) |
(2)

v = (

1—p

pf(t)=N<

We define ‘H as the CDF of the variate used to correlated the default times, i.e.:

H(z) =P (U; < z) with Uy =\/p(2)Z + /1 - p(2Z)e;

with &; and Z are i.i.d. N (0,1). Z is the state variable. In the Gaussian framework we simply have

U; = \/ﬁZ—l-\/l—pé‘i.



e X7(t) =1 _ <H—1(m(t))—\/@z} with g; ~ N (0,1) i.i.d. Note that all the X7 (¢) are independent,

= Vi-6(2)
conditionally on Z = z, i.e. a particular value of the state variable.

o In that case X7 (t) = Y1, X7 (¢) is the sum of independent binomial variables, with E (X7 (t)) =
p; (1)

X? (t) is the number of defaults in the basket conditional on Z = z up to time t.

e Let a; be real numbers. L? (t) = Y1 | a; X7 (t) is the loss accumulated at time ¢ conditional on Z = 2.
Usually a; = N; (1 — R;), where N; is the notional invested in name i (it can be negative) and R; is
the recovery of name ¢ supposed constant here.

e The cumulants K7 () of X7 (t) and L? (t) are respectively:
Ki(0) = InE (eGXZ(t)> = Zln (1 —p; (1) +p; (t) 69) for X* (1)
i=1

K (9)

InE (JLZ(U) - zn:m (1 — p? () + p (t) eaie) for L* (t)
=1

e The notation K®) means Kf’(i) (é) where 6 is the Saddle-point (this will be defained in the next part).

e The expected values and variances of X? (t) and L? (t) are respectively given by:

pe = E(X* (1) = 597 (1)
w = E(L*(t) = Sapf (1)

and

Q
N RN

= Var(X*(t)) = 3pi (t) (1 —pj (1))
= Var(X*(t)) = Saip; (t) (1 — pj (t))

Q

e Some useful integrals for the Saddle-point are computed in Appendix B.

3 Saddle-point approximations for CDO and N*'-to- defaults

Conditionally on the state variable Z = z the number of defaults in the basket at time ¢ is X*(t) =
Yo X7 (t) where the X7 (t) are independent (cf. notations at the beginning) ; the Loss in the basket is
L*(t) = >, a; X7 (t). For each approximation, we need to compute the following quantities:

e for the distribution of X7 (¢),i.e. the distribution of the number of defaults, we need to get Q (X~ (t) = myg)
for each mg € {0,1,...,n};

e to compute the price of a méh—to—default swap, we need to compute the tail of the distribution
Q (X (t) > myg), for mg € {0,1,....,n};



e to compute the price of a CDO swap we need to compute the call on loss E ((L* (t) — )., ) for different
real values of [y, either in the lower-tail (for equity tranches) or upper-tail (senior tranches).

The Saddle-point approximation method is briefly recalled below (cf. Daniels [6] and [7]) and was
initially applied to portfolio credit risk (VAR and expected shortfall) in Martin et al. [25]. But the technic
has been applied recently to CDO and CDO square pricing by Antonov et al. [3]. More details about this
approach on a mathematical basis are available in [18].

The Edgeworth expansions consist in expending the inversion formula around the Saddle-point 6. Starting
with the expansion at order 2 (i.e. the quadratic expansion and also the standard Saddle-point approxima-
tion) we extend it to the 8" order. We compare our results with the order 4 expansion in [28].

3.1 Quadratic Saddle-point approximation ~ 2"¢ order expansion
3.1.1 Computation of the density of X~ (¢)

Our aim is to apply a first order Saddle-point approximation to compute the density @ (X? (t) = myg) for
mo € {0,1,...,n} . Note that [3] consider the Loss process L instead of X. But dealing with X is equivalent
to deal with L if we replace the quantities a; with 1 in the loss process. We have:
1 c+ioco
Q(X*(t) =mg) = —— / M () e~"™dp
2im c—100
where M7 (0) = E [eX*®)] and ¢ > 0 is any positive number. Replacing M7 (6) with exp (K7 (0)):

2im

1 c+1i00 ;
Q (Xz (t) _ mO) _ / Ki (G)meoda
Let 0 be the Saddle-point, i.e. solution of Ktz’(l) (é) = mg. We define K() = Ktz’(i) (é) .
Note that § < 0 is mo < E (X7 (t)) = S pf(t) and 0 > 0 otherwise. The upper-tail is the set of mg

above the expected value of X~? (t), i.e. such that my > E (X?*(t)). A limited development at order 2 of the
function 6 — K7 (6) — Omyg gives

K7 (0) —0myg = K;f (é) — Omg + (9 _ é) (K(l) _ é) n % <9 B é)ZK(Q) Y (9 - §)2
= K7 (8) ~bmo+ 5 (9-0) K +0(0-0)’
then |
Q(X™ (1) =my) = Xi(0)-mo L / I L (0-0) KO 4

20m —ico

~ KE(0)=0mo 1 (K(2), é)

using the expression of Jy <K(2), é) we finally get

oIE (0)—6mo

Q(X*(t) =mo) =~ W (2)
o157 (0) 6l

Q(L*(t) =lo) =~ ool (3)



Expressions for K1) = Kf’(l) (é) and K2 = Ktz’@) (9) are in Appendix-B.

Soif >, p (1) 1{pf(t)>0} =m < n then Q(X?(t) =k)=Q(X*(t) > k) =0 for k > m.. and we don’t
need all this.

Note that the expression 2 is independent of mg or [y being above or below the expectation of X# () or
L7 (), as there is no singularity in § — eX7(©)=0m0_This is not the case for the tail computation or the call
on the Loss, as we are going to see.

3.1.2 Computation of the survival probability Q (X (t) > mq) for the m{' to default event
As before we have for X* (t) and L? (t)

1 +o00 c+1i00 1 c+ico eKzZ(G)*9mo
Q (X7 (t) = mo) = / dm M7 (0) e 0mdo = / e T

20T g c—ioo 2im Jo—ino 0

We have to consider 3 cases :

e If mg > E (X*(t)) then 6 > 0 and we have a first order Saddle-point approximation given by

AN\ 2

a1 fetice o3 K (6-0)
X7 (t) > ~ K; (9)797710 / do

QX* () 2mg) = e )

—100

with Ktz’(l) <é) = my

so for mg > E(X*(t)) : o
Q (X7 (t) > mg) ~ i (0)=0mo g, ( KO 9)

Q (X% (1) = mo) = exp (K (0) — fmo + 302 K@) N (—0VED)

e Note that if mg = E (X7 (t)) the relation is still true as the Saddle-point is at zero (é = 0) and

K7 (0) =0 so that Q (X*(t) > E (X* (1)) = 3.
As pointed out by Taras et al. in [28], the "Saddle-point approximation is accurate into the tail of the
distribution, in fact becoming more accurate the further into the tail".

e When mg < E(X?(t)) we have § < 0. In that case, as explained in Martin et al. [25], we need to
apply the Residue Theorem to the holomorphic function 6 R w on the complex plane but in

1k (9-6)?

0. The theorem must be applied on the original f, not on the quadratic approximation “——5——. As
we have [ f = 2imRes(f,0) and given that:
,S/‘

Res (f,0) = i) =1
we can integrate on the following loop ¥ with R > 0 :

¥=[0+iR,6 —iR|U[f —iR,c—iR|U[c—iR,c+iR|U[c+iR,0 +iR)]

5



as R goes to infinity the only remaining terms are the integration parallel to iR :

1 O+ico K7 (0)—6mo 1 ctico K7 (6)—0mo
- —df + — —df=1
20T Jo—ioo 0 2 Joioo 6
so finally
1 [etioo JKE(0)—0mo 1 [O+ico LK7(0)—0mo
— C 4 = 1+ — S——; ] (4)
20T Joioo 0 20 S ioo 0
f+ico % K<2>
14 KE(0)=imo L / T
2

12

0N emOJ( ®.9)

Using Appendix B formula we get for § < 0 (for both X? () and L* (t) ):

Q (X (t) > mo) ~ 1 — exp (K7 (8) = bmo + 3PK@) W (=[] VED)

Note that the term exp (Kf (é) — Omg + %é2K(2)> can sometimes explode while N (— ‘é‘ \/K(Q)) is
null. For those cases Q (X* (t) > mg) = 1.

Note also that if we are at the mean, then 6 = 0 so that Q (X? () > my). In other words, as for the
Normal distribution, the Saddle-point approximation puts half of the distribution on both sides of the mean.
This is obviously wrong in most of the cases when pricing CDOs.

3.1.3 Computation of the call on the loss E (L* (t) — lo), for a CDO tranche

We have Q (L7 (t) > lg) = 5 etico ww. So integrating on ly gives:

2im Je—ioco

+o0 +oo q ctico K (0)—-01
B(L () ~lo), = - | Q(Lz(t)zl)dl:—/l | —doa
0 0 c—ico
1 c+ioco K7 (0)—0lp
= —/ Ldﬁ
29 c—ioo 92

e If the strike [y is greater than the conditional expected loss ,i.e. if lo > EZ (L? (t)) (or if 0 > O) then,

developing again K7 (6) — 6y at order 2 around the Saddle-point 6 gives the following formula, with
%) (5
K (9) .

A ctico LK (0-6 2 .
QL7 (t) —lp), =~ er(a)elol/ Qd& _ ng(e)felOJQ (K(Q),é>

2i7T — oo 92
K (6)—dto | JEP o5 1k@4 5
m KEO) 00 0y [ 2 K@ N(—H\/K(Q))
T



e If the strike lo is smaller than the conditional expected loss ji.e. if lg < EZ (L* (t)) then, 6 < 0 and we
oKF )0t

have to apply the Residue Theorem as in . Let f () = “—5——. Around 6 =0, as K7 (0) = 0 and
K7W (0) = EZ (L* () we have:

F0) =~ exp (1 + K (0)+0 (K7 (0)~ 1) + %921{;’(2) (0) + 0 (92)>

1+ K (0) EZ(L*(t)) — o
PR 0

1

+0(0)

So the pole is EZ (L* (t)) — lp and if ¢ > 0 :

1 c+ico KZ(G) 0lo
7619 = EZ (L% (t)) — Iy

% c—100 0
and .
1 ctico K7 (0)—0lo 1 O+ico K7 (0)—6lo
— df = EZ (L7 (1)) — lg + — ]
%r Jo iy 02 (L) —lo+ 5 iee 02 (5)
s0if <0:

12

B (L () — o + X7 0) 00, (162 0)

) -t 700 [y [

Q (L7 (t) = lo)

0

1

2T

AR (g @)}

3.2 Higher order Saddle-point approximations
3.2.1 Computation of the density Q (X7 (t) = mg) ~ 8 order expansion

As mentioned in Taras et al. [28] and [9], it is possible to extent the second order approximation at
higher orders, which leads to formula (6) in [28] and (2.12) in [9] . We give the formula to order 8
(cf. Appendix-F for more details)

1 14+ K& [ K® 5K (3)2 1

z _  KZ(0)—0mg SK ()2 48 24 K@)3

Q(X*(t) =mp) ~e i) x O X K®  35x@®2 | 7B KG) 1 (6)
Q t138 T T3 T a8 K4

Note that the expansmn of the exponential to order 2k is equivalent to an expansion in order of The

K(Q)k
odd terms in (9 — 9) vanish for k odd and the second term in (2) vanishes too, because K’ 5(1) (é) = my.
We will also compare formula (6) with Daniel’s formula (we call it order 5 Taylor expansion, as it is order

. . 6
6 expansion without term %) :

(7)

; z(p ) (4) (3)2
QDamels (Xz (t) — mO) ~ eKt (B)fémo « 1 w1 K 5K
2K (2)

SK(22  924K(2)3



3.2.2 Computation of the tail Q (X* (t) > mg) ~ 4" and 6! order expansion

The tail approximation for an expansion of (9 - é) at 4" and 6" order is given by Q1" (X7 (t) > mo) and
Q%" (X7 (t) = mo) :

Q4th (Xz (t) > mo) ~ 1{@30}

0

+sign (é) eIE (0)=0mo o3 K62 5 (— K(2)

. K®g3 Kg@ps
) 76 T u

er(é)—émo . .
TR (1 - 02K<2>) <9K(4) - 4K<3>)
2421 K22
The details of the computations are given in Appendix-F. Note that our results are different from Taras

[28] .
The 6" order is given by:

Q" (X7 (1) = mo)
~ 1{é§0} + sign (é) K (9)=0mo o e%K(2)é2N’ (—\/ K® ’é‘) X
K®g3  KWpt G K6)g6  K(3)246
1— - - -

6 o 120 720 72
@ (1- 2K [dr® — 4g®) 4 2 (KO _ k()
el BK® (1-2K®) [KW — 4k + § (252 — gO)]
o —OK©2, (18 - 02K + 91K (2?)
2V2r K3 :
VR T+ 4 KO (§ - 2) 4+ 15K

We recall Lugannani & Rice formula for the tail :

QLuoCRee (X2 () > mg) = 1- N (sign (é) \/2. K7 (é) - 9mo‘>

A N 1
V2 6VE® sign (é) \/2. ’Kf (é) - émo‘




and Damian Taras, Christopher Cloke-Browne and Evan Kalimtgis formula:
QTCBE (X2 (1) > my)
~ 1{930} + sign (é) KE(0)=0mo o o3 K02 (—\/ﬁ ’é‘) X
{1 - K®)p3 . K®ph . K(3)2é6}
6 24 72
oKE(0)—0mo 3K® (1 _ é2K(2)> (éK(4) _ 4K(3))
VI ™ { SRR, (3 2K 4 g2 }

3.2.3 Computation of the call on the loss E (L* (t) — ly), ~ 4" and 6" order expansion

The details of the following formula are given in Appendix-F

E(L*(t) — o), =~ 1{é§0}. (BZ (L7 (t)) — lp) + € 7(0)—6lo o gath
with:

3) K<4>g}

st = g (1) o (- ) e { X

(
26
o] KON (~VEE [9]) ek {1 G K<4>é4}

6 24
b S KW e (KO KW KOEOE | KCKWE
VoK 23 24

+ 3 + 8 6 + 24
and the 6 order:

E (L7 (t) — o), ~ 1{@30}. (EZ (L7 () — ZO) +  Ki(6)=0lo o o6th

with:

2 6 24 120 12

Soth - — g szgn( ) (
R 393  KWpr  gGF K66 (3246
K® @ 1242 K _
) N( ) 1 6 + 24 120 + 720 * 72

(2)29( Kw LKW KD | KO | 5K($26

L (K® KW KO@ KO K325
)e%K@)gz{K KW)  KO¢  KOF K 9} -

0

8 30 144 72
2) _K®W K( )9 K(6)§2 K(3)2§2
1 +K 51~ T

+ (2)§ 2)3 K3)§3 K(4)94 K(s)Qgr? K(G);Z‘l K(3)246
V2r K2 +K<><1— 06 - + + )

24 120 720 72
K(6) K(3)2
+ 240 24

Note that K = Kf’(i) (9) where 6 is the Saddle-point, i.e. solution of K, (1) (9) lp.
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4 The Normal-Proxy approximation of David Shelton

The approach from David Shelton [26] is an even more direct and efficient approximation than the Saddle-
point. All it needs, conditional on the variable Z, is : the value of the expectation of X? (¢) and its variance
(cf. the notations at the beginning of this paper). We have u, = %p? (t) and o2 = Sp? (¢) (1 — p? (t))and
we assume that the distribution of X (¢) is Normal N (ug,05). This approximation is particulary good
for large portfolio as it is somewhat a limit of the theorem of large numbers. The most useful property of
this approximation is that given a value of z the density computed with the normal-proxy is generally very
different from the theoretical one, but when we integrate numerically on z then it becomes very close to the
real distribution (cf. numerical results).
The conditional density of X~ (¢) is simply given by

z _ _ 1 . (m() - :U'I)Q
Quvp (X (1) = mo) = —L—ep {02 )

and a call on Loss by

E(L*(t) - K), = Ul{fb(ff)‘f{/v(_f{)}

_ K —
K = &
of
p = Yaip; (t)
of = Zaipi (t)(1-pi (1)
Note that the density , tail and call should not be renormalized with A/ (XIZ“%Z_“I) -N <Xf"#7“z) to

make sure that the density sum to one.

5 Expanding the Normal Proxy : the Jarrow-Rudd approach

As we will see in the numerical illustrations, the Normal-Proxy is very efficient in most cases, but not for very
thin or senior tranches. Our aim here is to refine it by capturing higher order moments of the distribution.
The idea is to start from a given distribution (i.e. we start from the Normal distribution) and approximate
the real distribution of the loss using higher moments : the skew and the kurtosis. This is called a generalized
Edgeworth series expansion of the density (cf. [5], [19],[16]). From the expansion of the density as in [16],
we have directly the expansion of the call on loss.

5.1 Computation of the density using Jarrow-Rudd expansion

As in [16] we define  — a (x) as the approximate density (the Normal one, cf. (9)) and x — f (z) as the
real density of L* (t) that we want to expand.
Following Jarrow-Rudd expansion (4) in [16] , we have:
K — K
f(m) ~ a(a:)+( Q(f)2 Q(G))a@) (.Z) 5 a (:IJ)
(Ka (f) — Ky(a) +3 (K2 (f) — Ko (a))za(4)
24

+

10



with K; (f) = K® (é) is the cumulant of order 4 for the density f, taken at value 6 = 0. a?) () is the deriva-

tive of order ¢. In the paper of Jarrow-Rudd, The value of 0 is zero (there is no Saddle-point approximation here) .
The formula above is proven in [16]. The idea is to write the Taylor series of the first cumulant of f
i.e. Ko(f)(0) around & = 0 and to do the same with Ko (a)(f). Taking the difference of those series
up to a order N one have Ko (f)(0) ~ Ko(a) () + N, (K; (f) — Ki (a)) % Then taking the expo-
nential of this equation, one find a relation between the characteristic functions of f and a : My (f) =~
My (a) exp (Zf\il (K; (f) — Ki(a)) %) . Again, we do a Taylor expansion of the exponential to finally have

exp <Zf\i1 (K; (f) — Ki(a)) %) ~ Zf\il Ej%. This step is actually very similar to the computation of ex-
pansions in the Saddle-point framework.

Using the inverse Fourier transform of this series one finally find a relationship between the density of f
and the density of a

Let define by p; and 012 respectively the mean and the variance of the loss L? (t). Then concerning
a (z) ,we need to have Kj (a) = Ki (f) = ;. We use a (x) given by the normal proxy. We know that it is
already a good approximation of the real density :

1 exp (=)’
V2o 207

Ky(a) = of = Ka(f)
K;(a) = Oforalli>3

a(x) =

In particular, we have

The formula for K; (f) when f is the density of the loss process L* (t) are given in Appendix A. So we have

at order 4: K K
f@) ~ ()~ B0 () 4 KD 0 ) (10)

Note that because the first two moments of f and a are chosen to be equal, there is not weight on a") () and
a? (x) . This formula, because it shows the expansion of the density, is much more instructive and explicit
than the Saddle-point approximation. One can see how the real density differs from the normal density by
looking at the weights on higher order terms, i.e. skew and kurtosis. Indeed, the term in front of a® (z) is
a function of the difference in variances. If L was normal, with a different volatility than that of a then we

g 7(72
would have f (x) =~ a(x) + %a@) (). The term in front of a® (z) captures the skewness of f and the
last one the kurtosis.
The expansion (10) can be decomposed into a polynomial P (Z) multiplied with ¢ (Z) :

N
f@) ~ P@)>6()
_ T —p
€T =
g
5.1.1 Order 3 expansion
We have f (z) ~ a(z) — KBT(f)a(?’) () so:
~ Ks _ K3 ~3
— 1 v —
P (Z) 5,3 + 6537



5.1.2 Order 4 expansion:
We have f(z) = a(x) — KBT(f)a(?’) (x) + K;—gf)a(“) (x) so

K, K3 . Ky o, K3 .3 Kyi o4
— — 11
8ot 2037 4ot 1047 603" + 2451” (11)

with K; either the cumulants of X? (t) or L (¢) computed in Appendix C (note that in appendix C, we
compute the cumulants associated with an Esscher transform : here the cumulants K; are computed with
6 = 0). Mean p and volatility o are those of X* () or L* (t)

5.2 Computation of the call on Loss using Jarrow-Rudd expansion

Now that we have an explicit expansion of the density we can easily compute E (L* (t) — K), from expression
(10) :

E(Lz(t)—K)Jr:f:m/Jroo (z—f() 2 () dz
=0

with K =

Using Appendix C formulas of the moments of a Normal variable stuck at K we find:

; the coefficient of degree i of the polynomial P in (11).

5.2.1 Order 3 expansion:
We have P (z) =1 — —x—i— st SO

B -8, = af(1+g3k)o(K) -k (-K)]

l
— EProxy (L* (t) - K), + ﬁ[}'¢ <K‘>

5.2.2 Order 4 expansion:

WehaveP()—l—i———;fT‘gm—Mﬂ:—l— :B+244:U4so

£ =80, = nf (1 g gk R o (K) - K (K

K
Ks 5K, K, _
— EPTON(1F(p) K K 7€ ( )
(=) )++<62 +24al 24al>¢

6 Higher order Large Deviation approximations

6.1 Computation of the density Q (X* () = my)

The recursion algorithm in Akahira & Takahashi [9] enables to relate explicitly density @ (X* (t) = mp) and
Q (X7? (t) = mo + k) for any k.

12



This can be applied to can be applied to X?* (¢) or L?(t). The only thing we need is the value of the
cumulants. Let suppose you know Q (X~ (t) = mg). We want to compute Q (X* (t) = mo + k) . Akahira, K.
Takahashi propose Daniel’s formula for the initial value at k =0 :

oI (6)—0mo K® 5K (3)2
oK (2 T SK@2 T K8

Q(X* (1) = mo) =

Then the result of Akahira & Takahashi is the tail approximation, 6 being the Saddle-point at my :

o if my>FE(X*(1)):

KO (9) 2 .
QX*(t)=mo+k)=Q(X*(t)=mo)exp | -k | 0+ 5 | — - +O<2) (12)
2K ) (9) 2K ) (9) n
e and for mo < E (X~* (1)) :
~K®(9) 2 .
QX*(t)=mo—k)=Q(X*(t)=mog)exp | k| 0+ | - - +O<2) (13)
2K (2) (9) 2K(2) (6’) n
We extend the result of Akahira et al. to take into account higher order powers in k.
o if my>FE(X*(1)):
Q(X*(t)=mo+k)=.. (14)
e and for mo < E (X* (1)) :
QX*(t)=mo—k)=.. (15)

The proof is given in appendix G.

6.2 Computation of the tail Q) (mg > E (X*(t)))

e In that case, we get the tail as Q (X* (£) > mg) = 1 — Q (X* (t) < mo — 1), so Saddle-point 0 should
be carefully computed at mg — 1 instead of myg.

o if my>FE(X*(1)):

QX (1) 2 mo) ~ QX (1) = mo) Seg oxp (—k (34 0007) — 727

e and for mo < E (X~* (1)) :

Q (X7 (t) < mo) = Q (X* (1) = mo) L%y exp (k (0 + 5357 ) = 55w ) (17)
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We can see in the idea of the proof that as opposed to the Saddle-point approximation for the tail
Q (X* (t) > mg), the Large deviation approximation basically uses the Saddle-point information at
all points @ (X? (t) = mo + k) and not only at mg. The approximation for the tail @ (X? (t) > myg) is
consequently more accurate than for the Saddle-point, which in fact diverge if we use higher orders.

When mg < E (X? (t)) we get the upper tail via the lower tail : Q (X* (t) > mg) =1-Q (X? (t) <mo—1).

6.3 Computation of the call on loss £ (L* (t) — ),

The computation of the call on loss E (L (t) — o), is straightforward. We have to consider 2 cases:

e If | > E(L?(t)) and 0 being the Saddle-point at I :

n—lo . K® k2
E(L* (t) = lo), = Q(L*(t) =1lo) D _ k.exp | =k 0+ 2K@2 | 2K(®
k=0

e if lg < E(L?(t)) : In that case, we compute the Saddle-point 0 at y; = E (L? (t)) and we cut the
integral in 2 parts :

n—p . ()
n - Q(LZ(t)zmZ<ul+k—z0>.exp<—k<9+ s ) - )

oK®22 | 9K (®
k=0
. mi—lo R K®) k2
I, = Q(L (t) = ul) 2 (/” —k— lo) . exp k|160+ oK (22 - 2K (2)

E(LF(t)—1l), = L+l

7 Numerical results

We consider an homogeneous portfolio of 100 names. If the default intensity is sufficiently large, to highlight
the differences in the distribution we obtain ( intensity is 1000 bps) :
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# default recursion |saddle point |Large Deviation |Normal proxy [Jarow Rudd
13 0.06217 0.06196 0.06070 0.06726 0.06134
14 0.04063 0.04048 0.04000 0.04235 0.04031
15 0.02450 0.02440 0.02424 0.02374 0.02471
16 0.01369 0.01363 0.01359 0.01185 0.01410
17 0.00711 0.00708 0.00708 0.00527 0.00742
18 0.00345 0.00343 0.00344 0.00208 0.00356
19 0.00157 0.00156 0.00156 0.00073 0.00154
20 0.00067 0.00066 0.00067 0.00023 0.00060
21 0.00027 0.00027 0.00027 0.00006 0.00021
22 0.00010 0.00010 0.00010 0.00002 0.00006
23 0.00004 0.00004 0.00004 0.00000 0.00002
24 0.00001 0.00001 0.00001 0.00000 0.00000
25 0.00000 0.00000 0.00000 0.00000 0.00000
26 0.00000 0.00000 0.00000 0.00000 0.00000
27 0.00000 0.00000 0.00000 0.00000 0.00000
28 0.00000 0.00000 0.00000 0.00000 0.00000

Comparison of loss distributions based on different tails approximations

The densities are very close to each other. The distribution is plotted for the number of defaults in [13,22].

0.07

Probability density o

f the loss distribution

0.06

0.05

0.04

0.03}

0.02}

0.01

density via recursion
density via saddle point
density via Large deviations |
density via Normal proxy
density via Edgeworth exp.

12

24

Now we compare the performance of each numerical method : the Saddle-point approximation (at order
2 and 4), the Large deviation approximation, the Normal proxy, the Edgeworth expansion (at order 3 and 4)
with the recursion method, considered here as the benchmark numerical method. The portfolio considered

is homogeneous:
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e Number of names = 100;

e Recovery = 0%;

e Individual spread = 50bps, without term structure;

e Risk free rate = 0%;

e Maturity of the Tranche swaps is 5Y, quarterly payments;
e Computed expected loss = 2,49%

e Model: Gaussian copula with various flat correlations called "rho”.

We consider 7 levels of correlation {2%, 10%, 20%, 30%; 50%; 60%; 70%} that largely includes the current
levels of base correlations for the liquid credit indices (iTraxx, CDX etc.). The tranches considered span the
entire capital structure from very thin equity to senior tranches.

We find the following tranche spreads:
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rho = 2%

tranche 0%-2% 0%-3% 0%-4% 2%-4% | 3%-6% | 4%-6% | 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%] 12%-14%
Recursion 2,994.0 [ 2,123.6 | 1,596.7 755.8 289.5 181.8 107.6 34.9 25.9 55 15 0.7 0.1
Saddle Point2 | 2,915.4 | 2,083.5 | 1,578.8 754.4 303.7 197.0 117.4 394 29.3 6.3 1.7 0.9 0.1
Saddle Point4 | 2,9455 | 2,106.7 | 1,589.9 764.1 295.4 187.2 111.2 36.8 27.3 59 1.6 0.8 0.1
Large Dev 3,620.2 | 2,264.2 | 1,630.6 557.5 219.7 144.1 87.1 30.9 231 51 1.4 0.7 0.1
Normal 2,934.7 | 2,1336 | 1,611.8 810.0 295.6 176.8 101.4 273 19.8 3.2 0.7 0.3 0.0
Jarrow-Rudd 3 2,912.7 2,097.5 1,587.3 773.4 300.8 191.3 113.3 36.8 27.2 5.4 1.4 0.6 0.1
Jarrow-Rudd 4 | 28335 [ 2,076.8 | 1579.1 784.1 304.1 195.4 116.3 39.1 28.9 5.8 1.5 0.7 0.1
rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% | 3%-6% | 4%-6% | 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%] 12%-14%
Recursion 2,322.1 | 1,733.6 | 1,366.6 718.0 367.8 282.1 198.9 118.2 99.2 51.1 28.6 226 10.1
Saddle Point 2 2,270.0 1,713.0 1,357.1 727.6 374.6 288.0 203.2 121.0 101.6 52.5 29.4 23.2 10.4
Saddle Point 4 2,291.1 1,722.6 1,361.9 725.6 371.8 285.3 201.2 119.5 100.3 51.7 28.9 22.8 10.3
Large Dev 2,763.2 1,869.2 1,418.7 585.3 309.2 240.7 171.3 103.7 87.2 45.4 25.6 20.4 9.3
Normal 2,2932 | 1,733.8 | 1,370.5 741.0 372.7 283.6 198.8 116.5 97.5 49.7 27.6 21.7 9.7
Jarrow-Rudd 3 | 2,273.3 | 1,717.8 | 1,360.4 732.4 3744 287.0 202.2 119.9 100.6 51.7 28.9 228 10.2
Jarrow-Rudd 4 | 2,186.6 [ 1,694.1 [ 1,353.1 759.9 385.5 294.5 206.6 121.5 101.7 51.8 28.8 22.6 10.1
rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% | 4%-6% | 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%]| 12%-14%
Recursion 1,7742 | 1,381.1 | 1,1285 644.2 385.9 320.5 248.0 177.8 157.7 104.6 73.0 63.9 40.0
Saddle Point 2 1,7421 | 1,368.7 | 1,1225 653.0 390.6 3243 250.8 179.5 159.0 105.4 73.7 64.3 40.3
Saddle Point4 | 1,754.8 | 1,374.0 | 1,125.2 650.2 388.7 322.6 249.5 178.8 158.5 105.1 73.3 64.1 40.2
Large Dev 2,090.1 | 1,496.6 | 1,1825 550.2 339.5 283.8 222.0 161.8 143.9 96.3 67.5 59.2 37.6
Normal 1,757.8 | 1,379.3 | 1,129.2 656.0 389.0 322.0 248.7 177.7 157.4 104.2 72.6 63.5 39.7
Jarrow-Rudd 3 1,745.3 1,371.3 1,124.2 654.3 390.1 3235 250.2 179.0 158.7 105.2 73.4 64.2 40.2
Jarrow-Rudd 4 1679.6 | 1,354.2 | 1,118.8 683.0 399.5 329.5 253.8 180.6 159.9 105.5 73.4 64.2 40.1
rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% | 3%-6% | 4%-6% | 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%]| 12%-14%
Recursion 1,386.9 1,113.5 933.5 568.4 373.1 322.4 262.6 204.4 186.2 137.4 105.4 95.8 68.5
Saddle Point 2 1,366.3 | 1,105.6 929.4 575.1 376.2 325.0 264.4 205.4 187.3 138.4 105.7 96.0 68.8
Saddle Point 4 1,374.1 1,108.7 931.2 573.0 375.1 323.9 263.6 205.0 186.8 137.7 105.6 96.0 68.7
Large Dev 1,615.6 | 1,207.6 981.8 501.3 337.3 293.1 240.9 189.9 173.2 129.2 99.3 89.8 65.7
Normal 1,376.3 | 1,1115 933.4 575.7 F53 323.6 263.2 204.5 186.3 137.3 105.2 95.7 68.4
Jarrow-Rudd 3 1,368.4 | 1,106.9 930.5 575.7 376.1 3245 264.1 205.3 187.0 137.8 105.7 96.1 68.7
Jarrow-Rudd 4 13217 | 10948 926.5 599.8 3834 329.1 266.9 206.5 188.0 138.2 105.8 96.2 68.7
rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12%]| 12%-14%
Recursion 855.0 719.7 627.2 425.1 313.8 283.7 245.6 208.2 195.5 160.5 135.3 127.6 103.5
Saddle Point 2 845.9 715.5 625.6 429.4 315.8 284.3 246.3 209.1 195.8 160.6 136.1 128.3 103.0
Saddle Point 4 849.1 717.3 626.0 427.6 314.8 2845 246.2 208.6 195.8 160.7 135.4 127.7 103.6
Large Dev 982.3 780.2 661.8 388.3 291.9 265.2 232.2 199.7 185.9 151.2 130.6 123.8 99.3
Normal 849.9 718.2 626.7 428.4 314.9 2845 246.1 208.5 195.7 160.6 135.3 127.6 103.5
Jarrow-Rudd 3 846.7 716.5 625.6 428.9 315.3 284.8 246.4 208.7 195.9 160.8 135.5 127.7 103.6
Jarrow-Rudd 4 823.9 710.4 623.4 443.1 3194 287.4 248.1 209.5 196.6 161.1 135.6 127.8 103.7
rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% | 3%-6% | 4%-6% | 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%]| 12%-14%
Recursion 659.1 566.3 501.9 357.5 276.1 253.8 224.7 196.0 185.9 158.0 137.4 131.1 110.7
Saddle Point 2 652.1 564.1 500.4 360.9 277.2 255.2 225.3 195.9 185.7 158.2 138.2 131.9 110.3
Saddle Point 4 655.1 564.7 501.0 359.4 276.9 254.3 225.1 196.3 186.2 158.1 1375 131.2 110.8
Large Dev 755.4 613.4 530.7 330.4 259.1 237.4 213.0 189.0 178.0 150.4 1335 127.9 108.3
Normal 655.5 565.2 501.4 359.8 276.9 254.3 225.0 196.2 186.1 158.2 137.3 130.9 110.7
Jarrow-Rudd 3 653.5 564.1 500.7 360.2 277.1 2545 225.3 196.5 186.3 158.1 137.5 131.2 110.8
Jarrow-Rudd 4 638.2 560.0 499.1 370.2 280.1 256.6 226.5 197.0 186.8 158.5 137.5 131.1 110.9
rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12%]| 12%-14%
Recursion 492.2 431.7 389.0 291.5 235.0 219.4 198.0 176.9 169.2 148.0 132.8 128.2 112.3
Saddle Point 2 488.8 429.7 387.8 292.3 236.7 221.3 198.4 175.7 168.7 148.9 133.5 128.8 112.1
Saddle Point 4 489.6 430.7 388.4 292.8 2355 219.8 198.3 177.1 169.4 148.1 132.9 128.3 112.3
Large Dev 1,018.2 756.9 618.9 263.2 2149 203.5 182.1 160.9 154.2 135.9 122.4 118.1 102.5
Normal 489.7 430.8 388.7 293.1 235.4 219.4 198.4 177.6 169.8 148.1 132.4 127.7 112.4
Jarrow-Rudd 3 488.6 430.3 388.2 293.3 235.7 220.0 198.5 177.2 169.4 148.1 133.0 128.4 112.3
Jarrow-Rudd 4 479.5 427.2 387.4 299.8 237.8 220.4 199.3 178.3 170.2 148.0 132.6 128.0 112.6

As we can see the tranches [0%, 2%)] , [0%, 3%] , [0%, 4% and [2%, 4%)] have a spread that is monotonically
those are the equity tranches for the basket considered while the next

decreasing function of correlation :
tranche [3%, 6%)] is the first mezzanine. The other tranches are senior mezzanine and senior tranches.

In the next table, we give the relative error, for each numerical method, between the spread and the

benchmark, in percentage, i.e. . The code for the colors is the following:

tranche spread - "recursion tranche spread”

“recursion tranche spread”

e green color: tranche spread relative error is smaller than 1%

e blue color: tranche spread relative error is between 1% and 4%

e red color: tranche spread relative error is greater than 20%
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We compute the Saddle-point at order 2 and

4, Edgeworth

at order 3 and 4 and

the Large deviation

eXpansions.
rho = 2%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 2.6% 1.9% 1.1% 0.2% 4.9% 8.3% 9.0% 13.0% 13.2% 14.6% 15.0% 15.2% 15.4%
Saddle Point 4 1.6% 0.8% 0.4% 1.1% 2.1% 2.9% 3.3% 5.4% 5.6% 7.4% 8.3% 8.9% 10.1%
Large Dev 20.9% 6.6% 2.1% 26.2% 24.1% 20.7% 19.1% 11.4% 11.0% 6.5% 4.9% 4.0% 2.7%
Normal 2.0% 0.5% 0.9% 7.2% 2.1% 2.8% 5.8% 21.6% 23.4% 41.0% 50.5% 56.8% 68.4%
Jarrow-Rudd 3 2.7% 1.2% 0.6% 2.3% 3.9% 5.2% 5.2% 5.6% 5.1% 1.0% 7.2% 12.4% 25.3%
Jarrow-Rudd 4 5.4% 2.2% 1.1% 3.7% 5.0% 7.5% 8.1% 12.0% 11.6% 5.8% 2.0% 8.6% 25.1%
rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 2.2% 1.2% 0.7% 1.3% 1.9% 2.1% 2.2% 2.4% 2.5% 2.7% 2.6% 2.7% 2.7%
Saddle Point 4 1.3% 0.6% 0.3% 1.1% 1.1% 1.1% 1.1% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%
Large Dev 19.0% 7.8% 3.8% 18.5% 15.9% 14.7% 13.9% 12.3% 12.0% 11.2% 10.4% 9.4% 8.4%
Normal 1.2% 0.0% 0.3% 3.2% 1.3% 0.5% 0.1% 1.4% 1.6% 2.8% 3.5% 3.9% 4.7%
Jarrow-Rudd 3 2.1% 0.9% 0.5% 2.0% 1.8% 1.7% 1.6% 1.5% 1.4% 1.3% 1.1% 1.1% 0.9%
Jarrow-Rudd 4 5.8% 2.3% 1.0% 5.8% 4.8% 4.4% 3.9% 2.8% 2.6% 1.4% 0.5% 0.2% 0.9%
rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 1.8% 0.9% 0.5% 1.4% 1.2% 1.2% 1.1% 1.0% 0.9% 0.8% 0.9% 0.7% 0.8%
Saddle Point 4 1.1% 0.5% 0.3% 0.9% 0.7% 0.7% 0.6% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4%
Large Dev 17.8% 8.4% 4.8% 14.6% 12.0% 11.5% 10.5% 9.0% 8.7% 8.0% 7.6% 7.2% 5.9%
Normal 0.9% 0.1% 0.1% 1.8% 0.8% 0.5% 0.3% 0.1% 0.2% 0.4% 0.5% 0.6% 0.7%
Jarrow-Rudd 3 1.6% 0.7% 0.4% 1.6% 1.1% 1.0% 0.9% 0.7% 0.7% 0.6% 0.5% 0.5% 0.4%
Jarrow-Rudd 4 5.3% 1.9% 0.9% 6.0% 3.5% 2.8% 2.3% 1.6% 1.4% 0.9% 0.6% 0.5% 0.2%
rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 1.5% 0.7% 0.4% 1.2% 0.8% 0.8% 0.7% 0.5% 0.6% 0.7% 0.4% 0.3% 0.3%
Saddle Point 4 0.9% 0.4% 0.2% 0.8% 0.5% 0.5% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%
Large Dev 16.5% 8.4% 5.2% 11.8% 9.6% 9.1% 8.3% 7.1% 7.0% 6.0% 5.7% 6.2% 4.2%
Normal 0.8% 0.2% 0.0% 1.3% 0.6% 0.4% 0.3% 0.1% 0.0% 0.1% 0.1% 0.1% 0.2%
Jarrow-Rudd 3 1.3% 0.6% 0.3% 1.3% 0.8% 0.7% 0.6% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2%
Jarrow-Rudd 4 4.7% 1.7% 0.8% 5.5% 2.8% 2.1% 1.7% 1.1% 1.0% 0.6% 0.4% 0.4% 0.2%
rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 1.1% 0.6% 0.3% 1.0% 0.6% 0.2% 0.3% 0.4% 0.2% 0.1% 0.6% 0.6% 0.5%
Saddle Point 4 0.7% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Large Dev 14.9% 8.4% 5.5% 8.7% 7.0% 6.5% 5.5% 4.1% 4.9% 5.8% 3.5% 2.9% 4.1%
Normal 0.6% 0.2% 0.1% 0.8% 0.4% 0.3% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
Jarrow-Rudd 3 1.0% 0.4% 0.3% 0.9% 0.5% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 3.6% 1.3% 0.6% 4.2% 1.8% 1.3% 1.0% 0.6% 0.6% 0.4% 0.2% 0.2% 0.2%
rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 1.1% 0.4% 0.3% 0.9% 0.4% 0.6% 0.3% 0.1% 0.1% 0.2% 0.6% 0.6% 0.3%
Saddle Point 4 0.6% 0.3% 0.2% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%
Large Dev 14.6% 8.3% 5.8% 7.6% 6.1% 6.5% 5.2% 3.6% 4.2% 4.8% 2.8% 2.4% 2.2%
Normal 0.5% 0.2% 0.1% 0.6% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0%
Jarrow-Rudd 3 0.8% 0.4% 0.2% 0.7% 0.4% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 3.2% 1.1% 0.5% 3.5% 1.5% 1.1% 0.8% 0.5% 0.5% 0.3% 0.1% 0.0% 0.2%
rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% | 9%-12% | 10%-12% | 12%-14%
Saddle Point 2 0.7% 0.5% 0.3% 0.3% 0.7% 0.9% 0.2% 0.7% 0.3% 0.6% 0.5% 0.5% 0.2%
Saddle Point 4 0.5% 0.2% 0.2% 0.4% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
Large Dev 106.9% 75.3% 59.1% 9.7% 8.6% 7.2% 8.1% 9.1% 8.9% 8.2% 7.9% 7.9% 8.6%
Normal 0.5% 0.2% 0.1% 0.5% 0.2% 0.0% 0.2% 0.4% 0.3% 0.0% 0.3% 0.4% 0.1%
Jarrow-Rudd 3 0.7% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.6% 1.0% 0.4% 2.8% 1.2% 0.5% 0.6% 0.8% 0.6% 0.0% 0.1% 0.1% 0.3%

We can see that equity tranches, i.e.

correlations.

“in the money” tranches relative to the current expected loss
(2.49%) are very well approximated with the normal proxy and whatever the correlation level. The Saddle-
point method is very robust, even for those equity tranches. But the large deviation approximation performs
better for very senior tranches. On the other hand, it tends to give very bad results for equity tranches.
The most robust methods seems to be the Jarrow-Rudd approximation at order 4, except for very low
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Those results could be anticipated, given that the Saddle-point is a good approximation in the tail of the
loss distribution, as well as the large deviation approximations. The observed robustness is more surprising
for the equity tranches.

Other quantities are plotted in the last appendix: spread sensitivity (PV01), expected loss (tranche
protection) and their relative errors with respect to the recursion.

8 Conclusion

In this paper, we compute higher order expansions for the Saddle-point and the Jarrow-Rudd methods applied
to the loss distribution of a credit portfolio. We give the formula for the call on loss, which is necessary to
feed the CDO tranches formula. We also propose an alternative numerical method based on large deviation
approximations. In the light of the numerical results, we can say that the Saddle-point approximation and
the Edgeworth approximation at order 4 are both robust, i.e. give good results whatever the seniority of
the tranche. On the other hand the normal proxy should not be used to price senior tranches and the
large deviations approximations should be used on the contrary only for the pricing of such tranches. Those
results can be naturally applied to other "deterministic products" such as zero CDOs or CDO squares. The
benefit of the Jarrow-Rudd approximation being its simplicity of implementation, its non dependance of the
loss granularity and sign (short CDS could be considered here too and stochastic recoveries as well) and its
non-dependency on a Saddle-point root to be found, makes it the fastest and most natural candidate to use
for pricing, at least, vanilla index tranches.
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9 Appendix

A Inversion formula

We recall briefly the inversion of the Fourier Transform for X = )" ; X; and X; are independent binomial
distributions with F (X;) = p;

M) =E [e"x} - Zn: ki, exp (0K)
k=0

M L/ K €Xp )
n+1 Pt n+1

" 2mikj\  exp (2mij) —1 N 0if j #0

so for any j € {0,...,n}

as we have:

then we have the inversion formula:
1 21y 2mijk
= M —_
o ”+1]§ <n+1>eXp< n+1>

Note that this is of the order (n + 1)% in term of algorithmic complexity compared with (n+ 1)In (n + 1)
if we use FFT. The only issue with FFT is that n must be a power of 2 so we have to round it to the next
power of 2.

B Useful integrals

f50+zoo ejm(f 50) dE .

We use the same notations as in [3| for Ji (m, &) = oo

27rz

']0 (m7§0) = \/2171'7771
Ji (m, €0) = sign (&) e=" N (—y/m o))
Jo (m, &) = /3% — m |&o] e2™ON (—y/m |&o])

Note that by integration by parts we have:
ndnt1 (m, §o) = m (Jn—1(m, &) — §oJn (M, &0))
x2
We have by recursion for I}, = \/% fj;o zFe™ T dr

'IJ2 —
{ I, = \/% fj;o ez dr = Qn(g?(nljl)l

1 =0
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As a consequence:

We have co,+1 (m) = 0 and:

1 [Otioc N2n (0-0) )" 2n—1)!
can (M) / (9—0) e( 2)md¢9: (=1) @n—1)
%

~ 2ir

—100

More precisely:

. 0—0)2
e 2n=0:¢g (m) = ﬁ fccjigo e%mde - \/217r7m
) N2 (0-6)2
.2n:202(m):%fcc:§o(079> 6( Q)mdez— 27r11n.m
) N4 (0-6)2
e 2n=4:¢y (m) = % fccjizczio (0 N 9) 6( ’ | "do = 27r§n.m2
. N6 (0-6)2
¢ 20— 6o (m) = ok [ (6-0) ¢ F g = — L
) A8 (0-6)2
o 20 =8:cs(m) = 5k [ (6-9) g - T
Let define: 5
1 [O+ico 0-6)>
do(m) 2 = [ g mag

B 2 H—ico

Unlike coy,+1 (m) the values of day+1 (m) are not trivial. We easily compute the first 8 terms:

o dy (m) = cq (m) + 6ca (m) 62 + co (m) 64 = —2 (%f%éueﬂ)

m2

o ds (m) = 5ca (m) 6 + 10 (m) 63 + co (m) 65 = (ﬁ — 1043 +é5)



o dg (m) = cg (m) + 15¢4 (m) 62 + 15¢y (m) 0* + ¢ (m) 65 = \/2;7”1 (—% + %éQ — %é‘* + é6>
o d7 (m) = Teg (m) 0 + 35¢q (m) 63 + 21y (m) 65 + ¢o (m) 07 = \/ﬁ (—%é + %HB - %95 + é7)
o ds(m) = cg (m) + 28cg (m) % + 70c4 (m) 6* + 28¢5 (m) 6% + ¢o (m) 63

_ 1 105 420 n2 210 p4 28 N6 N8
—m(m—me + 21044 _ 28) +0)

Note finally that: 5!=120 ; 6!=720 ; 7!=5040 and 8!=40320.

C Computation of the cumulants derivatives

C.1 Cumulants of X~ ()

In the Large deviation approximation case, the sum in k£ given by and are numerically intensive so we need

to be able to compute Kf7(2) (é) ,Ktz’(g) (é) and Ktz’(4) (é) very quickly. We define ¢; = 1 —p;, p; = q_iﬁ‘i;ié

and ¢; = 1 — p;. As a consequence we compute

Ipi oA A )
00 Diqi = Pi — P;
04 .. o
90 —Pidi = P; — Di

and by derivation
Opidi
00
by derivation again of the products

= Pidi (G — i) = 293 — 3p? + i

0piGi (G —Di) . o N2 A a e
”<89H = 0iqi (Gi — Pi)” + Pidi (—Didi — DiGi)

noting that §; = 1 — ; we have 2il0i=P) — 5.4, (1 — 6p; 4 6p2) so finally

0pigi (¢ — Di)

= piG; (1 — 6p;q;
50 pigi (1 — 6pigi)
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we get

n

K} (é) = Zln (1 — i -l—pieé)
=1
1 R n
KW (9> = Zﬁz‘
=1
2 R n
Ktz7( ) (0> = sz 1 _pz Z {pz pz
n n
’ 3 N Nt
K, (9) = > pidi(1—2p;) = > {pi — 3p; + 25} }
i=1 =1
4 R n n
KO (8) = > pidi (1= 6pidi) = {fs — T8} + 125 — 65}
) =1
and
R n
K>® (9) = S {pi— 15.57 +50.5% — 60.5¢ + 24.5}
) B
K> (0) = 3" {pi — 3157 + 180.5¢ — 390.p} + 360.57 — 120.57}
=1
R n
K>® (0) = S {pi — 6357 + 602,59 — 21005} + 3360.5} — 2520.5¢ + 720.5] }
i=1
R n
K>® (9) = Y {pi — 127,57 + 1932.57 — 10206.p} + 25200.57 — 3192057 + 20160.5] — 5040.55 }
=1
so we only need to generate vectors (p;);_; ,, and (9iGi);—1 , -
Note that
K;(0) = 0

K (0) = Zpl B (X (1))

C.2 Cumulants of L* (t)

Note that for the loss process L? (t) the formula are very similar:

. pe?
gi + pieif
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and

n ~
= Z In (1 — Di +p¢€aie)
i=1
n

)

) = z;aiﬁi

) = ia?ﬁi(l_ﬁi)
i—1

)

= > alpigi (1 - 2ps)

i=1

C.3 Relation between Cumulants and Moments

For a given 0 let define the Esscher transform, i.e. the change of measure X — X %as in 33 and E the
| ()
associated expectation, i.e. E(X) = 2] Then we can see that for L? (t) (and X* (¢)) we have:
KW (9) — E(L)
N A R R
K® (9) = Var (L) = B (1?) - E(L)?
R . 2
- E<<L—E(L)) )
. . R . R A
K® (9) = E(I%) - E(L)E (L) - 2B (L) Var (L)
= E(L*) -3E(L)E(L*) +2E(L)°

- B <<L - E(L))4> _ 3 Var (L)?

So the relationship between the transformed cumulants K () (é) and transformed moments F (LZ) is inde-

pendent of 6 : i.e. it is an invariant under the Esscher transform.
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C.4 Moments of a Normal variable struck at K

Let i = E (X') = f;oo 7'¢ (z) dr with X a normal variable, centered with unit variance, ¢ given by (1) :

+o0o

o = (2)de = N (~K)
K
+oo

o= /; 26 (2) da = ¢ (K)

+oo
o= [ #o@)ds = Ko(K) + N (-K)

K

o= [ Powdr= (K2 +2)0()

K

pa = /K o 2t¢ (z) de = (K* 4 3K) ¢ (K) + 3N (—K)

+oo
e /K 2°¢ (v)dr = (8 + 4K* + K*) ¢ (K)

If the variable X is N (p,0?) let K= % :

K

o g

+o0 .
= [ ez oa
K

SO

o = N(—K)
o= oo (K)+u/\f (—f()

i = () o)+ ) ()
i3 = (3;ﬂa + 208 + 3ucK + 031?{'2) & (K) + (302 + pB) N (—K’)
fy = (4M30’ + 8uo® + (30 + 60°1%) K +40%uK? + O'4K3) o <I~(>

+ (304 + 60%u? + ,u4) N (—K)

C.5 Cumulants of a Normal variable

Let X ~ N (,u, 02) then we have an explicit formula for K (). It is actually a polynomial of degree 2. So
we already know that cumulants of higher orders ( larger than 3) are null :

1
K(@®) = ub+ 59202
KY(0) = p+60°
K®0) = o?=Var(X)
K@ (6) 0fori>3
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D Residue Theorem applied to the Saddle-point

We recall here the Residue theorem. Given an analytic function f(z) , there is locally around zp € C a
unique Laurent series given by f(2) = Xpezan (2 — 20)" . If we integrate on a closed contour enclosing zg ,
with interior €2, then

/ﬁf- i an/i(z—zo) +a_ 1/ P +Za"/ z— 2)"

n=—oo

The Cauchy integral theorem requires that the first and last terms vanish, so we have:

[y = ——

If the contour 7 encloses multiple poles, then the theorem gives the general result:

/f—2z7r Res (f,x)

z€Poles(2)

z is in Poles(Q) if z — (z — 2)" f () can be extended by continuity at 2 for some k € N. The residue
at = for f is noted Res(f,x) and is the coefficient a_1 associated to the Laurent series of f around x.

Example 1: if f(z) = ggzg with P (a) = @ (a) = 0 but Q' (a) # 0 then Res(f,a) = g/((aa)) otherwise we
can do a limited development of f around a.

Example 1: if f(z) = (zfl)Q + (Zfl) + (2_022-) and 7 enclosed z =1 and z = 2i then

[f:Ziﬂ(b+c)
5

E Loss Recursion

We recall the general recursion described in [1], to compute both the number of defaults and the loss
distribution recursively. The recursion technic described here is very powerful, as it gives the whole loss and
number of defaults distribution. It is also very accurate and much faster than FFT. The formula described
here are a bit different from those in Jacob’s Risk paper.

Note also that the performance of the method in practice is very strongly dependant on the level of the
implementation.

E.1 Computation of the Number of defaults distribution

Suppose that we have a basket of n names and their default correlation in zero. Let Xp = > | L7, <1y for
a fixed T. The survival probability of the k** to default , with k € {1,...,n}, is

QEITD = Q (X7 = 0) + Q (Xr = 1) + ..+ Q (Xg = k — 1)

We want to compute the number of defaults distribution for the portfolio, i.e. we want to compute
accurately the probability @ (X7 = k) for each k € {0,...,n}. The only quantities we know are the ¢; =
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Q (1, > T), i.e. the survival probability for each issuer i. Note that if ¢; = ¢ for all ¢, then it is trivial, we
have a multinomial distribution (mixture of independent iid binomial distributions) :

Q (X7 =k)=Ckq"F(1-¢)*

The idea in the general case where the g; are not the same, is to compute the @ (k, 1) recursively, where
Q (k,1) is the probability that the portfolio made of issuers {1, ..., k} has exactly | defaults (0 <1 < k).
Example :

e k= 0 names in portfolio: @ (k=0,l=0) =1,
e k =1 names in portfolio:

Q (k=1,1=0) = g1 no default from issuer 1;
Q(k=1,1=1)=1- q one default from issuer 1;

e k = 2 names in portfolio:

Q (k=2,1=0) = q1q2 no default from issuer 1 and 2;
Qk=2,1=1)=(1—-q)q2+ (1 —q2)q1 one default from issuer 1 OR one default from issuer 2;
Qk=2,1=2)=(1—-q)(1—g2) one default from issuer 1 AND one default from issuer 2;

e ...and so on.

Now let make it more general : let suppose we already know @ (k,1) for [ =0,..., k.

In order to compute @ (k + 1,1), from @ (k,l — 1) there are 2 possible outcomes:

either one name in the sub basket {1,...,k} defaults : so we have [ defaults with probability @ (k,1);

or no name in the sub basket {1, ..., k} defaults : so the defaults come from the new name added to the
basket {k + 1} and its probability of defaulting is (1 — qxy1) -

Finally: 00,0 =1
Q (k,0) = quga...qx for & € {1,n}
Q (k. k) =(1—-q) (1 —go)...(1 —qi) for k€ {1,n}

and recursively for [ € {1,....,k} and 1 < k < n.:
Q(k+lvl) :Q(kal)Qk+1+Q<k7l_1)(1_qk+1)

E.2 Computation of the Loss distribution

Let suppose that each "ordered" name can lose w; for i € {1,...,n} then the relation above is modified. w;
must be an integer, i.e. a granularity adjustment should be done. It is also necessary to order the
names in the following order : w; < w;41. We also suppose w; > 0 otherwise this name can be removed
from the basket (this can occur if the granularity is not small enough).

The loss accumulated a at time T for the entire portfolio is:

Ly =3 wilgrer)
=1
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Let Q (k,1) be the probability that the loss L% = Zle wil(r, <1y is exactly [ for a basket of k£ names. Note

that the expected loss is E (L) = Zle w; (1 — g;) and the "max loss" is lossy = Zle wj. The general

formula is:

Q(0,0)=1
Q (k,0) = qiq2...qx for k € {1,...,n}
Q (kjlossg) =(1—q1) (1 —q2)...(1 —q) for k € {1,...,n}

We have a jump between [ = 1 and | = w; as the loss is either 0 or w; :

{ Q(1,l)=0forle{l,..w —1}
Q(l,wl) =1—q

Given that @ (k,l) = 0 if [ < 0 and that the loss coming from name (k 4 1) is wgy1, we have by recursion
for the (k + 1) —names portfolio, for [ € {0,...,lossi} and 1 < k <n:

Q(k+1,1)=(k+1) does not default@ (k,1) .qg+1 + (K + 1) defaults@ (k,1 — wi11) . (1 — qx1)
—————

in other words for 1 <k <mn:
Q(k+1,l1) = (k+1) does not default@ (k,1) .qx+1 for I € {0, ..., wg41 — 1}
—_—————

Q (k+ 1, wgy1) = (k+1) does not default@ (k,1) .qxr1 + (k + 1) defaultsqigo...qx (1 — qxr1)
—————
Q (k+1,1) = (k+ 1) does not default@ (k,1) .qx+1 + Q (k, 1 — wis1) . (1 — qrg1) forl € {wr1 +1,...,lossi }
—————

and for | € {lossi + 1,...,lossp11 — 1} and 1 <k <n:

Q(k+1,1)=0.

F Higher order Saddle-point expansions

By convention we write K® for Kf’(i) (9) for any ¢ > 0, and we define A = (9 — é)

F.1 Expansion for the density of X* (t) ~ 4 6" and 8" order expansion

Let 0 be the Saddle-point. We develop K7 (0) up to the order 8 around the Saddle-point 0. Using Appendix-B
results we have:

K7 (60) — 6mo (18)
A A AZK®@) ASKB) AYK(@)
= K (0> —Omot ——+ ——+
APKG)  ASKO6) AT ASK(®) AS
a0t a0 T soa0 T aosz TO&)
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So using the fact the e“:1+u+§+%+0(u3):

K®) A3 K@ A4 KO A5 K(6) K(3)2 6
y 1+ 6A+24A+120A+(720+ 72 A
K™ K® 1) 7 K(®) K(4)2 K®) () 8 8
+ (5040 + i ) A+ (40320 + 9z T T 7m0 ) A% +o (A )
(19)

oKE(0)—0mo _ K7 (0)—0mo . ,3A2K®)

=€

In the expectation the odd terms vanish so we only consider coefficients of A%, A% A6 and A3 :

14 K@ A4 4 {K(ﬁ) i K®3)2 A6

P 720 72
Z(9)— z(9)_p 1A27(2) K®) K42 K® K ®) S
KiO)=0mo — K (0)=0mo s o3 APK® o ) {40320 st A
A8
-+23A%+%%+o(9—9)

n<3

Note that terms in KM K do not appear as K1) is not in the sum from the beginning.
Integrating over [c — i00; ¢ + i00] and using the definition of ¢ (Ktz’(z)) in Appendix-B gives:

. 2 K® 2 K(6) K(3)2 2
LT i 0rom g o 7 0)mo s ) (KC) + s (K) + (g + K557 ) o (162)
; . - K®) K4)2 K®) () 2
2T Je—ico + (40320 Tz T om0 ) cs (K@)

So for n > 1, an 2n'* order expansion of efE (0)=0mo

1 n
()

A - . . . 1 .
around @ is equivalent to series in %0 i power

1 1+ K@ K(6) 5K (3)2 1

]th /-2 _ ~ Kz(6)—bmg gK®@2 ~ | 48 24 K®3

Q% (X*(t)=mg) ~e 20 X 70 X n K(8) n 35K (4)2 n 7K (3) K (5) 1
384 384 48 K(2)4

F.2 Expansion for the tail of Q (X* () > mg) ~ 4" and 6" order expansion

As for the quadratic approximation, we have to take into account the fact that 6 may be positive or negative.
When it is positive, then:

1 [etioo JKF(0)—0mo 1 [O+ico K7 (0)—0mo
um c—i00 0 2T O—ioco 0
otherwise: R
1 cFico K (6)—60mo f+ioco K (8)—6mo
P ——df =1+ — ——F——d0
27 Jo—iso 0 27 Jo_iso 0

Let suppose 6 > 0 then expanding K7 (6) —0mg around 0 to order 6 as is and using e = 1+u+L;+0 (u2)
we find:

oKE(O)=0mo _ K7 (6)—bmo o SAZK® (20)
K®) 3 K@ A K () 5 K®© 32 6 6
{1+ c A S A g A g T A® +0 (A%
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N
Now we expand AF = (9 — 9) and factorize in 6 :

6
KiO)=0mo _ K7 (0)=0mo o (3APKD (Z apb* + o (A6)> (21)
k=0

with oy, and K = KZ® (§) are functions of 0 only (not 6):
t

.« ap=1- LK@F 4 LK@ - 1 KEF ¢ L O | L2
o 0y = LK@ — LKW 4 LgG§t — L g©§s _ L3245

o qy— ~LKO) 4 LKW _ LEOFH ¢ LEOF 4 5 g4

¢ a3=1K0® - %K(‘*)é + %K(E’)é? _ %K(G)é?) — %K(?ﬁ?é?’

o ay= LKW~ 2714[((5)é + éK(G)«@Q + %K@)?é?

= ﬁK(E’) *ﬁK(G)é*%K(?’)Qﬂ

. g KO 4 1RO
Then dividing by € and Integrating on | — ico, +ioco[ gives
1 c+ioo er(G)meo

c—100 0

~ KE(0)=0mo {a0J1 (K@),é) +ando (K@),é) + asd, (K<2>) + azds (K(2)> o+ apds (K<2>)}

do

2im

where Jj (.,.) and di (.) are given in Appendix-B. )
A simplification and factorization finally gives for 6 > 0 :

1 ctioo KF(0)—0mo &0
X*(t) > = — -
QAT zmo) = 577 /C_m 9
N s X . (393  KW@Wpt  KG)GE K®6)  gG)2Y\
~ K7 (0)—0mg L K262 _ (2) K _ 6
e ¢ N( K 9) o0 R ¥ 120 70 T 1

3K (1 - é2K<2>) (9K<4> —4K®) 4 & (éK% - K(5)))
x _HK®)2, (18 —PK®@ 4 é4K(2>2)
+UED KO (3 %) 4+ 15K

o1E (0)—bmo

+ 5
72V2m (K(2))2
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The general formula for 0 eRis:

Q™" (X* (1) = mo)
~ 1{@30} + sign (é) KE(0)=0mo e%K(Q)éQ./\/' <—\/ﬁ ‘éD X

. K®p3  gWhaes KB K®6) )2 e
76 T 120 Tl T2
@ (1_2k@) [dr@ _ 4@ 4 02 (6K© _ - (5)
er(é)—émo 3K (1 QAK )[GK A4K +A5( 6 K )}
v % AK®2, (18 PPKO 4 94K<2>2)
7227 (K2

LKD) g (g _ %0) + 15K ®)2

Note that a 4" order expansion is given by the following result:

4
KEO) =m0 — Ki(0)=0mo o o3A°K®) (Z Bro" + o (A4)> (22)
k=0
with:

o fo=1- K303+ 5;K46]
o 1 = K308 — 1 K40}
o By =—1K30) + 1 K462
o 5= ;K3 — ;Kb
o bi= 51Ky
SO:
1 ctico K7 (0)—0mo

c—100 0

~ Ki(0)=0mo {ﬁojl (K<2>, é) + B (K<2>, é) + Body (K<2>) + Bads (K<2>) + Buds (K<2>)}

do

2im

Then

Q*" (X* (¢) = mo)
. s Z(0)—bmo LK(26 A K®g  K®Ha4
~ 1{9§0} +sign (0) eI (6)—0mo o3 K002 pr <—\/ﬁ‘9‘) <1 i +

24
er(é)—@mo . .
. (1 - 02[((2)) <9K<4> - 4K(3)>
24V/27 (K(2)) 2
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F.3 Expansion for the call on Loss E (L* (t) —ly), ~ 4" and 6" order expansion
The call on loss for § > 0 is given by :
1 fotico JK7(0)-0l

E(L*(t) = o), = %in e do

c—100
and more generally:
E‘(L'Z (t) — l0)+ ~ 1{é<0}- (EZ (Lz (t)) _ lO) + eKtZ(é)félo > Sk;th
with S*" given below.
Using again we have
1 ctico K (0)—0lo

- do ~ K? (é)—élosf}th
%im | .. 62 ¢

We compute the sum S :
SO — o (K<2>,é) tad (K<2>,é) +andy (K(Q),é> + asdy (K(2)) + ayds (K(2>)

+asds (K@) + agdy (K)

more precisely:

. . i o [KO KW)  KOP  KOFE K324
§oth stégn(9>N(_\/@‘9D6§K<2mz{K KW, K0P KOF K e}

2 6 24 120 12

. . R (3)p3 (4) p4 (5)§5 (6) 46 (3)246
—]0‘1((2)/\/(— /7K(2)‘9’)65K(2)92{1_K 0 KOG K0P | K0P | K 9}

6 24 120 720 72
K22 (_ K§3) n K(84>é _ K<350>é2 n Kii)fs + 5K(732>2@3
+% +K®@ (- K2<:> i Kéf))é _ K;Z)OGQ _ K(;)jéz |
VTR | i (1= K50 4 Kt — K St KR
+ 4 A7

A development at order 4 leads to:

1 c+i00 er(@)—Olo N
: T oI7 (0)—0lo gath
2 c—i00 0

with: s g, (K(Q),é> + By (K(z),é) + BaJy (K(2)7é> + B3dy (K(2)) + Bada (K(Z))
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more precisely:

Sith = §2sign (é)N(_ K®

é’) 1252 K®  K®g
‘ 2 6

A Vel I 5 (3)g3 (4) g4
6 24
4 3 44 2) 1-(3) 42 2) 1-(4) 43
N 1 K(2)2—K()+K(2)é 7K()+K()97K()K()9 JrK()K()g
VIR K @5 24 3 8 6 24

G Large Deviation Approximations

We extend the proof in [9] by computing higher order terms in the Taylor expansions.

The idea is to find, for a given mo and a given positive k , a relation between g = Q (X? (t) = mo + k)
and gy = Q (X? (t) = myp) . For that we are going to exploit the properties of the Saddle-point at mgy + k.
More precisely let define 6 and 6y, the solutions of :

KW (9) = mo (23)
KW (ék> = mo+k
and
For sake of clarity let define :
KU) (é) =K,

Basically, we are going to express Ay as a function of the cumulants of X* () at point mg. In [9] we already
assume that we have an approximation of g given by Daniel’s formula. Consequently:

K (01)~(mo-+R)i K® (ak) 5K <ék)2
dr = N2 L\ 3
oK@ () 8K (0) 24K (0y)
SO
1an - K(Gk) —K(é) —{(m0+k)ék—moé} (24)
—% {1n K® (ek) —InK® (9)} (25)
sl ) o ()
8K (2 (ék> 24K () (ék)
1+ K @2 o (é 23
8K (2 (9) 24K (2) é)



Now we have to express everything in term of k£ and 6. The Taylor expansions in Ay are stopped after k = 3
as we will see, even order k = 2 is accurate enough.

Computation of Ay : Using 23 we get

KO (ék) ~ KM (9) iy

and with a Taylor expansion of K () (ék> around 0 up to order 3,we get

KO (3,) = K (3) ~ Ak + Aijg Ay,

6
S0 A2 A3
Ak-KZ + %Kg -+ ?szl ~ k
and . K
Ap~— — 3 A3 2
FT Ry, 2Ke F 6K, (26)

and Ay can be expressed recursively as a function of k, k2...by re-injection KLQ in Az and A% the previous
equation:
1 K? K2 Ky
A il A 3 kQ 3 k3 27
U T A <2K25 6K4 27

we now have a relationship between the Saddle-point 0}, 0 and the cumulants (K5) =24 Note that we could
easily go further in the development but as we can see numerically order 3 is sufficient.

Computation of (mg + k) 0 —mof : We have 0 = 0+ Ay so
(mo + k) O, — mof = (mo + k) Ay + k6 (28)

Computation of K (ék> - K (é) : We compute K (ék> - K (é) using a Taylor expansion at order 3 in
Ap

K <ek) K (9) ~ AWK+ %A%Kg + éAng (29)

1 1
~ Apmo+ iAsz + 6A%K3

Computation of In K2 (ék> —InK® (9) We have again by developing around 6 :

A . K (K
@ (4, - m K ~ Ks 4 3 2
In K (ek) In K (e) KzAk ( S < K2> )A (30)
1 (Ks _KiKs K3\ s
bl (s 213 ) A 1
G <K2 3 K2 + K3> b (31)
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K@ (6) 5K (6;,) () _
KO (0, 24K (3,)° Note that g (0 = K07 24K™)(9)

residue of an expansion so is very small. We can write

K@ (6 K (4)?
(9) SO 3 is already the

Computation of In {1 +

7 (9)
m{i+g(8)}-m{1+9(0)} ~ —2on, (32)
149 (0)
~ o/ (0) (1-0(0)) A+ 507 (9) &
with
. K 5K2
9(0) = G s
8K5  24K3
g, <é) _ K5 - 2K3K4 5K§
8K?2 3K3 8K3
" (é) K¢ 2K} 11K3Ks;  31KjK; 5K}
g T 8K? 3K3 12K SKI 2K}
Computation of In Z—’S :power in % up to j =2 only Using the approximation (27) we have A =~ KLQ
2
Replacing Ay in the formulas (28) (29) (30) we (32) finally have if we retain only terms in 1% and %
2

Qi ;o1 . Kj

Mm%~ ph— g2 D3p

" 90 2K, 2K»

so the relation between the density @ (X? (t) = mo + k) and Q (X7? (t) = myg) is finally:
Q(X? (1) = mo + k) = Q (X7 (t) = mp) R

—meT R = = Mo eXP 2K, ) 2K,

G.1 Higher order expansions:

Order 2: The previous result consist in expanding the polynomial in k2 but to use A ~ [% We can refine
the result with higher order terms in % by replacing Ay with (27) in (28) (29) (30) . We finally find:
2

Q (X7 (t) = mo + k) = Q (X* (t) = mo) exp (ark + azk?)

with
1Ks 1K; 2K3K, 5K3
o = bV-oomteim T3kt T3k
2K 8K 3 Ki 8K
11 1Ky 1 o, 1.5\ 1 5K 1K:iK; 1K3Ka
= - = SKE4 K — — —22 — — -
2 2 Ky 4K§’+<4 571 5)}(51 16 K] 16 K '3 K$

35



Order 3: If we go up to order k3, we have to rewrite (27) :

L) k2+<(K3)2 _K4> .

A= —k
TR 2(Ky)° 2(K2)? 6K}

and also (32) :
ln{l—l—g(ék>}—ln{1+g(é>} %glA—i-%ggAQ

with
_ Ks 2K3K, 5K}
BT 8KZ T 3K3 ' 8K}
K¢ 2K; 11K3Ks;  31K3iK,; 5K}
92 = SKZ 3K} 12K3 SKI 2K}
and (30) :

A A K 1 ([ Ky (K3)? 1 (Ks KKy _K3
In K® —InK® %—f Sl R . A2y - (22 23 ) A3
n <9k) n (0> Ky * 2\ Ky (K2)2 + 6 \ Ko 3 K22 + [(:23

We then find by expanding in k :
Q(X*(t) =mo +k) = Q(X*(t) = mo) exp (bik + bok® + b3k?)

with
1K3 1K; 2K3K4 5K3

by =—60— ——>
! 2KZ TRK] 3 KI 8K}

1

11 1K, 1
by = ——— —-—12 Ko+ -K24-K})— — ( = KsKs + - K2+ —K3K5 | —
2 2 K, 4K§+<16 6+4 3+4 3>K§ (24 s 5+3 4+16 3 5>K25

31 1 1 5 5 1
K2K K3Ky ) — — [ 2K+ 2K4) —
<16 hat gia 4)1{3 <16 81y 4>K27

1Ks 1Ks (1 1, 1 1 5 1, 1
by = -5 — — 5 4 (CKGKy + -K3Ky ) — — (=K K3+ K+ —K3Kg ) —
s +(334+434>K25 (48 4+123+43+1636 K§

1 31 1

1 1 11 1 7
CKaK? + —K2K K3K, K2K K3K KAK
+( 3L i 4 5 e s + g 4>K27 (16 T 4)[(28
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H Additional numerical results

The spreads differences reported in the part Numerical results are based on a portfolio of 100 names with
identical recovery (= 0) and identical spread (= 50bps). The tranches maturity is 5Y and with assume zero
discounting rate. The tranches expected loss computed for those tranches is given by the following table:

rho = 2%
tranche 0%-2% | 0%-3% | 0%-4% [ 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%] 12%-14%
Recursion 73.5% 62.2% 52.2% 30.8% 12.9% 8.2% 4.9% 1.6% 1.2% 0.3% 0.1% 0.0% 0.0%
Saddle Point2 | 72.9% 61.4% 51.7% 30.6% 13.5% 8.9% 5.4% 1.8% 1.4% 0.3% 0.1% 0.0% 0.0%
Saddle Point4 | 73.0% 61.9% 52.0% 31.1% 13.1% 8.5% 5.1% 1.7% 1.3% 0.3% 0.1% 0.0% 0.0%
Large Dev 82.6% 65.3% 53.1% 23.6% 9.9% 6.6% 4.0% 1.4% 1.1% 0.2% 0.1% 0.0% 0.0%
Normal 72.2% 62.2% 52.5% 32.9% 13.2% 8.0% 4.6% 1.3% 0.9% 0.1% 0.0% 0.0% 0.0%
Jarrow-Rudd 3 | 72.5% 61.7% 51.9% 31.3% 13.3% 8.7% 5.2% 1.7% 1.3% 0.3% 0.1% 0.0% 0.0%
Jarrow-Rudd 4 | 72.1% 61.5% 51.8% 31.5% 13.4% 8.8% 5.3% 1.8% 1.3% 0.3% 0.1% 0.0% 0.0%
rho = 10%
tranche 0%-2% | 0%-3% | 0%-4% [ 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%] 12%-14%
Recursion 63.5% 53.9% 46.2% 28.9% 16.0% 12.5% 8.9% 5.4% 4.5% 2.4% 1.3% 1.0% 0.5%
Saddle Point2 | 62.7% 53.5% 45.9% 29.2% 16.2% 12.7% 9.1% 5.5% 4.6% 2.4% 1.4% 1.1% 0.5%
Saddle Point4 | 63.0% 53.7% 46.1% 29.1% 16.1% 12.6% 9.0% 5.4% 4.6% 2.4% 1.3% 1.1% 0.5%
Large Dev 71.0% 57.0% 47.6% 24.2% 13.6% 10.7% 7.7% 4.7% 4.0% 2.1% 1.2% 0.9% 0.4%
Normal 62.8% 53.9% 46.3% 29.7% 16.2% 12.5% 8.9% 5.3% 4.5% 2.3% 1.3% 1.0% 0.4%
Jarrow-Rudd 3 | 62.7% 53.6% 46.0% 29.4% 16.2% 12.7% 9.1% 5.5% 4.6% 2.4% 1.3% 1.1% 0.5%
Jarrow-Rudd 4| 61.6% 53.1% 45.9% 30.1% 16.7% 13.0% 9.3% 5.5% 4.6% 2.4% 1.3% 1.0% 0.5%
rho = 20%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% [10%-12%| 12%-14%
Recursion 53.6% 45.8% 39.8% 26.0% 16.5% 13.9% 11.0% 8.0% 7.1% 4.8% 3.3% 2.9% 1.8%
Saddle Point2 | 53.0% 45.5% 39.6% 26.2% 16.7% 14.1% 11.1% 8.1% 7.2% 4.8% 3.4% 3.0% 1.9%
Saddle Point4 | 53.3% 45.7% 39.7% 26.2% 16.6% 14.0% 11.0% 8.0% 7.1% 4.8% 3.4% 2.9% 1.9%
Large Dev 60.0% 48.7% 41.3% 22.7% 14.7% 12.4% 9.9% 7.3% 6.5% 4.4% 3.1% 2.7% 1.7%
Normal 53.2% 45.8% 39.8% 26.4% 16.7% 14.0% 11.0% 8.0% 7.1% 4.7% 3.3% 2.9% 1.8%
Jarrow-Rudd 3 | 53.1% 45.6% 39.7% 26.3% 16.7% 14.1% 11.1% 8.0% 7.1% 4.8% 3.4% 2.9% 1.9%
Jarrow-Rudd 4 | 51.9% 45.2% 39.5% 27.2% 17.1% 14.3% 11.2% 8.1% 7.2% 4.8% 3.4% 2.9% 1.8%
rho = 30%
tranche 0%-2% | 0%-3% | 0%-4% [ 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 45.4% 39.0% 34.3% 23.1% 15.9% 13.9% 11.5% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Saddle Point 2 44.9% 38.8% 34.1% 23.3% 16.0% 14.0% 11.6% 9.1% 8.4% 6.2% 4.8% 4.4% 3.1%
Saddle Point4 | 45.1% 38.9% 34.2% 23.3% 16.0% 14.0% 11.6% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Large Dev 50.7% 41.6% 35.7% 20.7% 14.5% 12.8% 10.6% 8.5% 7.8% 5.8% 4.5% 4.1% 3.0%
Normal 45.1% 39.0% 34.2% 23.4% 16.0% 14.0% 11.5% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Jarrow-Rudd 3 | 45.0% 38.9% 34.2% 23.4% 16.0% 14.0% 11.6% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Jarrow-Rudd 4 | 44.0% 38.5% 34.0% 24.1% 16.3% 14.2% 11.7% 9.2% 8.4% 6.2% 4.8% 4.4% 3.1%
rho = 50%
tranche 0%-2% | 0%-3% | 0%-4% [ 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 31.6% 27.6% 24.7% 17.7% 13.5% 12.3% 10.7% 9.2% 8.7% 7.2% 6.1% 5.7% 4.7%
Saddle Point2 | 31.4% 27.5% 24.6% 17.9% 13.6% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
Saddle Point4 | 31.5% 27.5% 24.6% 17.8% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
Large Dev 35.3% 29.5% 25.8% 16.4% 12.6% 11.5% 10.2% 8.8% 8.3% 6.8% 5.9% 5.6% 4.5%
Normal 31.5% 27.6% 24.7% 17.8% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.7% 4.7%
Jarrow-Rudd 3 | 31.4% 27.5% 24.6% 17.9% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
Jarrow-Rudd 4 | 30.7% 27.3% 24.6% 18.4% 13.7% 12.4% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
rho = 60%
tranche 0%-2% | 0%-3% | 0%-4% [ 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%] 12%-14%
Recursion 25.6% 22.6% 20.4% 15.1% 11.9% 11.0% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%
Saddle Point2 | 25.4% 22.5% 20.3% 15.3% 12.0% 11.1% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%
Saddle Point4 | 25.5% 22.5% 20.3% 15.2% 12.0% 11.1% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%
Large Dev 28.7% 24.2% 21.4% 14.1% 11.3% 10.4% 9.4% 8.4% 7.9% 6.7% 6.0% 5.8% 4.9%
Normal 25.5% 22.5% 20.4% 15.2% 12.0% 11.1% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%
Jarrow-Rudd 3 | 25.4% 22.5% 20.3% 15.2% 12.0% 11.1% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%
Jarrow-Rudd 4 | 24.9% 22.4% 20.3% 15.6% 12.1% 11.2% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%
rho = 70%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% [ 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% [10%-12%| 12%-14%
Recursion 20.0% 17.8% 16.3% 12.5% 10.3% 9.6% 8.7% 7.8% 7.5% 6.6% 6.0% 5.8% 5.1%
Saddle Point2 | 19.9% 17.7% 16.2% 12.6% 10.3% 9.7% 8.7% 7.8% 7.5% 6.7% 6.0% 5.8% 5.1%
Saddle Point4 | 19.9% 17.8% 16.2% 12.6% 10.3% 9.6% 8.7% 7.9% 7.5% 6.6% 6.0% 5.8% 5.1%
Large Dev 39.2% 30.3% 25.3% 11.4% 9.4% 9.0% 8.1% 7.2% 6.9% 6.1% 5.5% 5.3% 4.6%
Normal 19.9% 17.8% 16.2% 12.6% 10.3% 9.6% 8.7% 7.9% 7.5% 6.6% 5.9% 5.7% 5.1%
Jarrow-Rudd 3 | 19.8% 17.8% 16.2% 12.6% 10.3% 9.6% 8.8% 7.9% 7.5% 6.6% 6.0% 5.8% 5.1%
Jarrow-Rudd 4 | 19.5% 17.7% 16.2% 12.9% 10.4% 9.7% 8.8% 7.9% 7.6% 6.6% 6.0% 5.8% 5.1%
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The expected loss relative difference with the recursion (in percentage) for each tranche is given by:

rho = 2%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Saddle Point 2 0.9% 1.2% 0.9% 0.8% 4.5% 8.0% 8.8% 12.9% 13.1% 14.6% 14.9% 15.2% 17.1%
Saddle Point 4 0.8% 0.5% 0.3% 0.7% 1.9% 2.8% 3.2% 5.4% 5.5% 7.4% 8.2% 9.0% 12.2%
Large Dev 12.4% 5.1% 1.8% 23.5% 23.4% 20.4% 18.9% 11.4% 10.9% 6.5% 4.9% 4.1% 2.4%
Normal 1.8% 0.0% 0.7% 6.6% 2.3% 2.5% 5.6% 21.6% 23.3% 41.0% 50.5% 56.9% 68.3%
Jarrow-Rudd 3 1.4% 0.8% 0.5% 1.7% 3.6% 5.1% 5.2% 5.6% 5.1% 0.9% 7.4% 12.2% 24.4%
Jarrow-Rudd 4 1.9% 1.1% 0.7% 2.1% 4.3% 7.0% 7.8% 12.0% 11.5% 5.8% 2.0% 8.5% 24.4%
rho = 10%
tranche 0%-2% 0%-3% 0%-4% | 2%-4% 3%-6% | 4%-6% 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%)]| 12%-14%
Saddle Point 2 1.1% 0.8% 0.5% 0.9% 1.6% 1.9% 2.0% 2.3% 2.4% 2.6% 2.6% 2.7% 2.7%
Saddle Point 4 0.7% 0.4% 0.3% 0.8% 1.0% 1.0% 1.1% 1.1% 1.1% 1.2% 1.2% 1.2% 1.2%
Large Dev 11.8% 5.8% 3.1% 16.1% 15.0% 14.1% 13.5% 12.1% 11.9% 11.2% 10.3% 9.4% 8.4%
Normal 1.1% 0.1% 0.2% 2.9% 1.3% 0.6% 0.0% 1.3% 1.6% 2.8% 3.5% 3.9% 4.7%
Jarrow-Rudd 3 1.2% 0.6% 0.4% 1.6% 1.6% 1.6% 1.6% 1.4% 1.4% 1.2% 1.1% 1.1% 0.9%
Jarrow-Rudd 4 2.9% 1.5% 0.7% 4.1% 4.2% 4.0% 3.7% 2.8% 2.5% 1.4% 0.5% 0.2% 0.9%
rho = 20%
tranche 0%-2% 0%-3% 0%-4% | 2%-4% 3%-6% | 4%-6% 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%)]| 12%-14%
Saddle Point 2 1.1% 0.6% 0.4% 1.0% 1.1% 1.1% 1.0% 0.9% 0.8% 0.8% 0.9% 0.7% 0.8%
Saddle Point 4 0.7% 0.4% 0.2% 0.7% 0.6% 0.6% 0.6% 0.5% 0.5% 0.4% 0.4% 0.4% 0.4%
Large Dev 11.9% 6.3% 3.9% 12.7% 11.1% 10.8% 10.0% 8.7% 8.5% 7.8% 7.5% 7.2% 5.9%
Normal 0.8% 0.2% 0.0% 1.6% 0.8% 0.5% 0.3% 0.1% 0.1% 0.4% 0.5% 0.6% 0.7%
Jarrow-Rudd 3 1.0% 0.5% 0.3% 1.3% 1.0% 0.9% 0.8% 0.7% 0.6% 0.5% 0.5% 0.5% 0.4%
Jarrow-Rudd 4 3.2% 1.4% 0.7% 4.6% 3.1% 2.6% 2.2% 1.5% 1.4% 0.9% 0.6% 0.4% 0.2%
rho = 30%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Saddle Point 2 1.0% 0.5% 0.3% 0.9% 0.7% 0.7% 0.6% 0.5% 0.6% 0.7% 0.4% 0.2% 0.3%
Saddle Point 4 0.6% 0.3% 0.2% 0.7% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%
Large Dev 11.6% 6.5% 4.2% 10.3% 8.8% 8.5% 7.8% 6.8% 6.7% 5.8% 5.6% 6.1% 4.1%
Normal 0.6% 0.2% 0.0% 1.1% 0.5% 0.4% 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2%
Jarrow-Rudd 3 0.9% 0.4% 0.3% 1.1% 0.7% 0.6% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2%
Jarrow-Rudd 4 3.2% 1.2% 0.6% 4.5% 2.4% 1.9% 1.5% 1.0% 0.9% 0.6% 0.4% 0.4% 0.2%
rho = 50%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Saddle Point 2 0.8% 0.5% 0.2% 0.9% 0.6% 0.2% 0.3% 0.4% 0.2% 0.1% 0.6% 0.6% 0.5%
Saddle Point 4 0.5% 0.3% 0.2% 0.5% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Large Dev 11.7% 7.0% 4.7% 7.7% 6.4% 6.1% 5.1% 3.8% 4.7% 5.6% 3.4% 2.8% 4.0%
Normal 0.5% 0.2% 0.1% 0.7% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
Jarrow-Rudd 3 0.8% 0.4% 0.2% 0.8% 0.4% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.8% 1.1% 0.5% 3.7% 1.6% 1.2% 0.9% 0.6% 0.5% 0.4% 0.2% 0.2% 0.2%
rho = 60%
tranche 0%-2% 0%-3% 0%-4% | 2%-4% 3%-6% | 4%-6% 4%-8% 6%-8% 6%-9% | 8%-10% | 9%-12% | 10%-12%)] 12%-14%
Saddle Point 2 0.9% 0.3% 0.2% 0.8% 0.4% 0.5% 0.3% 0.1% 0.1% 0.2% 0.6% 0.6% 0.3%
Saddle Point 4 0.5% 0.2% 0.1% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%
Large Dev 12.1% 7.1% 5.1% 6.9% 5.7% 6.1% 4.9% 3.3% 4.0% 4.6% 2.7% 2.3% 2.1%
Normal 0.5% 0.2% 0.1% 0.6% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0%
Jarrow-Rudd 3 0.7% 0.3% 0.2% 0.7% 0.3% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.6% 0.9% 0.5% 3.1% 1.3% 1.0% 0.8% 0.5% 0.5% 0.3% 0.1% 0.0% 0.2%
rho = 70%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% [ 9%-12% | 10%-12%| 12%-14%
Saddle Point 2 0.6% 0.4% 0.3% 0.2% 0.7% 0.9% 0.2% 0.7% 0.3% 0.6% 0.5% 0.5% 0.2%
Saddle Point 4 0.5% 0.2% 0.1% 0.4% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
Large Dev 96.4% 69.9% 55.7% 9.2% 8.2% 6.9% 7.8% 8.8% 8.7% 8.0% 7.7% 7.8% 8.5%
Normal 0.4% 0.2% 0.1% 0.5% 0.2% 0.0% 0.2% 0.4% 0.3% 0.0% 0.3% 0.4% 0.1%
Jarrow-Rudd 3 0.6% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.2% 0.9% 0.4% 2.6% 1.1% 0.4% 0.6% 0.8% 0.6% 0.0% 0.1% 0.1% 0.3%

The PVO01 for each tranche is given by:
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rho = 2%

tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 2.46 2.93 3.27 4.08 4.45 4,53 4,58 4.62 4.62 4.63 4.64 4.64 4.64
Saddle Point 2 2.50 2.95 3.28 4.05 4.43 452 457 4.62 4.62 4.63 4.64 4.64 4.64
Saddle Point 4 2.48 2.94 3.27 4.07 4.44 4.53 457 4.62 4.62 4.63 4.64 4.64 4.64
Large Dev 2.28 2.89 3.26 4.23 4.49 4.55 4.59 4.62 4.63 4.63 4.64 4.64 4.64
Normal 2.46 2.92 3.26 4.06 4.46 4.54 458 4.63 4.63 4.64 4.64 4.64 4.64
Jarrow-Rudd 3 249 2.94 3.27 4.05 4.44 452 457 4.62 4.62 4.63 4.64 4.64 4.64
Jarrow-Rudd 4 2.54 2.96 3.28 4.01 4.42 4,51 4.56 4.62 4.62 4.63 4.64 4.64 4.64
rho = 10%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 2.73 3.11 3.38 4.03 4.34 4.42 4.49 4.56 4.57 4.60 4.62 4.62 4.63
Saddle Point 2 2.76 3.12 3.39 4.01 4.33 4.42 4.48 4.55 4.57 4.60 4.62 4.62 4.63
Saddle Point 4 2.75 3.12 3.38 4.02 4.34 4.42 4.49 4.56 4.57 4.60 4.62 4.62 4.63
Large Dev 2,57 3.05 3.36 4.14 4.39 4.46 451 4.57 4.58 4.61 4.62 4.62 4.63
Normal 2.74 3.11 3.38 4.01 4.34 4.43 4.49 4.56 4.57 4.61 4.62 4.62 4.63
Jarrow-Rudd 3 2.76 3.12 3.38 4.01 4.34 4.42 4.49 4.55 4,57 4.60 4.62 4.62 4.63
Jarrow-Rudd 4 2.82 3.14 3.39 3.96 4.32 4.41 4.48 4.55 4.57 4.60 4.62 4.62 4.63
rho = 20%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 3.02 3.32 3.53 4.03 4.29 4.35 4.42 4.49 451 4.55 4.58 4.59 4.61
Saddle Point 2 3.05 3.33 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4.55 4.58 4.59 4.61
Saddle Point 4 3.04 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4,55 4.58 4.59 461
Large Dev 2.87 3.25 3.50 4.12 4.33 4.38 4.44 4.50 4.52 4.56 4.58 4.59 4.61
Normal 3.03 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.51 4.55 4.58 4.59 4.61
Jarrow-Rudd 3 3.04 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4,55 4.58 4.59 461
Jarrow-Rudd 4 3.09 3.34 3.53 3.98 4.27 4.34 4.41 4.48 4.50 4.55 4.58 4.59 4.61
rho = 30%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 3.27 3.51 3.67 4.07 4.27 4.32 4.38 4.45 4.46 4.51 4.54 4.55 4.58
Saddle Point 2 3.29 3.51 3.67 4.06 4.26 4.32 4.38 4.44 4.46 451 4.54 4.55 4.58
Saddle Point 4 3.28 3.51 3.67 4.06 4.27 4.32 4.38 4.44 4.46 451 4.54 4.55 4.58
Large Dev 3.14 3.44 3.64 4.14 431 4.35 441 4.46 4.48 4,52 4.55 4.56 4.58
Normal 3.28 3.51 3.67 4.06 4.27 4.32 4.38 4.45 4.46 4.51 4.54 4.55 4.58
Jarrow-Rudd 3 3.29 351 3.67 4.06 4.27 4.32 4.38 4.44 4.46 451 4.54 4.55 4,58
Jarrow-Rudd 4 3.33 3.52 3.67 4.02 4.26 4.32 4.38 4.44 4.46 4.51 4.54 4.55 4.58
rho = 50%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 3.70 3.84 3.93 417 4.30 4.33 4.37 4.42 4.43 4.47 4.50 451 453
Saddle Point 2 371 3.84 3.94 4.16 4.29 4.33 4.37 4.42 4.43 4.47 4.50 451 453
Saddle Point 4 3.70 3.84 3.94 417 4.29 4.33 4.37 4.42 4.43 4.47 4.50 451 453
Large Dev 3.60 3.79 3.90 4.21 4.32 4.35 4.39 4.43 4.44 4.48 4.50 4,51 454
Normal 3.70 3.84 3.93 417 4.30 4.33 4.37 4.42 4.43 4.47 4.50 451 453
Jarrow-Rudd 3 371 3.84 3.94 417 4.29 4.33 4.37 4.42 4.43 4.47 4.50 4,51 453
Jarrow-Rudd 4 3.73 3.85 3.94 4.15 4.29 4.33 4.37 4.41 4.43 4.47 4.50 4.51 4.53
rho = 60%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% | 10%-12%| 12%-14%
Recursion 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 452
Saddle Point 2 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 452
Saddle Point 4 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 452
Large Dev 3.80 3.94 4.03 4.26 4.35 4.37 4.40 4.43 4.44 4.47 4.49 4.50 4.52
Normal 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 452
Jarrow-Rudd 3 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52
Jarrow-Rudd 4 3.91 3.99 4.06 4.22 4.32 4.35 4.38 4.42 4.43 4.46 4.49 4.50 4.52
rho = 70%
tranche 0%-2% | 0%-3% | 0%-4% | 2%-4% | 3%-6% | 4%-6% | 4%-8% | 6%-8% | 6%-9% | 8%-10% | 9%-12% [10%-12%| 12%-14%
Recursion 4.06 4.13 4.18 4.30 4.37 4.39 441 4.44 4.44 4.47 4.49 4.49 451
Saddle Point 2 4.06 4.13 4.18 4.30 4.37 4.38 441 4.44 4.44 4.47 4.49 4.49 451
Saddle Point 4 4.06 4.13 4.18 4.30 4.37 4.39 4.41 4.44 4.44 4.47 4.49 4.49 4.51
Large Dev 3.85 4.00 4.09 432 4.38 4.40 4.42 4.45 4.45 4.48 4.50 4.50 452
Normal 4.06 4.13 4.18 4.30 4.37 4.39 441 4.44 4.44 4.47 4.49 4.49 451
Jarrow-Rudd 3| 4.06 4.13 4.18 4.30 4.37 4.38 441 4.44 4.44 4.47 4.49 4.49 451
Jarrow-Rudd 4 4.07 4.13 4.18 4.29 4.36 4.38 4.41 4.44 4.44 4.47 4.49 4.49 4.51

This quantity varies less that the spread as a function of the numerical method, as we can expect from a
PVO1.
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I The Esscher Transform

The Esscher Transform is more often used in insurance than n Finance. It refers to a paper from F. Esscher, in
1932 (cf. [12]). As quoted in [15], "The Esscher transform was developed to approximate the aggregate claim
amount distribution around a point of interest, zg, by applying an analytic approximation (the Edgeworth
series) to the transformed distribution with a parameter 6 chosen such that the new mean is equal to Zg.
When the Esscher transform is used to calculate a stop-loss premium, the parameter € is usually determined
by specifying the mean of the transformed distribution as the retention limit.” The Esscher Transform has
an analogy in Finance with the Change of Measure, and the commonly used Change of Numeraire discovered
by H. Geman, N. El Karoui, J.C. Rochet [14].

1.1 General definition and analogy with a change of measure

Let suppose that a random variable X has a density function f (x) in a probability space (2, F, F, Q) . We
define for 6 € R: ,
e’ f (z) 0X
= 8 and M (0) = B (X)),

fo (x) M ) and M (6) e (33)
We check easily that [ fp (z)dz = 1. We call fy the "tilted measure” of X, or Esscher transform of f. Note
that if K (#) = In (M (#)) then fy (z) = f (x) />~ K©),

When X is Gaussian , its tilted measure is simply the measure of X shifted with a new mean 6.

1.1.1 Example with a process: X is a Brownian motion at time ¢

2 2
Let X = W; be a Brownian motion at time ¢. Then M (6) = et and fo(x) = f(x) 7= Tt We guess

2
immediately the analogy with the Girsanov theorem: e’ 5 is the density of the Radon-Nykodim derivative

from the probability measure @) to the probability measure @, under which W, = W, — 6t is a Brownian

A 2
motion. As we have %F — MW= tand by applying Bayes’ rule:
t

E? (¢ (W,)] = E?

o (W) jg] ~ [o@r@ e S o= [ o) fole)da,
But by Girsanov theorem, we also know that:
B¢ (W) = B9 [¢ (Wi + 0t) | = B2 [6 (W, +01)]

as both W; and Wt are Brownian motions under their respective measures.
So finally:

E9 [ (W, + 01)] = / 6 (2) fo (@) do

We conclude that fp (z) is the density of the translated Brownian motion Wj + 0t, with mean 6t. So fy (z)
is the measure of the original process translated with 6¢. Transforming the process into a translated one
is also similar to sampling when dealing with Monte Carlo methods. We will see that the application to
multivariate distribution of the tilted measure turns out to be also a kind of importance sampling for the
N to default or the Loss process.
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1.1.2 Example with a non-continuous variable : X is a binomial distribution
Let X be a binomial distribution with p = @ (X = 1). Then we have the following relations:

f(l‘) = P(X:x):pm(l_p)lfm

M) = E[eex =1—p+pe’

—

and the tilted measure is:

— 1—
f (m) _ e@xpx (1 _p)l x _ pee x - L x _ (p@)x (1 _p9>1*"£
o 1—p+pef 1 —p+pe? 1—p+pef '

In other words, the tilted measure is the measure of a binomial distribution with parameter p? =
0=0

pe’
1—p+pef -
Note that p? spans )0, 1[ as 6 spans |—o0, +-00[ and p?=° = p. In our applications, p is close to AT with T a
year fraction and A the default intensity. So for A = 100bps then p = 1%. As we can see, §# = 5 is enough to

transform p to p? = 0, 5.

1.1.3 Example with a non-continuous variable : X is a multinomial distribution

Let now X = Zf\il X; with X; a binomial distribution where @ (X; = 1) = p;. Thanks to the last example
we have:

N N
M@ =E [e”ﬂ - H E [eexi] - 1:[ M; (8)

and N N N
K@)=> WmM(¢) =Y In (1 —pi +pi69) =YK (9).
=1 =1 =1

The tilted measure applied to X is the measure of a random variable X% More precisely, for any
measurable function h we have:

N

E [h (X6>] N /(azl,...,xN)e{o,l}N h(zy+ .. +zn) flonttan) =) il;[lfz‘ (i) da;

N e i ()
- h(zi+..+zn i LI g,
/(xh--.,mw)e{o,l}]\’ (@1 )Zl_Il M; (6)

N
— h(zy+ ..+ an) [ (@) da;
/(zl,...,xN)E{O,l}N 1H1

with

. . 0
0 () — 6“(1_6)1"“ dof - Pe
fz (xb) <p7,> p; and p; 1_pi+pi66'

So we see that the tilted measure of X is a multinomial distribution associated with (pf)i:1 ~ - Then applying
the tilted measure on X is surprisingly equivalent to applying it individually to each Xj;. This is quite
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remarkable and comes from the dependence of the X;. Note that we have:

N N
E[X]=Y piand E [Xﬂ =3
=1 i=1

and if we define:
then

Let define our shift by fixing an arbitrary mean mg and search for 6 such that Zf\il pf =my .
Then @ is called Saddle-point associated to the "new mean” mg because E [X 9} = myg. The transformation

from the distribution (p;);_; y to the distribution (pf) N is called "Esscher Transform” (cf. [12]):

i=1,

N N i)

K(0) =3k =3 2 = m,

i=1 izt 1—pi+pie

The new distribution is not centered at the initial E[X] but at mg.Note that K’ (—o0) = 04 and that
K’ (+00) = N where N is the number of p; strictly positive p;.Said differently, N is the maximum number of
defaults that can occur in the portfolio, and K’ (é) is always smaller or equal to that number. This remark
is important as in the computation of tail probabilities for CDO portfolio, because it can happen that the
conditioning on a state variable Z some p; may be null.

As a conclusion, we have seen through 3 examples that the Esscher Transform does "not modify the
nature of the random variable, but just modify its mean" (cf. [13]).

I.2 Application to the pricing of a N** to default swap, using FFT method

In a credit derivatives bagket, the number of names n is typical around 125 or more for CDOs and much
smaller for mgh—to—defaults. The expected number of defaults implied for the credit curves is usually below
5. So computing the fair spread of a m4'-to-default tranche for mg greater than 5 will usually turn into
numerical imprecision as we reach the machine precision of 10716, This is a problem that often happens
when one wants to compute the "tail probabilities”. So shifting the counting process mean to a higher mean
will remove this problem.

Let suppose that we want to value a méh—to—default swap and myg is greater that the expected number of
defaults.

In order to compute the fair spread of a mgh to default swap, we need to compute its fixed leg and its
protection leg. We assume that both of those legs expected values are only function of the discount factors
and the survival probabilities of the mgh—to—default event. Said differently, we only need to compute

Q (X (t) < mo) = ko (£) + oo + Fimg—1 (£) = 1 — Q (X () > mo) and ry () = Q (X (t) = k)

so we actually only need to compute the tail Q (X (t) > my).
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Using the third example in the first part X is a multinomial distribution”, we first have to find 0 such

that R
n R R 86
> " pf =myg with p = b

=and p; = Q (13 < t).
i—1 1 —p; + pie

0

In other words, we shift the mean of the distribution of X (¢) to be exactly at mg. We find easily 0 us-
ing a Newton Raphson algorithm. Using the FFT method, we compute 7} (t) = Q <X9 (t) = k:) for this

transformed X? (¢). Finally we back out ky (t) using xy, (t) = &% (¢) OR—K(0),
As the names are independent conditional on the latent variable Z = z we have the survival probability
of the n'" tho default basket given by :

+oo
Q (X (t) > my) :/ Q (X7 (1) > mo) & (=) d=

where @ (X7 (t) > my) is computed using independent X7.
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