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Abstract
We propose a Large Deviation approximation for the loss distribution of a credit portfolio and compare

it as well as higher order Saddle-point and Edgeworth expansions with the standard recursion method for
the pricing of CDO tranches.

1 Introduction
The most common approach to value synthetic CDO tranches is still via �Base Correlation� or �Local Correla-
tion� models. Both approaches are described in [17] and [27],[2]. Those �static models� are simple extensions
of the Gaussian copula, (cf Li [20] , Roncalli [21] ). As the value of a CDO tranche is the sum of call-spreads
on the Loss distribution of the underlying pool, one only need to compute this loss distribution for arbitrary
future times. In this framework, the loss distribution is computed via a numerical integration (cf. [23]):
L =

∫
L (Z) φ (Z) dZ where Z is Gaussian. Conditionally on Z, the common market factor of the model,

L = L (Z) is the loss distribution of a portfolio of independent names : we will focus here on the computation
of this quantity using various expansion methods. We will look in particular at the higher order expansions
results for the Saddle-point method and the Normal proxy, also called Jarrow- Rudd method.

The �rst section introduces the notations used later.
Next, The second part exploits various extensions of the Saddle-point approximation, up to the 8th order.
In the third part we expand the distribution around the Normal case : this method is similar to Jarrow-

Rudd approach, based on Edgeworth expansions of the loss distribution, but initially applied to option
pricing (cf. [16]).

In the fourth part, we propose a large deviation approximation based on the results of Akahira, K.
Takahashi (cf. [9]).

All this numerical methods are compared with the benchmark recursion. They could be as well compared
with the standard FFT method. In order to avoid numerical error, one can combine them with a Esscher
transform, as described in the last Appendix. This technic prevents �aliasing� in the loss distribution com-
putation.

In the last part, we apply those expansion formulas on a credit portfolio and compare the robustness of
the methods, depending on the correlation level and seniority of the Tranches.
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2 Notations
Let n be the number of credit entities in the basket.

We de�ne :

• τi : the default time of entity i.

• Xi (t) = 1(τi≤t) : the default time indicator for time horizon t.

• pi (t) = 1 − exp
(
− ∫ t

0 λi (s) ds
)

is the default probability up to time t for name i with an intensity
model:

pi (t) = E (Xi (t))

• qi (t) = 1− pi (t) is the survival probability for name i.

• We de�ne the counting process at time t by:

X (t) =
n∑

i=1

Xi (t) with Xi (t) = 1{τi≤t}.

• N (x) is the CDF of the N (0, 1) Gaussian variable:

N (x) =
∫ x

−∞
φ (x) dx and φ (x) =

exp
(
−x2

2

)
√

2π
(1)

• pz
i (t) is the conditional probability on the common factor Z = z (cf [23] for more details on this

convention). For example, pz
i (t) can be one of the following expressions:

If we use the framework of �one factor [Gaussian] copula� or Base correlation, with correlation z, we
have:

pz
i (t) = N

(N−1 (pi (t))−√ρz√
1− ρ

)
.

If we use the framework of the Local correlation (cf [27])or Random Loading Factor (cf [2]) with a
correlation z 7−→ ρ (z) , with values in [0, 1], where z is N (0, 1) , we have:

pz
i (t) = N

(
H−1 (pi (t))−

√
ρ (z)z√

1− ρ (z)

)
.

We de�ne H as the CDF of the variate used to correlated the default times, i.e.:

H (x) = P (Ui < x) with Ui =
√

ρ (Z)Z +
√

1− ρ (Z)εi

with εi and Z are i.i.d. N (0, 1) . Z is the state variable. In the Gaussian framework we simply have
Ui =

√
ρz +

√
1− ρεi.
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• Xz
i (t) = 1�

εi≤H
−1(pi(t))−

√
ρ(z)z√

1−ρ(z)

� with εi ∼ N (0, 1) i.i.d. Note that all the XZ
i (t) are independent,

conditionally on Z = z, i.e. a particular value of the state variable.

• In that case Xz (t) =
∑n

i=1 Xz
i (t) is the sum of independent binomial variables, with E (Xz

i (t)) =
pz

i (t) .

Xz (t) is the number of defaults in the basket conditional on Z = z up to time t.

• Let ai be real numbers. Lz
i (t) =

∑n
i=1 aiX

z
i (t) is the loss accumulated at time t conditional on Z = z.

Usually ai = Ni (1−Ri) , where Ni is the notional invested in name i (it can be negative) and Ri is
the recovery of name i supposed constant here.

• The cumulants Kz
t (θ) of Xz (t) and Lz (t) are respectively:

Kz
t (θ) = lnE

(
eθXz(t)

)
=

n∑

i=1

ln
(
1− pz

i (t) + pz
i (t) eθ

)
for Xz (t)

Kz
t (θ) = lnE

(
eθLz(t)

)
=

n∑

i=1

ln
(
1− pz

i (t) + pz
i (t) eaiθ

)
for Lz (t)

• The notation K(i) means K
z,(i)
t

(
θ̂
)
where θ̂ is the Saddle-point (this will be defained in the next part).

• The expected values and variances of Xz (t) and Lz (t) are respectively given by:

µx = E (Xz (t)) = Σpz
i (t)

µl = E (Lz (t)) = Σaip
z
i (t)

and

σ2
x = V ar (Xz (t)) = Σpz

i (t) (1− pz
i (t))

σ2
l = V ar (Xz (t)) = Σa2

i p
z
i (t) (1− pz

i (t))

• Some useful integrals for the Saddle-point are computed in Appendix B.

3 Saddle-point approximations for CDO and Nth-to- defaults
Conditionally on the state variable Z = z the number of defaults in the basket at time t is Xz (t) =∑n

i=1 Xz
i (t) where the Xz

i (t) are independent (cf. notations at the beginning) ; the Loss in the basket is
Lz (t) =

∑n
i=1 aiX

z
i (t) . For each approximation, we need to compute the following quantities:

• for the distribution of Xz
i (t) , i.e. the distribution of the number of defaults, we need to get Q (Xz (t) = m0)

for each m0 ∈ {0, 1, ..., n} ;

• to compute the price of a mth
0 -to-default swap, we need to compute the tail of the distribution

Q (Xz (t) ≥ m0) , for m0 ∈ {0, 1, ..., n} ;
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• to compute the price of a CDO swap we need to compute the call on loss E
(
(Lz (t)− l0)+

)
for di�erent

real values of l0, either in the lower-tail (for equity tranches) or upper-tail (senior tranches).
The Saddle-point approximation method is brie�y recalled below (cf. Daniels [6] and [7]) and was

initially applied to portfolio credit risk (V AR and expected shortfall) in Martin et al. [25]. But the technic
has been applied recently to CDO and CDO square pricing by Antonov et al. [3]. More details about this
approach on a mathematical basis are available in [18].

The Edgeworth expansions consist in expending the inversion formula around the Saddle-point θ̂. Starting
with the expansion at order 2 (i.e. the quadratic expansion and also the standard Saddle-point approxima-
tion) we extend it to the 8th order. We compare our results with the order 4 expansion in [28].

3.1 Quadratic Saddle-point approximation ∼ 2nd order expansion
3.1.1 Computation of the density of Xz (t)

Our aim is to apply a �rst order Saddle-point approximation to compute the density Q (Xz (t) = m0) for
m0 ∈ {0, 1, ..., n} . Note that [3] consider the Loss process L instead of X. But dealing with X is equivalent
to deal with L if we replace the quantities ai with 1 in the loss process. We have:

Q (Xz (t) = m0) =
1

2iπ

∫ c+i∞

c−i∞
M z

t (θ) e−θm0dθ

where M z
t (θ) = E

[
eθXz(t)

]
and c > 0 is any positive number. Replacing M z

t (θ) with exp (Kz
t (θ)):

Q (Xz (t) = m0) =
1

2iπ

∫ c+i∞

c−i∞
eKz

t (θ)−θm0dθ

Let θ̂ be the Saddle-point, i.e. solution of K
z,(1)
t

(
θ̂
)

= m0. We de�ne K(i) = K
z,(i)
t

(
θ̂
)

.

Note that θ̂ < 0 is m0 < E (Xz (t)) =
∑n

i=1 pz
i (t) and θ̂ > 0 otherwise. The upper-tail is the set of m0

above the expected value of Xz (t) , i.e. such that m0 > E (Xz (t)) . A limited development at order 2 of the
function θ 7−→ Kz

t (θ)− θm0 gives

Kz
t (θ)− θm0 = Kz

t

(
θ̂
)
− θ̂m0 +

(
θ − θ̂

)(
K(1) − θ̂

)
+

1
2

(
θ − θ̂

)2
K(2) + o

(
θ − θ̂

)2

= Kz
t

(
θ̂
)
− θ̂m0 +

1
2

(
θ − θ̂

)2
K(2) + o

(
θ − θ̂

)2

then

Q (Xz (t) = m0) ' eKz
t (θ̂)−θ̂m0

1
2iπ

∫ c+i∞

c−i∞
e

1
2(θ−θ̂)2

K(2)
dθ

' eKz
t (θ̂)−θ̂m0J0

(
K(2), θ̂

)

using the expression of J0

(
K(2), θ̂

)
we �nally get

Q (Xz (t) = m0) ' eKz
t (θ̂)−θ̂m0

√
2πK(2)

(2)

Q (Lz (t) = l0) ' eKz
t (θ̂)−θ̂l0

√
2πK(2)

(3)
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Expressions for K(1) = K
z,(1)
t

(
θ̂
)
and K(2) = K

z,(2)
t

(
θ̂
)
are in Appendix-B.

So if
∑n

i=1 pz
i (t) 1{pz

i (t)>0} = m < n then Q (Xz (t) = k) = Q (Xz (t) ≥ k) = 0 for k > m.. and we don't
need all this.

Note that the expression 2 is independent of m0 or l0 being above or below the expectation of Xz (t) or
Lz (t) , as there is no singularity in θ 7−→ eKz

t (θ)−θm0 . This is not the case for the tail computation or the call
on the Loss, as we are going to see.

3.1.2 Computation of the survival probability Q (Xz (t) ≥ m0) for the mth
0 to default event

As before we have for Xz (t) and Lz (t)

Q (Xz (t) ≥ m0) =
1

2iπ

∫ +∞

m0

dm

∫ c+i∞

c−i∞
M z

t (θ) e−θmdθ =
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ

We have to consider 3 cases :

• If m0 > E (Xz (t)) then θ̂ > 0 and we have a �rst order Saddle-point approximation given by

Q (Xz (t) ≥ m0) ' eKz
t (θ̂)−θ̂m0

1
2iπ

∫ c+i∞

c−i∞

e
1
2
K(2)(θ−θ̂)2

θ
dθ

with K
z,(1)
t

(
θ̂
)

= m0

so for m0 ≥ E (Xz (t)) :
Q (Xz (t) ≥ m0) ' eKz

t (θ̂)−θ̂m0J1

(
K(2), θ̂

)

Q (Xz (t) ≥ m0) ' exp
(
Kz

t

(
θ̂
)
− θ̂m0 + 1

2 θ̂2K(2)
)
N

(
−θ̂
√

K(2)
)

• Note that if m0 = E (Xz (t)) the relation is still true as the Saddle-point is at zero
(
θ̂ = 0

)
and

Kz
t (0) = 0 so that Q (Xz (t) ≥ E (Xz (t))) = 1

2 .

As pointed out by Taras et al. in [28], the "Saddle-point approximation is accurate into the tail of the
distribution, in fact becoming more accurate the further into the tail".

• When m0 < E (Xz (t)) we have θ̂ < 0. In that case, as explained in Martin et al. [25], we need to
apply the Residue Theorem to the holomorphic function θ

f7−→ eKz
t (θ)−θm0

θ on the complex plane but in
0. The theorem must be applied on the original f, not on the quadratic approximation e

1
2 K(2)(θ−θ̂)2

θ . As
we have

∫
~γ

f = 2iπRes(f, 0) and given that:

Res (f, 0) = eKz
t (0) = 1

we can integrate on the following loop ~γ with R > 0 :

~γ = [θ̂ + iR, θ̂ − iR] ∪ [θ̂ − iR, c− iR] ∪ [c− iR, c + iR] ∪ [c + iR, θ̂ + iR]
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as R goes to in�nity the only remaining terms are the integration parallel to iR :

− 1
2iπ

∫ θ̂+i∞

θ̂−i∞

eKz
t (θ)−θm0

θ
dθ +

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ = 1

so �nally

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ = 1 +

1
2iπ

∫ θ̂+i∞

θ̂−i∞

eKz
t (θ)−θm0

θ
dθ (4)

' 1 + eKz
t (θ̂)−θ̂m0

1
2iπ

∫ θ̂+i∞

θ̂−i∞

e
1
2(θ−θ̂)2

K(2)

θ
dθ

' 1 + eKz
t (θ̂)−θ̂m0J1

(
K(2), θ̂

)

Using Appendix B formula we get for θ̂ < 0 (for both Xz (t) and Lz (t) ):

Q (Xz (t) ≥ m0) ' 1− exp
(
Kz

t

(
θ̂
)
− θ̂m0 + 1

2 θ̂2K(2)
)
N

(
−

∣∣∣θ̂
∣∣∣
√

K(2)
)

Note that the term exp
(
Kz

t

(
θ̂
)
− θ̂m0 + 1

2 θ̂2K(2)
)

can sometimes explode while N
(
−

∣∣∣θ̂
∣∣∣
√

K(2)
)

is
null. For those cases Q (Xz (t) ≥ m0) = 1.

Note also that if we are at the mean, then θ̂ = 0 so that Q (Xz (t) ≥ m0) . In other words, as for the
Normal distribution, the Saddle-point approximation puts half of the distribution on both sides of the mean.
This is obviously wrong in most of the cases when pricing CDOs.

3.1.3 Computation of the call on the loss E (Lz (t)− l0)+ for a CDO tranche

We have Q (Lz (t) ≥ l0) = 1
2iπ

∫ c+i∞
c−i∞

eKz
t (θ)−θl0

θ dθ. So integrating on l0 gives:

E (Lz (t)− l0)+ = −
∫ +∞

l0

Q (Lz (t) ≥ l) dl = −
∫ +∞

l0

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl

θ
dθdl

=
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ

• If the strike l0 is greater than the conditional expected loss ,i.e. if l0 > EZ (Lz (t))
(
or if θ̂ > 0

)
then,

developing again Kz
t (θ) − θl0 at order 2 around the Saddle-point θ̂ gives the following formula, with

K
z,(1)
t

(
θ̂
)

= l0 :

Q (Lz (t)− l0)+ ' eKz
t (θ̂)−θ̂l0 1

2iπ

∫ c+i∞

c−i∞

e
1
2
K(2)(θ−θ̂)2

θ2
dθ = eKz

t (θ̂)−θ̂l0J2

(
K(2), θ̂

)

' eKz
t (θ̂)−θ̂l0

{√
K(2)

2π
−K(2)θ̂e

1
2
K(2)θ̂2N

(
−θ̂

√
K(2)

)}
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• If the strike l0 is smaller than the conditional expected loss ,i.e. if l0 < EZ (Lz (t)) then, θ̂ < 0 and we
have to apply the Residue Theorem as in . Let f (θ) = eKz

t (θ)−θl0

θ2 . Around θ = 0 , as Kz
t (0) = 0 and

K
z,(1)
t (0) = EZ (Lz (t)) we have:

f (θ) ' exp
(

1 + K (0) + θ
(
K

z,(1)
t (0)− l0

)
+

1
2
θ2K

z,(2)
t (0) + o

(
θ2

))

' 1 + K (0)
θ2

+
EZ (Lz (t))− l0

θ
+ O (θ)

So the pole is EZ (Lz (t))− l0 and if c > 0 :

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ = EZ (Lz (t))− l0

and
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ = EZ (Lz (t))− l0 +

1
2iπ

∫ θ̂+i∞

θ̂−i∞

eKz
t (θ)−θl0

θ2
dθ (5)

so if θ̂ < 0 :

Q (Lz (t)− l0)+ ' EZ (Lz (t))− l0 + eKz
t (θ̂)−θ̂l0J2

(
K(2), θ̂

)

' EZ (Lz (t))− l0 + eKz
t (θ̂)−θ̂l0

{√
K(2)

2π
−K(2)

∣∣∣θ̂
∣∣∣ e

1
2
K(2)θ̂2N

(
−

∣∣∣θ̂
∣∣∣
√

K(2)
)}

3.2 Higher order Saddle-point approximations
3.2.1 Computation of the density Q (Xz (t) = m0) ∼ 8th order expansion
As mentioned in Taras et al. [28] and [9], it is possible to extent the second order approximation at
higher orders, which leads to formula (6) in [28] and (2.12) in [9] . We give the formula to order 8
(cf. Appendix-F for more details)

Q (Xz (t) = m0) ' eKz
t (θ̂)−θ̂m0 × 1√

2πK(2)
×





1 + K(4)

8K(2)2 −
{

K(6)

48 + 5K(3)2

24

}
1

K(2)3

+
{

K(8)

384 + 35K(4)2

384 + 7K(3)K(5)

48

}
1

K(2)4



 (6)

Note that the expansion of the exponential to order 2k is equivalent to an expansion in order of 1
K(2)k . The

odd terms in
(
θ − θ̂

)k
vanish for k odd and the second term in 1

K(2) vanishes too, because K
z,(1)
t

(
θ̂
)

= m0.

We will also compare formula (6) with Daniel's formula (we call it order 5 Taylor expansion, as it is order
6 expansion without term K(6)

48 ) :

QDaniels (Xz (t) = m0) ' eKz
t (θ̂)−θ̂m0 × 1√

2πK(2)
×

{
1 +

K(4)

8K(2)2
− 5K(3)2

24K(2)3

}
(7)
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3.2.2 Computation of the tail Q (Xz (t) ≥ m0) ∼ 4th and 6th order expansion

The tail approximation for an expansion of
(
θ − θ̂

)
at 4th and 6th order is given by Q4th

(Xz (t) ≥ m0) and
Q6th

(Xz (t) ≥ m0) :

Q4th
(Xz (t) ≥ m0) ' 1{θ̂≤0}

+sign
(
θ̂
)

eKz
t (θ̂)−θ̂m0e

1
2
K(2)θ̂2N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)(

1− K(3)θ̂3

6
+

K(4)θ̂4

24

)

+
eKz

t (θ̂)−θ̂m0

24
√

2πK(2) 3
2

(
1− θ̂2K(2)

)(
θ̂K(4) − 4K(3)

)

The details of the computations are given in Appendix-F. Note that our results are di�erent from Taras
[28] .

The 6th order is given by:

Q6th
(Xz (t) ≥ m0)

' 1{θ̂≤0} + sign
(
θ̂
)

eKz
t (θ̂)−θ̂m0 × e

1
2
K(2)θ̂2N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)
×

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
− K(5)θ̂5

120
+

K(6)θ̂6

720
+

K(3)2θ̂6

72

}

+
eKz

t (θ̂)−θ̂m0

72
√

2πK(2) 5
2

×





3K(2)
(
1− θ̂2K(2)

) [
θ̂K(4) − 4K(3) + θ̂2

5

(
θ̂K(6)

6 −K(5)
)]

−θ̂K(3)2.
(
18− θ̂2K(2) + θ̂4K(2)2

)

+9K(5)

5 + K(6)
(

3
2 − 9θ̂

5

)
+ 15K(3)2





We recall Lugannani & Rice formula for the tail :

QLug.&Rce (Xz (t) ≥ m0) = 1−N
(

sign
(
θ̂
)√

2.
∣∣∣Kz

t

(
θ̂
)
− θ̂m0

∣∣∣
)

+
eKz

t (θ̂)−θ̂m0

√
2π

×





1

θ̂
√

K(2)
− 1

sign
(
θ̂
)√

2.
∣∣∣Kz

t

(
θ̂
)
− θ̂m0

∣∣∣




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and Damian Taras, Christopher Cloke-Browne and Evan Kalimtgis formula:

QTCBK (Xz (t) ≥ m0)

' 1{θ̂≤0} + sign
(
θ̂
)

eKz
t (θ̂)−θ̂m0 × e

1
2
K(2)θ̂2N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)
×

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
+

K(3)2θ̂6

72

}

+
eKz

t (θ̂)−θ̂m0

72
√

2πK(2) 5
2

×




3K(2)
(
1− θ̂2K(2)

)(
θ̂K(4) − 4K(3)

)

−θ̂K(3)2.
(
3− θ̂2K(2) + θ̂4K(2)2

)




3.2.3 Computation of the call on the loss E (Lz (t)− l0)+ ∼ 4th and 6th order expansion
The details of the following formula are given in Appendix-F :

E (Lz (t)− l0)+ ' 1{θ̂≤0}.
(
EZ (Lz (t))− l0

)
+ eKz

t (θ̂)−θ̂l0 × S4th

with:

S4th = θ̂2sign
(
θ̂
)
N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
K(3)

2
− K(4)θ̂

6

}

−
∣∣∣θ̂

∣∣∣K(2)N
(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24

}

+
1√

2πK(2) 3
2

{
K(2)2 − K(4)

24
+ K(2)θ̂

(
−K(3)

3
+

K(4)θ̂

8
− K(2)K(3)θ̂2

6
+

K(2)K(4)θ̂3

24

)}

and the 6th order:

E (Lz (t)− l0)+ ' 1{θ̂≤0}.
(
EZ (Lz (t))− l0

)
+ eKz

t (θ̂)−θ̂l0 × S6th

with:

S6th = θ̂2sign
(
θ̂
)
N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
K(3)

2
− K(4)θ̂

6
+

K(5)θ̂2

24
− K(6)θ̂3

120
− K(3)2θ̂3

12

}
(8)

−
∣∣∣θ̂

∣∣∣ K(2)N
(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
− K(5)θ̂5

120
+

K(6)θ̂6

720
+

K(3)2θ̂6

72

}

+
1√

2πK(2) 5
2





K(2)2θ̂
(
−K(3)

3 + K(4)θ̂
8 − K(5)θ̂2

30 + K(6)θ̂3

144 + 5K(3)2θ̂3

72

)

+K(2)
(
−K(4)

24 + K(5)θ̂
60 − K(6)θ̂2

240 − K(3)2θ̂2

24

)

+K(2)3
(
1− K(3)θ̂3

6 + K(4)θ̂4

24 − K(5)θ̂5

120 + K(6)θ̂6

720 + K(3)2θ̂6

72

)

+K(6)

240 + K(3)2

24





Note that K(i) = K
z,(i)
t

(
θ̂
)
where θ̂ is the Saddle-point, i.e. solution of K

z,(1)
t

(
θ̂
)

= l0.
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4 The Normal-Proxy approximation of David Shelton
The approach from David Shelton [26] is an even more direct and e�cient approximation than the Saddle-
point. All it needs, conditional on the variable Z, is : the value of the expectation of Xz (t) and its variance
(cf. the notations at the beginning of this paper). We have µx = Σpz

i (t) and σ2
x = Σpz

i (t) (1− pz
i (t))and

we assume that the distribution of Xz (t) is Normal N (µx, σx) . This approximation is particulary good
for large portfolio as it is somewhat a limit of the theorem of large numbers. The most useful property of
this approximation is that given a value of z the density computed with the normal-proxy is generally very
di�erent from the theoretical one, but when we integrate numerically on z then it becomes very close to the
real distribution (cf. numerical results).

The conditional density of Xz (t) is simply given by

QNP (Xz (t) = m0) =
1√

2πσx

exp

(
−(m0 − µx)2

2σx

)
(9)

and a call on Loss by

E (Lz (t)−K)+ = σl

{
φ

(
K̃

)
− K̃N

(
−K̃

)}

K̃ =
K − µl

σl

µl = Σaip
z
i (t)

σ2
l = Σa2

i p
z
i (t) (1− pz

i (t))

Note that the density , tail and call should not be renormalized with N
(

Xz
max−µx

σx

)
− N

(
Xz

min−µx

σx

)
to

make sure that the density sum to one.

5 Expanding the Normal Proxy : the Jarrow-Rudd approach
As we will see in the numerical illustrations, the Normal-Proxy is very e�cient in most cases, but not for very
thin or senior tranches. Our aim here is to re�ne it by capturing higher order moments of the distribution.
The idea is to start from a given distribution (i.e. we start from the Normal distribution) and approximate
the real distribution of the loss using higher moments : the skew and the kurtosis. This is called a generalized
Edgeworth series expansion of the density (cf. [5], [19],[16]). From the expansion of the density as in [16],
we have directly the expansion of the call on loss.

5.1 Computation of the density using Jarrow-Rudd expansion
As in [16] we de�ne x 7−→ a (x) as the approximate density (the Normal one, cf. (9)) and x 7−→ f (x) as the
real density of Lz (t) that we want to expand.

Following Jarrow-Rudd expansion (4) in [16] , we have:

f (x) ≈ a (x) +
(K2 (f)−K2 (a))

2
a(2) (x)− (K3 (f)−K3 (a))

6
a(3) (x)

+
(K4 (f)−K4 (a)) + 3 (K2 (f)−K2 (a))2

24
a(4) (x)
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with Ki (f) = K(i)
(
θ̂
)
is the cumulant of order i for the density f, taken at value θ̂ = 0. a(i) (x) is the deriva-

tive of order i. In the paper of Jarrow-Rudd, The value of θ̂ is zero (there is no Saddle-point approximation here) .
The formula above is proven in [16]. The idea is to write the Taylor series of the �rst cumulant of f
i.e. K0 (f) (θ) around θ = 0 and to do the same with K0 (a) (θ) . Taking the di�erence of those series
up to a order N one have K0 (f) (θ) ≈ K0 (a) (θ) +

∑N
i=1 (Ki (f)−Ki (a)) θi

i! . Then taking the expo-
nential of this equation, one �nd a relation between the characteristic functions of f and a : M0 (f) ≈
M0 (a) exp

(∑N
i=1 (Ki (f)−Ki (a)) θi

i!

)
. Again, we do a Taylor expansion of the exponential to �nally have

exp
(∑N

i=1 (Ki (f)−Ki (a)) θi

i!

)
≈ ∑N

i=1 Ej
θi

i! . This step is actually very similar to the computation of ex-
pansions in the Saddle-point framework.

Using the inverse Fourier transform of this series one �nally �nd a relationship between the density of f
and the density of a

Let de�ne by µl and σ2
l respectively the mean and the variance of the loss Lz (t) . Then concerning

a (x) ,we need to have K1 (a) = K1 (f) = µl. We use a (x) given by the normal proxy. We know that it is
already a good approximation of the real density :

a (x) =
1√
2πσl

exp

(
−(x− µl)

2

2σ2
l

)

In particular, we have
K2 (a) = σ2

l = K2 (f)
Ki (a) = 0 for all i ≥ 3

The formula for Ki (f) when f is the density of the loss process Lz (t) are given in Appendix A. So we have
at order 4:

f (x) ≈ a (x)− K3 (f)
6

a(3) (x) +
K4 (f)

24
a(4) (x) (10)

Note that because the �rst two moments of f and a are chosen to be equal, there is not weight on a(1) (x) and
a(2) (x) . This formula, because it shows the expansion of the density, is much more instructive and explicit
than the Saddle-point approximation. One can see how the real density di�ers from the normal density by
looking at the weights on higher order terms, i.e. skew and kurtosis. Indeed, the term in front of a(2) (x) is
a function of the di�erence in variances. If L was normal, with a di�erent volatility than that of a then we
would have f (x) ≈ a (x) + (σf−σ2

l )
2 a(2) (x) . The term in front of a(3) (x) captures the skewness of f and the

last one the kurtosis.
The expansion (10) can be decomposed into a polynomial P (x̃) multiplied with φ (x̃) :

f (x) ≈ P (x̃)
1
σ

φ (x̃)

x̃ =
x− µ

σ

5.1.1 Order 3 expansion
We have f (x) ≈ a (x)− K3(f)

6 a(3) (x) so:

P (x̃) = 1− K3

2σ3
x̃ +

K3

6σ3
x̃3

11



5.1.2 Order 4 expansion:
We have f (x) ≈ a (x)− K3(f)

6 a(3) (x) + K4(f)
24 a(4) (x) so:

P (x̃) = 1 +
K4

8σ4
− K3

2σ3
x̃− K4

4σ4
x̃2 +

K3

6σ3
x̃3 +

K4

24σ4
x̃4 (11)

with Ki either the cumulants of Xz (t) or Lz (t) computed in Appendix C (note that in appendix C, we
compute the cumulants associated with an Esscher transform : here the cumulants Ki are computed with
θ̂ = 0). Mean µ and volatility σ are those of Xz (t) or Lz (t)

5.2 Computation of the call on Loss using Jarrow-Rudd expansion
Now that we have an explicit expansion of the density we can easily compute E (Lz (t)−K)+ from expression
(10) :

E (Lz (t)−K)+ =
4∑

i=0

ηi

∫ +∞

K̃

(
z − K̃

)
ziφ (z) dz

with K̃ = x−µl
σl

and ηi the coe�cient of degree i of the polynomial P in (11) .

Using Appendix C formulas of the moments of a Normal variable stuck at K̃ we �nd:

5.2.1 Order 3 expansion:
We have P (x) = 1− K3

2σ3 x + K3
6σ3 x3 so

E (Lz (t)−K)+ = σl

{(
1 +

K3

6σ3
l

K̃

)
φ

(
K̃

)
− K̃N

(
−K̃

)}

= EPr oxy (Lz (t)−K)+ +
K3

6σ2
l

K̃φ
(
K̃

)

5.2.2 Order 4 expansion:
We have P (x) = 1 + K4

8σ4 − K3
2σ3 x− K4

4σ4 x2 + K3
6σ3 x3 + K4

24σ4 x4 so

E (Lz (t)−K)+ = σl

{(
1− K4

24σ4
l

+
K3

6σ3
l

K̃ +
5K4

24σ4
l

K̃2

)
φ

(
K̃

)
− K̃N

(
−K̃

)}

= EPr oxy (Lz (t)−K)+ +
(

K3

6σ2
l

K̃ +
5K4

24σ3
l

K̃2 − K4

24σ3
l

)
φ

(
K̃

)

6 Higher order Large Deviation approximations
6.1 Computation of the density Q (Xz (t) = m0)

The recursion algorithm in Akahira & Takahashi [9] enables to relate explicitly density Q (Xz (t) = m0) and
Q (Xz (t) = m0 + k) for any k.
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This can be applied to can be applied to Xz (t) or Lz (t) . The only thing we need is the value of the
cumulants. Let suppose you know Q (Xz (t) = m0) . We want to compute Q (Xz (t) = m0 + k) . Akahira, K.
Takahashi propose Daniel's formula for the initial value at k = 0 :

Q (Xz (t) = m0) ' eKz
t (θ̂)−θ̂m0

√
2πK(2)

{
1 +

K(4)

8K(2)2
− 5K(3)2

24K(2)3

}

Then the result of Akahira & Takahashi is the tail approximation, θ̂ being the Saddle-point at m0 :

• if m0 ≥ E (Xz (t)) :

Q (Xz (t) = m0 + k) = Q (Xz (t) = m0) exp


−k


θ̂ +

K(3)
(
θ̂
)

2K(2)
(
θ̂
)2


− k2

2K(2)
(
θ̂
) + O

(
1
n2

)

 (12)

• and for m0 < E (Xz (t)) :

Q (Xz (t) = m0 − k) = Q (Xz (t) = m0) exp


k


θ̂ +

K(3)
(
θ̂
)

2K(2)
(
θ̂
)2


− k2

2K(2)
(
θ̂
) + O

(
1
n2

)

 (13)

We extend the result of Akahira et al. to take into account higher order powers in k.

• if m0 ≥ E (Xz (t)) :
Q (Xz (t) = m0 + k) = ... (14)

• and for m0 < E (Xz (t)) :
Q (Xz (t) = m0 − k) = ... (15)

The proof is given in appendix G.

6.2 Computation of the tail Q (m0 ≥ E (Xz (t)))

• In that case, we get the tail as Q (Xz (t) ≥ m0) = 1 −Q (Xz (t) ≤ m0 − 1) , so Saddle-point θ̂ should
be carefully computed at m0 − 1 instead of m0.

• if m0 ≥ E (Xz (t)) :

Q (Xz (t) ≥ m0) ≈ Q (Xz (t) = m0)
∑n−m0

k=0 exp
(
−k

(
θ̂ + K(3)

2K(2)2

)
− k2

2K(2)

)
(16)

• and for m0 < E (Xz (t)) :

Q (Xz (t) ≤ m0) ≈ Q (Xz (t) = m0)
∑m0

k=0 exp
(
k

(
θ̂ + K(3)

2K(2)2

)
− k2

2K(2)

)
(17)
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We can see in the idea of the proof that as opposed to the Saddle-point approximation for the tail
Q (Xz (t) ≥ m0) , the Large deviation approximation basically uses the Saddle-point information at
all points Q (Xz (t) = m0 + k) and not only at m0. The approximation for the tail Q (Xz (t) ≥ m0) is
consequently more accurate than for the Saddle-point, which in fact diverge if we use higher orders.

When m0 < E (Xz (t)) we get the upper tail via the lower tail : Q (Xz (t) ≥ m0) = 1−Q (Xz (t) ≤ m0 − 1) .

6.3 Computation of the call on loss E (Lz (t)− l0)+

The computation of the call on loss E (Lz (t)− l0)+ is straightforward. We have to consider 2 cases:

• If l ≥ E (Lz (t)) and θ̂ being the Saddle-point at l0 :

E (Lz (t)− l0)+ = Q (Lz (t) = l0)
n−l0∑

k=0

k. exp

(
−k

(
θ̂ +

K(3)

2K(2)2

)
− k2

2K(2)

)

• if l0 < E (Lz (t)) : In that case, we compute the Saddle-point θ̂ at µl = E (Lz (t)) and we cut the
integral in 2 parts :

I1 = Q (Lz (t) = µl)
n−µl∑

k=0

(µl + k − l0) . exp

(
−k

(
θ̂ +

K(3)

2K(2)2

)
− k2

2K(2)

)

I2 = Q (Lz (t) = µl)
µl−l0∑

k=1

(µl − k − l0) . exp

(
k

(
θ̂ +

K(3)

2K(2)2

)
− k2

2K(2)

)

E (Lz (t)− l0)+ = I1 + I2

7 Numerical results
We consider an homogeneous portfolio of 100 names. If the default intensity is su�ciently large, to highlight
the di�erences in the distribution we obtain ( intensity is 1000 bps) :
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 # default recursion saddle point Large Deviation Normal proxy Jarow Rudd
13 0.06217 0.06196 0.06070 0.06726 0.06134
14 0.04063 0.04048 0.04000 0.04235 0.04031
15 0.02450 0.02440 0.02424 0.02374 0.02471
16 0.01369 0.01363 0.01359 0.01185 0.01410
17 0.00711 0.00708 0.00708 0.00527 0.00742
18 0.00345 0.00343 0.00344 0.00208 0.00356
19 0.00157 0.00156 0.00156 0.00073 0.00154
20 0.00067 0.00066 0.00067 0.00023 0.00060
21 0.00027 0.00027 0.00027 0.00006 0.00021
22 0.00010 0.00010 0.00010 0.00002 0.00006
23 0.00004 0.00004 0.00004 0.00000 0.00002
24 0.00001 0.00001 0.00001 0.00000 0.00000
25 0.00000 0.00000 0.00000 0.00000 0.00000
26 0.00000 0.00000 0.00000 0.00000 0.00000
27 0.00000 0.00000 0.00000 0.00000 0.00000
28 0.00000 0.00000 0.00000 0.00000 0.00000

Comparison of loss distributions based on different tails approximations

The densities are very close to each other. The distribution is plotted for the number of defaults in [13,22].
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Probability density of the loss distribution

 

 
density via recursion
density via saddle point
density via Large deviations
density via Normal proxy
density via Edgeworth exp.

Now we compare the performance of each numerical method : the Saddle-point approximation (at order
2 and 4), the Large deviation approximation, the Normal proxy, the Edgeworth expansion (at order 3 and 4)
with the recursion method, considered here as the benchmark numerical method. The portfolio considered
is homogeneous:

15



• Number of names = 100;

• Recovery = 0%;

• Individual spread = 50bps, without term structure;

• Risk free rate = 0%;

• Maturity of the Tranche swaps is 5Y, quarterly payments;

• Computed expected loss = 2,49%

• Model: Gaussian copula with various �at correlations called �rho�.

We consider 7 levels of correlation {2%, 10%, 20%, 30%; 50%; 60%; 70%} that largely includes the current
levels of base correlations for the liquid credit indices (iTraxx, CDX etc.). The tranches considered span the
entire capital structure from very thin equity to senior tranches.

We �nd the following tranche spreads:
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  rho = 2% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 2,994.0 2,123.6 1,596.7 755.8 289.5 181.8 107.6 34.9 25.9 5.5 1.5 0.7 0.1 
Saddle Point 2 2,915.4 2,083.5 1,578.8 754.4 303.7 197.0 117.4 39.4 29.3 6.3 1.7 0.9 0.1 
Saddle Point 4 2,945.5 2,106.7 1,589.9 764.1 295.4 187.2 111.2 36.8 27.3 5.9 1.6 0.8 0.1 

Large Dev 3,620.2 2,264.2 1,630.6 557.5 219.7 144.1 87.1 30.9 23.1 5.1 1.4 0.7 0.1 
Normal 2,934.7 2,133.6 1,611.8 810.0 295.6 176.8 101.4 27.3 19.8 3.2 0.7 0.3 0.0 

Jarrow-Rudd 3 2,912.7 2,097.5 1,587.3 773.4 300.8 191.3 113.3 36.8 27.2 5.4 1.4 0.6 0.1 
Jarrow-Rudd 4 2,833.5 2,076.8 1,579.1 784.1 304.1 195.4 116.3 39.1 28.9 5.8 1.5 0.7 0.1 

rho = 10% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 2,322.1 1,733.6 1,366.6 718.0 367.8 282.1 198.9 118.2 99.2 51.1 28.6 22.6 10.1 
Saddle Point 2 2,270.0 1,713.0 1,357.1 727.6 374.6 288.0 203.2 121.0 101.6 52.5 29.4 23.2 10.4 
Saddle Point 4 2,291.1 1,722.6 1,361.9 725.6 371.8 285.3 201.2 119.5 100.3 51.7 28.9 22.8 10.3 

Large Dev 2,763.2 1,869.2 1,418.7 585.3 309.2 240.7 171.3 103.7 87.2 45.4 25.6 20.4 9.3 
Normal 2,293.2 1,733.8 1,370.5 741.0 372.7 283.6 198.8 116.5 97.5 49.7 27.6 21.7 9.7 

Jarrow-Rudd 3 2,273.3 1,717.8 1,360.4 732.4 374.4 287.0 202.2 119.9 100.6 51.7 28.9 22.8 10.2 
Jarrow-Rudd 4 2,186.6 1,694.1 1,353.1 759.9 385.5 294.5 206.6 121.5 101.7 51.8 28.8 22.6 10.1 

rho = 20% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 1,774.2 1,381.1 1,128.5 644.2 385.9 320.5 248.0 177.8 157.7 104.6 73.0 63.9 40.0 
Saddle Point 2 1,742.1 1,368.7 1,122.5 653.0 390.6 324.3 250.8 179.5 159.0 105.4 73.7 64.3 40.3 
Saddle Point 4 1,754.8 1,374.0 1,125.2 650.2 388.7 322.6 249.5 178.8 158.5 105.1 73.3 64.1 40.2 

Large Dev 2,090.1 1,496.6 1,182.5 550.2 339.5 283.8 222.0 161.8 143.9 96.3 67.5 59.2 37.6 
Normal 1,757.8 1,379.3 1,129.2 656.0 389.0 322.0 248.7 177.7 157.4 104.2 72.6 63.5 39.7 

Jarrow-Rudd 3 1,745.3 1,371.3 1,124.2 654.3 390.1 323.5 250.2 179.0 158.7 105.2 73.4 64.2 40.2 
Jarrow-Rudd 4 1,679.6 1,354.2 1,118.8 683.0 399.5 329.5 253.8 180.6 159.9 105.5 73.4 64.2 40.1 

rho = 30% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 1,386.9 1,113.5 933.5 568.4 373.1 322.4 262.6 204.4 186.2 137.4 105.4 95.8 68.5 
Saddle Point 2 1,366.3 1,105.6 929.4 575.1 376.2 325.0 264.4 205.4 187.3 138.4 105.7 96.0 68.8 
Saddle Point 4 1,374.1 1,108.7 931.2 573.0 375.1 323.9 263.6 205.0 186.8 137.7 105.6 96.0 68.7 

Large Dev 1,615.6 1,207.6 981.8 501.3 337.3 293.1 240.9 189.9 173.2 129.2 99.3 89.8 65.7 
Normal 1,376.3 1,111.5 933.4 575.7 375.3 323.6 263.2 204.5 186.3 137.3 105.2 95.7 68.4 

Jarrow-Rudd 3 1,368.4 1,106.9 930.5 575.7 376.1 324.5 264.1 205.3 187.0 137.8 105.7 96.1 68.7 
Jarrow-Rudd 4 1,321.7 1,094.8 926.5 599.8 383.4 329.1 266.9 206.5 188.0 138.2 105.8 96.2 68.7 

rho = 50% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 855.0 719.7 627.2 425.1 313.8 283.7 245.6 208.2 195.5 160.5 135.3 127.6 103.5 
Saddle Point 2 845.9 715.5 625.6 429.4 315.8 284.3 246.3 209.1 195.8 160.6 136.1 128.3 103.0 
Saddle Point 4 849.1 717.3 626.0 427.6 314.8 284.5 246.2 208.6 195.8 160.7 135.4 127.7 103.6 

Large Dev 982.3 780.2 661.8 388.3 291.9 265.2 232.2 199.7 185.9 151.2 130.6 123.8 99.3 
Normal 849.9 718.2 626.7 428.4 314.9 284.5 246.1 208.5 195.7 160.6 135.3 127.6 103.5 

Jarrow-Rudd 3 846.7 716.5 625.6 428.9 315.3 284.8 246.4 208.7 195.9 160.8 135.5 127.7 103.6 
Jarrow-Rudd 4 823.9 710.4 623.4 443.1 319.4 287.4 248.1 209.5 196.6 161.1 135.6 127.8 103.7 

rho = 60% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 659.1 566.3 501.9 357.5 276.1 253.8 224.7 196.0 185.9 158.0 137.4 131.1 110.7 
Saddle Point 2 652.1 564.1 500.4 360.9 277.2 255.2 225.3 195.9 185.7 158.2 138.2 131.9 110.3 
Saddle Point 4 655.1 564.7 501.0 359.4 276.9 254.3 225.1 196.3 186.2 158.1 137.5 131.2 110.8 

Large Dev 755.4 613.4 530.7 330.4 259.1 237.4 213.0 189.0 178.0 150.4 133.5 127.9 108.3 
Normal 655.5 565.2 501.4 359.8 276.9 254.3 225.0 196.2 186.1 158.2 137.3 130.9 110.7 

Jarrow-Rudd 3 653.5 564.1 500.7 360.2 277.1 254.5 225.3 196.5 186.3 158.1 137.5 131.2 110.8 
Jarrow-Rudd 4 638.2 560.0 499.1 370.2 280.1 256.6 226.5 197.0 186.8 158.5 137.5 131.1 110.9 

rho = 70% 
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14% 

Recursion 492.2 431.7 389.0 291.5 235.0 219.4 198.0 176.9 169.2 148.0 132.8 128.2 112.3 
Saddle Point 2 488.8 429.7 387.8 292.3 236.7 221.3 198.4 175.7 168.7 148.9 133.5 128.8 112.1 
Saddle Point 4 489.6 430.7 388.4 292.8 235.5 219.8 198.3 177.1 169.4 148.1 132.9 128.3 112.3 

Large Dev 1,018.2 756.9 618.9 263.2 214.9 203.5 182.1 160.9 154.2 135.9 122.4 118.1 102.5 
Normal 489.7 430.8 388.7 293.1 235.4 219.4 198.4 177.6 169.8 148.1 132.4 127.7 112.4 

Jarrow-Rudd 3 488.6 430.3 388.2 293.3 235.7 220.0 198.5 177.2 169.4 148.1 133.0 128.4 112.3 
Jarrow-Rudd 4 479.5 427.2 387.4 299.8 237.8 220.4 199.3 178.3 170.2 148.0 132.6 128.0 112.6 

As we can see the tranches [0%, 2%] , [0%, 3%] , [0%, 4%] and [2%, 4%] have a spread that is monotonically
decreasing function of correlation : those are the equity tranches for the basket considered while the next
tranche [3%, 6%] is the �rst mezzanine. The other tranches are senior mezzanine and senior tranches.

In the next table, we give the relative error, for each numerical method, between the spread and the
benchmark, in percentage, i.e. tranche spread - �recursion tranche spread�

�recursion tranche spread� . The code for the colors is the following:

• green color: tranche spread relative error is smaller than 1%

• blue color: tranche spread relative error is between 1% and 4%

• red color: tranche spread relative error is greater than 20%
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We compute the Saddle-point at order 2 and 4, Edgeworth at order 3 and 4 and the Large deviation
expansions.

 rho = 2%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 2.6% 1.9% 1.1% 0.2% 4.9% 8.3% 9.0% 13.0% 13.2% 14.6% 15.0% 15.2% 15.4%
Saddle Point 4 1.6% 0.8% 0.4% 1.1% 2.1% 2.9% 3.3% 5.4% 5.6% 7.4% 8.3% 8.9% 10.1%

Large Dev 20.9% 6.6% 2.1% 26.2% 24.1% 20.7% 19.1% 11.4% 11.0% 6.5% 4.9% 4.0% 2.7%
Normal 2.0% 0.5% 0.9% 7.2% 2.1% 2.8% 5.8% 21.6% 23.4% 41.0% 50.5% 56.8% 68.4%

Jarrow-Rudd 3 2.7% 1.2% 0.6% 2.3% 3.9% 5.2% 5.2% 5.6% 5.1% 1.0% 7.2% 12.4% 25.3%
Jarrow-Rudd 4 5.4% 2.2% 1.1% 3.7% 5.0% 7.5% 8.1% 12.0% 11.6% 5.8% 2.0% 8.6% 25.1%

rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 2.2% 1.2% 0.7% 1.3% 1.9% 2.1% 2.2% 2.4% 2.5% 2.7% 2.6% 2.7% 2.7%
Saddle Point 4 1.3% 0.6% 0.3% 1.1% 1.1% 1.1% 1.1% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%

Large Dev 19.0% 7.8% 3.8% 18.5% 15.9% 14.7% 13.9% 12.3% 12.0% 11.2% 10.4% 9.4% 8.4%
Normal 1.2% 0.0% 0.3% 3.2% 1.3% 0.5% 0.1% 1.4% 1.6% 2.8% 3.5% 3.9% 4.7%

Jarrow-Rudd 3 2.1% 0.9% 0.5% 2.0% 1.8% 1.7% 1.6% 1.5% 1.4% 1.3% 1.1% 1.1% 0.9%
Jarrow-Rudd 4 5.8% 2.3% 1.0% 5.8% 4.8% 4.4% 3.9% 2.8% 2.6% 1.4% 0.5% 0.2% 0.9%

rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.8% 0.9% 0.5% 1.4% 1.2% 1.2% 1.1% 1.0% 0.9% 0.8% 0.9% 0.7% 0.8%
Saddle Point 4 1.1% 0.5% 0.3% 0.9% 0.7% 0.7% 0.6% 0.5% 0.5% 0.5% 0.4% 0.4% 0.4%

Large Dev 17.8% 8.4% 4.8% 14.6% 12.0% 11.5% 10.5% 9.0% 8.7% 8.0% 7.6% 7.2% 5.9%
Normal 0.9% 0.1% 0.1% 1.8% 0.8% 0.5% 0.3% 0.1% 0.2% 0.4% 0.5% 0.6% 0.7%

Jarrow-Rudd 3 1.6% 0.7% 0.4% 1.6% 1.1% 1.0% 0.9% 0.7% 0.7% 0.6% 0.5% 0.5% 0.4%
Jarrow-Rudd 4 5.3% 1.9% 0.9% 6.0% 3.5% 2.8% 2.3% 1.6% 1.4% 0.9% 0.6% 0.5% 0.2%

rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.5% 0.7% 0.4% 1.2% 0.8% 0.8% 0.7% 0.5% 0.6% 0.7% 0.4% 0.3% 0.3%
Saddle Point 4 0.9% 0.4% 0.2% 0.8% 0.5% 0.5% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%

Large Dev 16.5% 8.4% 5.2% 11.8% 9.6% 9.1% 8.3% 7.1% 7.0% 6.0% 5.7% 6.2% 4.2%
Normal 0.8% 0.2% 0.0% 1.3% 0.6% 0.4% 0.3% 0.1% 0.0% 0.1% 0.1% 0.1% 0.2%

Jarrow-Rudd 3 1.3% 0.6% 0.3% 1.3% 0.8% 0.7% 0.6% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2%
Jarrow-Rudd 4 4.7% 1.7% 0.8% 5.5% 2.8% 2.1% 1.7% 1.1% 1.0% 0.6% 0.4% 0.4% 0.2%

rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.1% 0.6% 0.3% 1.0% 0.6% 0.2% 0.3% 0.4% 0.2% 0.1% 0.6% 0.6% 0.5%
Saddle Point 4 0.7% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%

Large Dev 14.9% 8.4% 5.5% 8.7% 7.0% 6.5% 5.5% 4.1% 4.9% 5.8% 3.5% 2.9% 4.1%
Normal 0.6% 0.2% 0.1% 0.8% 0.4% 0.3% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%

Jarrow-Rudd 3 1.0% 0.4% 0.3% 0.9% 0.5% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 3.6% 1.3% 0.6% 4.2% 1.8% 1.3% 1.0% 0.6% 0.6% 0.4% 0.2% 0.2% 0.2%

rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.1% 0.4% 0.3% 0.9% 0.4% 0.6% 0.3% 0.1% 0.1% 0.2% 0.6% 0.6% 0.3%
Saddle Point 4 0.6% 0.3% 0.2% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%

Large Dev 14.6% 8.3% 5.8% 7.6% 6.1% 6.5% 5.2% 3.6% 4.2% 4.8% 2.8% 2.4% 2.2%
Normal 0.5% 0.2% 0.1% 0.6% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0%

Jarrow-Rudd 3 0.8% 0.4% 0.2% 0.7% 0.4% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 3.2% 1.1% 0.5% 3.5% 1.5% 1.1% 0.8% 0.5% 0.5% 0.3% 0.1% 0.0% 0.2%

rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 0.7% 0.5% 0.3% 0.3% 0.7% 0.9% 0.2% 0.7% 0.3% 0.6% 0.5% 0.5% 0.2%
Saddle Point 4 0.5% 0.2% 0.2% 0.4% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%

Large Dev 106.9% 75.3% 59.1% 9.7% 8.6% 7.2% 8.1% 9.1% 8.9% 8.2% 7.9% 7.9% 8.6%
Normal 0.5% 0.2% 0.1% 0.5% 0.2% 0.0% 0.2% 0.4% 0.3% 0.0% 0.3% 0.4% 0.1%

Jarrow-Rudd 3 0.7% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.6% 1.0% 0.4% 2.8% 1.2% 0.5% 0.6% 0.8% 0.6% 0.0% 0.1% 0.1% 0.3%

We can see that equity tranches, i.e. �in the money� tranches relative to the current expected loss
(2.49%) are very well approximated with the normal proxy and whatever the correlation level. The Saddle-
point method is very robust, even for those equity tranches. But the large deviation approximation performs
better for very senior tranches. On the other hand, it tends to give very bad results for equity tranches.

The most robust methods seems to be the Jarrow-Rudd approximation at order 4, except for very low
correlations.
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Those results could be anticipated, given that the Saddle-point is a good approximation in the tail of the
loss distribution, as well as the large deviation approximations. The observed robustness is more surprising
for the equity tranches.

Other quantities are plotted in the last appendix: spread sensitivity (PV01), expected loss (tranche
protection) and their relative errors with respect to the recursion.

8 Conclusion
In this paper, we compute higher order expansions for the Saddle-point and the Jarrow-Rudd methods applied
to the loss distribution of a credit portfolio. We give the formula for the call on loss, which is necessary to
feed the CDO tranches formula. We also propose an alternative numerical method based on large deviation
approximations. In the light of the numerical results, we can say that the Saddle-point approximation and
the Edgeworth approximation at order 4 are both robust, i.e. give good results whatever the seniority of
the tranche. On the other hand the normal proxy should not be used to price senior tranches and the
large deviations approximations should be used on the contrary only for the pricing of such tranches. Those
results can be naturally applied to other "deterministic products" such as zero CDOs or CDO squares. The
bene�t of the Jarrow-Rudd approximation being its simplicity of implementation, its non dependance of the
loss granularity and sign (short CDS could be considered here too and stochastic recoveries as well) and its
non-dependency on a Saddle-point root to be found, makes it the fastest and most natural candidate to use
for pricing, at least, vanilla index tranches.
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9 Appendix

A Inversion formula
We recall brie�y the inversion of the Fourier Transform for X =

∑n
i=1 Xi and Xi are independent binomial

distributions with E (Xi) = pi

M (θ) = E
[
eθX

]
=

n∑

k=0

κk exp (θk)

so for any j ∈ {0, ..., n}
M

(
2πij

n + 1

)
=

n∑

k=0

κk exp
(

2πikj

n + 1

)

as we have:
n∑

k=0

exp
(

2πikj

n + 1

)
=

exp (2πij)− 1

exp
(

2πij
n+1

)
− 1

= (n + 1) δ0 (j) =
{

0 if j 6= 0
n + 1 if j = 0

then we have the inversion formula:

κk =
1

n + 1

n∑

j=0

M

(
2πij

n + 1

)
exp

(
−2πijk

n + 1

)

Note that this is of the order (n + 1)2 in term of algorithmic complexity compared with (n + 1) ln (n + 1)
if we use FFT. The only issue with FFT is that n must be a power of 2 so we have to round it to the next
power of 2.

B Useful integrals

We use the same notations as in [3] for Jk (m, ξ0) = 1
2πi

∫ ξ0+i∞
ξ0−i∞

e
1
2 m(ξ−ξ0)2

ξk dξ :





J0 (m, ξ0) = 1√
2πm

J1 (m, ξ0) = sign (ξ0) e
1
2
mξ2

0N (−√m |ξ0|)
J2 (m, ξ0) =

√
m
2π −m |ξ0| e 1

2
mξ2

0N (−√m |ξ0|)

Note that by integration by parts we have:

nJn+1 (m, ξ0) = m (Jn−1 (m, ξ0)− ξ0Jn (m, ξ0))

We have by recursion for Ik = 1√
2π

∫ +∞
−∞ xke−

x2

2 dx :
{

I2n = 1√
2π

∫ +∞
−∞ x2ne−

x2

2 dx = (2n−1)!
2n−1(n−1)!

I2n+1 = 0
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As a consequence: ∫ +∞

−∞
x2ne−

x2

2
mdx =

√
2π

mn+ 1
2

(2n− 1)!
2n−1 (n− 1)!

and for any θ̂ and c > 0 let de�ne:

cn (m) ∆=
1

2iπ

∫ c+i∞

c−i∞

(
θ − θ̂

)n
e

(θ−θ̂)2

2
mdθ

We have c2n+1 (m) = 0 and:

c2n (m) =
1

2iπ

∫ θ̂+i∞

θ̂−i∞

(
θ − θ̂

)2n
e

(θ−θ̂)2

2
mdθ =

(−1)n

√
2πmn+ 1

2

(2n− 1)!
2n−1 (n− 1)!

More precisely:

• 2n = 0 : c0 (m) = 1
2iπ

∫ c+i∞
c−i∞ e

(θ−θ̂)2

2
mdθ = 1√

2πm

• 2n = 2 : c2 (m) = 1
2iπ

∫ c+i∞
c−i∞

(
θ − θ̂

)2
e

(θ−θ̂)2

2
mdθ = − 1√

2πm.m

• 2n = 4 : c4 (m) = 1
2iπ

∫ c+i∞
c−i∞

(
θ − θ̂

)4
e

(θ−θ̂)2

2
mdθ = 3√

2πm.m2

• 2n = 6 : c6 (m) = 1
2iπ

∫ c+i∞
c−i∞

(
θ − θ̂

)6
e

(θ−θ̂)2

2
mdθ = − 15√

2πm.m3

• 2n = 8 : c8 (m) = 1
2iπ

∫ c+i∞
c−i∞

(
θ − θ̂

)8
e

(θ−θ̂)2

2
mdθ = 105√

2πm.m4

Let de�ne:

dn (m) ∆=
1

2iπ

∫ θ̂+i∞

θ̂−i∞
θne

(θ−θ̂)2

2
mdθ

Unlike c2n+1 (m) the values of d2n+1 (m) are not trivial. We easily compute the �rst 8 terms:

• d0 (m) = c0 (m) = 1√
2πm

• d1 (m) = c0 (m) θ̂ = 1√
2πm

θ̂

• d2 (m) = c2 (m) + c0 (m) θ̂2 = 1√
2πm

(
− 1

m + θ̂2
)

• d3 (m) = 3c2 (m) θ̂ + c0 (m) θ̂3 = 1√
2πm

(
− 3

m θ̂ + θ̂3
)

• d4 (m) = c4 (m) + 6c2 (m) θ̂2 + c0 (m) θ̂4 = 1√
2πm

(
3

m2 − 6
m θ̂2 + θ̂4

)

• d5 (m) = 5c4 (m) θ̂ + 10c2 (m) θ̂3 + c0 (m) θ̂5 = 1√
2πm

(
15
m2 − 10

m θ̂3 + θ̂5
)
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• d6 (m) = c6 (m) + 15c4 (m) θ̂2 + 15c2 (m) θ̂4 + c0 (m) θ̂6 = 1√
2πm

(
− 15

m3 + 45
m2 θ̂2 − 15

m θ̂4 + θ̂6
)

• d7 (m) = 7c6 (m) θ̂ + 35c4 (m) θ̂3 + 21c2 (m) θ̂5 + c0 (m) θ̂7 = 1√
2πm

(
−105

m3 θ̂ + 105
m2 θ̂3 − 21

m θ̂5 + θ̂7
)

• d8 (m) = c8 (m) + 28c6 (m) θ̂2 + 70c4 (m) θ̂4 + 28c2 (m) θ̂6 + c0 (m) θ̂8

= 1√
2πm

(
105
m4 − 420

m3 θ̂2 + 210
m2 θ̂4 − 28

m θ̂6 + θ̂8
)

Note �nally that: 5! = 120 ; 6! = 720 ; 7! = 5040 and 8! = 40320.

C Computation of the cumulants derivatives
C.1 Cumulants of Xz (t)

In the Large deviation approximation case, the sum in k given by and are numerically intensive so we need
to be able to compute K

z,(2)
t

(
θ̂
)

,K
z,(3)
t

(
θ̂
)
and K

z,(4)
t

(
θ̂
)
very quickly. We de�ne qi = 1− pi, p̂i = pie

θ̂

qi+pieθ̂

and q̂i = 1− p̂i. As a consequence we compute

∂p̂i

∂θ
= p̂iq̂i = p̂i − p̂2

i

∂q̂i

∂θ
= −p̂iq̂i = p̂2

i − p̂i

and by derivation
∂p̂iq̂i

∂θ
= p̂iq̂i (q̂i − p̂i) = 2p̂3

i − 3p̂2
i + p̂i

by derivation again of the products

∂p̂iq̂i (q̂i − p̂i)
∂θ

= p̂iq̂i (q̂i − p̂i)
2 + p̂iq̂i (−p̂iq̂i − p̂iq̂i)

noting that q̂i = 1− p̂i we have ∂p̂iq̂i(q̂i−p̂i)
∂θ = p̂iq̂i

(
1− 6p̂i + 6p̂2

i

)
so �nally

∂p̂iq̂i (q̂i − p̂i)
∂θ

= p̂iq̂i (1− 6p̂iq̂i)
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we get

Kz
t

(
θ̂
)

=
n∑

i=1

ln
(
1− pi + pie

θ̂
)

K
z,(1)
t

(
θ̂
)

=
n∑

i=1

p̂i

K
z,(2)
t

(
θ̂
)

=
n∑

i=1

p̂i (1− p̂i) =
n∑

i=1

{
p̂i − p̂2

i

}

K
z,(3)
t

(
θ̂
)

=
n∑

i=1

p̂iq̂i (1− 2p̂i) =
n∑

i=1

{
p̂i − 3p̂2

i + 2p̂3
i

}

K
z,(4)
t

(
θ̂
)

=
n∑

i=1

p̂iq̂i (1− 6p̂iq̂i) =
n∑

i=1

{
p̂i − 7p̂2

i + 12p̂3
i − 6p̂4

i

}

and

K
z,(5)
t

(
θ̂
)

=
n∑

i=1

{
p̂i − 15.p̂2

i + 50.p̂3
i − 60.p̂4

i + 24.p̂5
i

}

K
z,(6)
t

(
θ̂
)

=
n∑

i=1

{
p̂i − 31.p̂2

i + 180.p̂3
i − 390.p̂4

i + 360.p̂5
i − 120.p̂6

i

}

K
z,(7)
t

(
θ̂
)

=
n∑

i=1

{
p̂i − 63.p̂2

i + 602.p̂3
i − 2100.p̂4

i + 3360.p̂5
i − 2520.p̂6

i + 720.p̂7
i

}

K
z,(8)
t

(
θ̂
)

=
n∑

i=1

{
p̂i − 127.p̂2

i + 1932.p̂3
i − 10206.p̂4

i + 25200.p̂5
i − 31920.p̂6

i + 20160.p̂7
i − 5040.p̂8

i

}

so we only need to generate vectors (p̂i)i=1,n and (p̂iq̂i)i=1,n .

Note that

Kz
t (0) = 0

K
z,(1)
t (0) =

n∑

i=1

pi = EZ (Xz (t))

C.2 Cumulants of Lz (t)

Note that for the loss process Lz (t) the formula are very similar:

p̂i =
pie

aiθ̂

qi + pieaiθ̂
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and

Kz
t

(
θ̂
)

=
n∑

i=1

ln
(
1− pi + pie

aiθ̂
)

K
z,(1)
t

(
θ̂
)

=
n∑

i=1

aip̂i

K
z,(2)
t

(
θ̂
)

=
n∑

i=1

a2
i p̂i (1− p̂i)

K
z,(3)
t

(
θ̂
)

=
n∑

i=1

a3
i p̂iq̂i (1− 2p̂i)

...

C.3 Relation between Cumulants and Moments
For a given θ̂ let de�ne the Esscher transform, i.e. the change of measure X 7−→ X eθ̂L

E(eθ̂L)
as in 33 and Ê the

associated expectation, i.e. Ê (X) =
E
�
Xeθ̂L

�
E(eθ̂L)

. Then we can see that for Lz (t) (and Xz (t)) we have:

K(1)
(
θ̂
)

= Ê (L)

K(2)
(
θ̂
)

=
∧

V ar (L) = Ê
(
L2

)− Ê (L)2

= Ê

((
L− Ê (L)

)2
)

K(3)
(
θ̂
)

= Ê
(
L3

)− Ê (L) Ê
(
L2

)− 2Ê (L)
∧

V ar (L)

= Ê
(
L3

)− 3Ê (L) Ê
(
L2

)
+ 2Ê (L)3

= Ê

((
L− Ê (L)

)3
)

K(4)
(
θ̂
)

=
∧

V ar (L)
(
6Ê (L)2 − 3Ê

(
L2

))

−3Ê (L)
(
Ê

(
L3

)− Ê (L) Ê
(
L2

))

+Ê
(
L4

)− Ê (L) Ê
(
L3

)

= Ê
(
L4

)− 4Ê (L) Ê
(
L3

)− 3Ê
(
L2

)2 + 12Ê
(
L2

)
Ê (L)2 − 6Ê (L)4

= Ê

((
L− Ê (L)

)4
)
− 3

∧
V ar (L)2

So the relationship between the transformed cumulants K(i)
(
θ̂
)
and transformed moments Ê

(
Li

)
is inde-

pendent of θ̂ : i.e. it is an invariant under the Esscher transform.
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C.4 Moments of a Normal variable struck at K

Let µi = E
(
Xi

)
=

∫ +∞
K xiφ (x) dx with X a normal variable, centered with unit variance, φ given by (1) :

µ0 =
∫ +∞

K
φ (x) dx = N (−K)

µ1 =
∫ +∞

K
xφ (x) dx = φ (K)

µ2 =
∫ +∞

K
x2φ (x) dx = Kφ (K) +N (−K)

µ3 =
∫ +∞

K
x3φ (x) dx =

(
K2 + 2

)
φ (K)

µ4 =
∫ +∞

K
x4φ (x) dx =

(
K3 + 3K

)
φ (K) + 3N (−K)

µ5 =
∫ +∞

K
x5φ (x) dx =

(
8 + 4K2 + K4

)
φ (K)

If the variable X is N
(
µ, σ2

)
let K̃ = K−µ

σ :

µ̃i = E
(
Xi

)
=

1
σ

∫ +∞

K
xi1φ

(
x− µ

σ

)
dx

=
∫ +∞

K̃
(σz + µ)i φ (z) dz

so
µ̃0 = N

(
−K̃

)

µ̃1 = σφ
(
K̃

)
+ µN

(
−K̃

)

µ̃2 =
(
2µσ + σ2K̃

)
φ

(
K̃

)
+

(
µ2 + σ2

)N
(
−K̃

)

µ̃3 =
(
3µ2σ + 2σ3 + 3µσ2K̃ + σ3K̃2

)
φ

(
K̃

)
+

(
3σ2µ + µ3

)N
(
−K̃

)

µ̃4 =
(
4µ3σ + 8µσ3 +

(
3σ4 + 6σ2µ2

)
K̃ + 4σ3µK̃2 + σ4K̃3

)
φ

(
K̃

)

+
(
3σ4 + 6σ2µ2 + µ4

)N
(
−K̃

)

C.5 Cumulants of a Normal variable
Let X ∼ N

(
µ, σ2

)
then we have an explicit formula for K (θ) . It is actually a polynomial of degree 2. So

we already know that cumulants of higher orders ( larger than 3) are null :

K (θ) = µθ +
1
2
θ2σ2

K(1) (θ) = µ + θσ2

K(2) (θ) = σ2 = V ar (X)
K(i) (θ) = 0 for i ≥ 3
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D Residue Theorem applied to the Saddle-point
We recall here the Residue theorem. Given an analytic function f(z) , there is locally around z0 ∈ C a
unique Laurent series given by f(z) = Σn∈Zan (z − z0)

n . If we integrate on a closed contour enclosing z0 ,
with interior Ω, then

∫

~γ
f =

−2∑
n=−∞

an

∫

~γ
(z − z0)

n + a−1

∫

~γ

1
(z − z0)

+
+∞∑

n=0

an

∫

~γ
(z − z0)

n

The Cauchy integral theorem requires that the �rst and last terms vanish, so we have:
∫

~γ
f = a−1

∫

~γ

1
(z − z0)

= 2iπa−1

If the contour ~γ encloses multiple poles, then the theorem gives the general result:
∫

~γ
f = 2iπ

∑

x∈P ôles(Ω)

Res (f, x)

x is in P ôles(Ω) if z 7−→ (z − x)k f (z) can be extended by continuity at x for some k ∈ N. The residue
at x for f is noted Res(f, x) and is the coe�cient a−1 associated to the Laurent series of f around x.

Example 1: if f (z) = P (z)
Q(z) with P (a) = Q (a) = 0 but Q′ (a) 6= 0 then Res(f, a) = P (a)

Q′(a) otherwise we
can do a limited development of f around a.

Example 1: if f (z) = a
(z−1)2

+ b
(z−1) + c

(z−2i) and ~γ enclosed z = 1 and z = 2i then
∫

~γ
f = 2iπ (b + c)

E Loss Recursion
We recall the general recursion described in [1], to compute both the number of defaults and the loss
distribution recursively. The recursion technic described here is very powerful, as it gives the whole loss and
number of defaults distribution. It is also very accurate and much faster than FFT. The formula described
here are a bit di�erent from those in Jacob's Risk paper.

Note also that the performance of the method in practice is very strongly dependant on the level of the
implementation.

E.1 Computation of the Number of defaults distribution
Suppose that we have a basket of n names and their default correlation in zero. Let XT =

∑n
i=1 1{τi<T} for

a �xed T. The survival probability of the kth to default , with k ∈ {1, ..., n} , is:

QkthTD
0,T = Q (XT = 0) + Q (XT = 1) + ... + Q (XT = k − 1)

We want to compute the number of defaults distribution for the portfolio, i.e. we want to compute
accurately the probability Q (XT = k) for each k ∈ {0, ..., n} . The only quantities we know are the qi =
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Q (τi > T ), i.e. the survival probability for each issuer i. Note that if qi = q for all i, then it is trivial, we
have a multinomial distribution (mixture of independent iid binomial distributions) :

Q (XT = k) = Ck
nqn−k (1− q)k

The idea in the general case where the qi are not the same, is to compute the Q (k, l) recursively, where
Q (k, l) is the probability that the portfolio made of issuers {1, ..., k} has exactly l defaults (0 ≤ l ≤ k).

Example :

• k = 0 names in portfolio: Q (k = 0, l = 0) = 1;

• k = 1 names in portfolio:

Q (k = 1, l = 0) = q1 no default from issuer 1;
Q (k = 1, l = 1) = 1− q1 one default from issuer 1;

• k = 2 names in portfolio:

Q (k = 2, l = 0) = q1q2 no default from issuer 1 and 2;
Q (k = 2, l = 1) = (1− q1) q2 + (1− q2) q1 one default from issuer 1 OR one default from issuer 2;
Q (k = 2, l = 2) = (1− q1) (1− q2) one default from issuer 1 AND one default from issuer 2;

• ...and so on.
Now let make it more general : let suppose we already know Q (k, l) for l = 0, ..., k.

In order to compute Q (k + 1, l) , from Q (k, l − 1) there are 2 possible outcomes:
either one name in the sub basket {1, ..., k} defaults : so we have l defaults with probability Q (k, l) ;
or no name in the sub basket {1, ..., k} defaults : so the defaults come from the new name added to the

basket {k + 1} and its probability of defaulting is (1− qk+1) .
Finally: 




Q (0, 0) = 1
Q (k, 0) = q1q2...qk for k ∈ {1, n}
Q (k, k) = (1− q1) (1− q2) ... (1− qk) for k ∈ {1, n}

and recursively for l ∈ {1, ..., k} and 1 < k < n.:

Q (k + 1, l) = Q (k, l) .qk+1 + Q (k, l − 1) . (1− qk+1)

E.2 Computation of the Loss distribution
Let suppose that each "ordered" name can lose wi for i ∈ {1, ..., n} then the relation above is modi�ed. wi

must be an integer, i.e. a granularity adjustment should be done. It is also necessary to order the
names in the following order : wi ≤ wi+1. We also suppose w1 > 0 otherwise this name can be removed
from the basket (this can occur if the granularity is not small enough).

The loss accumulated a at time T for the entire portfolio is:

LT =
n∑

i=1

wi1{τi<T}
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Let Q (k, l) be the probability that the loss Lk
T =

∑k
i=1 wi1{τi<T} is exactly l for a basket of k names. Note

that the expected loss is E
(
Lk

T

)
=

∑k
i=1 wi (1− qi) and the "max loss" is lossk =

∑k
i=1 wi. The general

formula is:




Q (0, 0) = 1
Q (k, 0) = q1q2...qK for k ∈ {1, ..., n}
Q (k, lossk) = (1− q1) (1− q2) ... (1− qk) for k ∈ {1, ..., n}

We have a jump between l = 1 and l = w1 as the loss is either 0 or w1 :
{

Q (1, l) = 0 for l ∈ {1, ...w1 − 1}
Q (1, w1) = 1− q1

Given that Q (k, l) = 0 if l < 0 and that the loss coming from name (k + 1) is wk+1, we have by recursion

for the (k + 1)−names portfolio, for l ∈ {0, ..., lossk} and 1 ≤ k < n :

Q (k + 1, l) ≡ (k + 1) does not defaultQ (k, l) .qk+1︸ ︷︷ ︸ + (k + 1) defaultsQ (k, l − wk+1) . (1− qk+1)︸ ︷︷ ︸
in other words for 1 ≤ k < n :




Q (k + 1, l) ≡ (k + 1) does not defaultQ (k, l) .qk+1︸ ︷︷ ︸ for l ∈ {0, ..., wk+1 − 1}
Q (k + 1, wk+1) ≡ (k + 1) does not defaultQ (k, l) .qk+1︸ ︷︷ ︸ + (k + 1) defaultsq1q2...qk (1− qk+1)︸ ︷︷ ︸
Q (k + 1, l) ≡ (k + 1) does not defaultQ (k, l) .qk+1︸ ︷︷ ︸ + Q (k, l − wk+1) . (1− qk+1) forl ∈ {wk+1 + 1, ..., lossk}

and for l ∈ {lossk + 1, ..., lossk+1 − 1} and 1 ≤ k < n :

Q (k + 1, l) = 0.

F Higher order Saddle-point expansions
By convention we write K(i) for K

z,(i)
t

(
θ̂
)
for any i > 0, and we de�ne ∆ =

(
θ − θ̂

)

F.1 Expansion for the density of Xz (t) ∼ 4th, 6th and 8th order expansion
Let θ̂ be the Saddle-point. We develop Kz

t (θ) up to the order 8 around the Saddle-point θ̂. Using Appendix-B
results we have:

Kz
t (θ)− θm0 (18)

= Kz
t

(
θ̂
)
− θ̂m0 +

∆2K(2)

2
+

∆3K(3)

6
+

∆4K(4)

24

+
∆5K(5)

120
+

∆6K(6)

720
+

∆7K(7)

5040
+

∆8K(8)

40320
+ o

(
∆8

)
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So using the fact the eu = 1 + u + u2

2 + u3

6 + o
(
u3

)
:

eKz
t (θ)−θm0 = eKz

t (θ̂)−θ̂m0×e
1
2
∆2K(2)×





1 + K(3)

6 ∆3 + K(4)

24 ∆4 + K(5)

120 ∆5 +
(

K(6)

720 + K(3)2

72

)
∆6

+
(

K(7)

5040 + K(3)K(4)

144

)
∆7 +

(
K(8)

40320 + K(4)2

1152 + K(3)K(5)

720

)
∆8 + o

(
∆8

)





(19)
In the expectation the odd terms vanish so we only consider coe�cients of ∆2,∆4, ∆6 and ∆8 :

eKz
t (θ)−θm0 = eKz

t (θ̂)−θ̂m0 × e
1
2
∆2K(2) ×





1 + K(4)

24 ∆4 +
{

K(6)

720 + K(3)2

72

}
∆6

+
{

K(8)

40320 + K(4)2

1152 + K(3)K(5)

720

}
∆8

+
∑
n<3

∆2n+1αn + o
(
θ − θ̂

)8





Note that terms in K(1)K(7) do not appear as K(1) is not in the sum from the beginning.
Integrating over [c− i∞; c + i∞] and using the de�nition of ck

(
K

z,(2)
t

)
in Appendix-B gives:

1
2iπ

∫ c+i∞

c−i∞
eKz

t (θ)−θm0dθ ' eKz
t (θ̂)−θ̂m0 ×





c0

(
K(2)

)
+ K(4)

24 c4

(
K(2)

)
+

(
K(6)

720 + K(3)2

72

)
c6

(
K(2)

)

+
(

K(8)

40320 + K(4)2

1152 + K(3)K(5)

720

)
c8

(
K(2)

)





So for n > 1, an 2nth order expansion of eKz
t (θ̂)−θ̂m0 around θ̂ is equivalent to series in 1

K(2) in power(
1

K(2)

)n
:

Q8th
(Xz (t) = m0) ' eKz

t (θ̂)−θ̂m0 × 1√
2πK(2)

×




1 + K(4)

8K(2)2 −
{

K(6)

48 + 5K(3)2

24

}
1

K(2)3

+
{

K(8)

384 + 35K(4)2

384 + 7K(3)K(5)

48

}
1

K(2)4





F.2 Expansion for the tail of Q (Xz (t) ≥ m0) ∼ 4th and 6th order expansion
As for the quadratic approximation, we have to take into account the fact that θ̂ may be positive or negative.

When it is positive, then:

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ =

1
2iπ

∫ θ̂+i∞

θ̂−i∞

eKz
t (θ)−θm0

θ
dθ

otherwise:
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ = 1 +

1
2iπ

∫ θ̂+i∞

θ̂−i∞

eKz
t (θ)−θm0

θ
dθ

Let suppose θ̂ > 0 then expanding Kz
t (θ)−θm0 around θ̂ to order 6 as is and using eu = 1+u+ u2

2 +o
(
u2

)
we �nd:

eKz
t (θ)−θm0 = eKz

t (θ̂)−θ̂m0 × e
1
2
∆2K(2) × (20){

1 +
K(3)

6
∆3 +

K(4)

24
∆4 +

K(5)

120
∆5 +

(
K(6)

720
+

K(3)2

72

)
∆6 + o

(
∆6

)
}
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Now we expand ∆k =
(
θ − θ̂

)k
and factorize in θ :

eKz
t (θ)−θm0 = eKz

t (θ̂)−θ̂m0 × e
1
2
∆2K(2) ×

(
6∑

k=0

αkθ
k + o

(
∆6

)
)

(21)

with αk and K(k) = K
z,(k)
t

(
θ̂
)
are functions of θ̂ only (not θ):

• α0 = 1− 1
6K(3)θ̂3 + 1

24K(4)θ̂4 − 1
120K(5)θ̂5 + 1

720K(6)θ̂6 + 1
72K(3)2θ̂6

• α1 = 1
2K(3)θ̂2 − 1

6K(4)θ̂3 + 1
24K(5)θ̂4 − 1

120K(6)θ̂5 − 1
12K(3)2θ̂5

• α2 = −1
2K(3)θ̂ + 1

4K(4)θ̂2 − 1
12K(5)θ̂3 + 1

48K(6)θ̂4 + 5
24K(3)2θ̂4

• α3 = 1
6K(3) − 1

6K(4)θ̂ + 1
12K(5)θ̂2 − 1

36K(6)θ̂3 − 5
18K(3)2θ̂3

• α4 = 1
24K(4) − 1

24K(5)θ̂ + 1
48K(6)θ̂2 + 5

24K(3)2θ̂2

• α5 = 1
120K(5) − 1

120K(6)θ̂ − 1
12K(3)2θ̂

• α6 = 1
720K(6) + 1

72K(3)2

Then dividing by θ and Integrating on ]− i∞, +i∞[ gives

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ

' eKz
t (θ̂)−θ̂m0 ×

{
α0J1

(
K(2), θ̂

)
+ α1J0

(
K(2), θ̂

)
+ α2d1

(
K(2)

)
+ α3d2

(
K(2)

)
... + α6d5

(
K(2)

)}

where Jk (., .) and dk (.) are given in Appendix-B.
A simpli�cation and factorization �nally gives for θ̂ > 0 :

Q (Xz (t) ≥ m0) =
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ

' eKz
t (θ̂)−θ̂m0e

1
2
K(2)θ̂2N

(
−

√
K(2)θ̂

)
×

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
− K(5)θ̂5

120
+

(
K(6)

720
+

K(3)2

72

)
θ̂6

}

+
eKz

t (θ̂)−θ̂m0

72
√

2π
(
K(2)

) 5
2

×





3K(2)
(
1− θ̂2K(2)

)(
θ̂K(4) − 4K(3) + θ̂2

5

(
θ̂K(6)

6 −K(5)
))

−θ̂K(3)2.
(
18− θ̂2K(2) + θ̂4K(2)2

)

+9K(5)

5 + K(6)
(

3
2 − 9θ̂

5

)
+ 15K(3)2




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The general formula for θ̂ ∈ R is:

Q6th
(Xz (t) ≥ m0)

' 1{θ̂≤0} + sign
(
θ̂
)

eKz
t (θ̂)−θ̂m0 × e

1
2
K(2)θ̂2N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)
×

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
− K(5)θ̂5

120
+

(
K(6)

720
+

K(3)2

72

)
θ̂6

}

+
eKz

t (θ̂)−θ̂m0

72
√

2π
(
K(2)

) 5
2

×





3K(2)
(
1− θ̂2K(2)

) [
θ̂K(4) − 4K(3) + θ̂2

5

(
θ̂K(6)

6 −K(5)
)]

−θ̂K(3)2.
(
18− θ̂2K(2) + θ̂4K(2)2

)

+9K(5)

5 + K(6)
(

3
2 − 9θ̂

5

)
+ 15K(3)2





Note that a 4th order expansion is given by the following result:

eKz
t (θ)−θm0 = eKz

t (θ̂)−θ̂m0 × e
1
2
∆2K(2) ×

(
4∑

k=0

βkθ
k + o

(
∆4

)
)

(22)

with:

• β0 = 1− 1
6K3θ

3
0 + 1

24K4θ
4
0

• β1 = 1
2K3θ

2
0 − 1

6K4θ
3
0

• β2 = −1
2K3θ0 + 1

4K4θ
2
0

• β3 = 1
6K3 − 1

6K4θ0

• β4 = 1
24K4

so:

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θm0

θ
dθ

' eKz
t (θ̂)−θ̂m0 ×

{
β0J1

(
K(2), θ̂

)
+ β1J0

(
K(2), θ̂

)
+ β2d1

(
K(2)

)
+ β3d2

(
K(2)

)
+ β4d3

(
K(2)

)}

Then

Q4th
(Xz (t) ≥ m0)

' 1{θ̂≤0} +sign
(
θ̂
)

eKz
t (θ̂)−θ̂m0e

1
2
K(2)θ̂2N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)(

1− K(3)θ̂3

6
+

K(4)θ̂4

24

)

+
eKz

t (θ̂)−θ̂m0

24
√

2π
(
K(2)

) 3
2

(
1− θ̂2K(2)

) (
θ̂K(4) − 4K(3)

)
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F.3 Expansion for the call on Loss E (Lz (t)− l0)+ ∼ 4th and 6th order expansion
The call on loss for θ > 0 is given by :

E (Lz (t)− l0)+ =
1

2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ

and more generally:

E (Lz (t)− l0)+ ' 1{θ̂≤0}.
(
EZ (Lz (t))− l0

)
+ eKz

t (θ̂)−θ̂l0 × Skth

with Skth given below.
Using again we have

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ ' eKz

t (θ̂)−θ̂l0S6th

We compute the sum S6th :

S6th = α0J2

(
K(2), θ̂

)
+ α1J1

(
K(2), θ̂

)
+ α2J0

(
K(2), θ̂

)
+ α3d1

(
K(2)

)
+ α4d2

(
K(2)

)

+α5d3

(
K(2)

)
+ α6d4

(
K(2)

)

more precisely:

S6th = θ̂2sign
(
θ̂
)
N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
K(3)

2
− K(4)θ̂

6
+

K(5)θ̂2

24
− K(6)θ̂3

120
− K(3)2θ̂3

12

}

−
∣∣∣θ̂

∣∣∣ K(2)N
(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24
− K(5)θ̂5

120
+

K(6)θ̂6

720
+

K(3)2θ̂6

72

}

+
1√

2πK(2) 5
2





K(2)2θ̂
(
−K(3)

3 + K(4)θ̂
8 − K(5)θ̂2

30 + K(6)θ̂3

144 + 5K(3)2θ̂3

72

)

+K(2)
(
−K(4)

24 + K(5)θ̂
60 − K(6)θ̂2

240 − K(3)2θ̂2

24

)

+K(2)3
(
1− K(3)θ̂3

6 + K(4)θ̂4

24 − K(5)θ̂5

120 + K(6)θ̂6

720 + K(3)2θ̂6

72

)

+K(6)

240 + K(3)2

24





A development at order 4 leads to:

1
2iπ

∫ c+i∞

c−i∞

eKz
t (θ)−θl0

θ2
dθ ' eKz

t (θ̂)−θ̂l0S4th

with:
S4th = β0J2

(
K(2), θ̂

)
+ β1J1

(
K(2), θ̂

)
+ β2J0

(
K(2), θ̂

)
+ β3d1

(
K(2)

)
+ β4d2

(
K(2)

)
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more precisely:

S4th = θ̂2sign
(
θ̂
)
N

(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
K(3)

2
− K(4)θ̂

6

}

−
∣∣∣θ̂

∣∣∣K(2)N
(
−

√
K(2)

∣∣∣θ̂
∣∣∣
)

e
1
2
K(2)θ̂2

{
1− K(3)θ̂3

6
+

K(4)θ̂4

24

}

+
1√

2πK(2) 3
2

{
K(2)2 − K(4)

24
+ K(2)θ̂

(
−K(3)

3
+

K(4)θ̂

8
− K(2)K(3)θ̂2

6
+

K(2)K(4)θ̂3

24

)}

G Large Deviation Approximations
We extend the proof in [9] by computing higher order terms in the Taylor expansions.

The idea is to �nd, for a given m0 and a given positive k , a relation between qk = Q (Xz (t) = m0 + k)
and q0 = Q (Xz (t) = m0) . For that we are going to exploit the properties of the Saddle-point at m0 + k.
More precisely let de�ne θ̂ and θ̂k the solutions of :

K(1)
(
θ̂
)

= m0 (23)

K(1)
(
θ̂k

)
= m0 + k

and
∆k = θ̂k − θ̂

For sake of clarity let de�ne :
K(j)

(
θ̂
)

:= Kj

Basically, we are going to express ∆k as a function of the cumulants of Xz (t) at point m0. In [9] we already
assume that we have an approximation of qk given by Daniel's formula. Consequently:

qk =
eK(θ̂k)−(m0+k)θ̂k

√
2πK(2)

(
θ̂k

)





1 +
K(4)

(
θ̂k

)

8K(2)
(
θ̂k

)2 −
5K(3)

(
θ̂k

)2

24K(2)
(
θ̂k

)3





so

ln
qk

q0
= K

(
θ̂k

)
−K

(
θ̂
)
−

{
(m0 + k) θ̂k −m0θ̂

}
(24)

−1
2

{
lnK(2)

(
θ̂k

)
− ln K(2)

(
θ̂
)}

(25)

+ ln





1 +
K(4)

(
θ̂k

)

8K(2)
(
θ̂k

)2 −
5K(3)

(
θ̂k

)2

24K(2)
(
θ̂k

)3





− ln





1 +
K(4)

(
θ̂
)

8K(2)
(
θ̂
)2 −

5K(3)
(
θ̂
)2

24K(2)
(
θ̂
)3




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Now we have to express everything in term of k and θ̂. The Taylor expansions in ∆k are stopped after k = 3
as we will see, even order k = 2 is accurate enough.

Computation of ∆k : Using 23 we get

K(1)
(
θ̂k

)
−K(1)

(
θ̂
)

= k

and with a Taylor expansion of K(1)
(
θ̂k

)
around θ̂ up to order 3,we get

K(1)
(
θ̂k

)
−K(1)

(
θ̂
)
≈ ∆kK2 +

∆2
k

2
K3 +

∆3
k

6
K4

so
∆kK2 +

∆2
k

2
K3 +

∆3
k

6
K4 ≈ k

and
∆k ≈ k

K2
− K3

2K2
∆2

k −
K4

6K2
∆3

k (26)

and ∆k can be expressed recursively as a function of k, k2...by re-injection k
K2

in ∆2
k and ∆3

k the previous

equation:
∆k ≈ 1

K2
k − K2

3

2K3
2

k2 +
(

K2
3

2K5
2

− K4

6K4
2

)
k3 (27)

we now have a relationship between the Saddle-point θ̂k, θ̂ and the cumulants (Kj)j=2,4 . Note that we could
easily go further in the development but as we can see numerically order 3 is su�cient.

Computation of (m0 + k) θ̂k −m0θ̂ : We have θ̂k = θ̂+ ∆k so

(m0 + k) θ̂k −m0θ̂ = (m0 + k)∆k + kθ̂ (28)

Computation of K
(
θ̂k

)
−K

(
θ̂
)

: We compute K
(
θ̂k

)
−K

(
θ̂
)
using a Taylor expansion at order 3 in

∆k :

K
(
θ̂k

)
−K

(
θ̂
)

≈ ∆kK1 +
1
2
∆2

kK2 +
1
6
∆3

kK3 (29)

≈ ∆km0 +
1
2
∆2

kK2 +
1
6
∆3

kK3

Computation of ln K(2)
(
θ̂k

)
− ln K(2)

(
θ̂
)

We have again by developing around θ̂ :

lnK(2)
(
θ̂k

)
− ln K(2)

(
θ̂
)

≈ K3

K2
∆k +

1
2

(
K4

K2
−

(
K3

K2

)2
)

∆2
k (30)

+
1
6

(
K5

K2
− 3

K4K3

K2
2

+ 2
K3

3

K3
2

)
∆3

k (31)
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Computation of ln
{

1 +
K(4)(θ̂k)

8K(2)(θ̂k)2 − 5K(3)(θ̂k)2

24K(2)(θ̂k)3

}
Note that g

(
θ̂
)

=
K(4)(θ̂)

8K(2)(θ̂)2 − 5K(3)(θ̂)2

24K(2)(θ̂)3 is already the
residue of an expansion so is very small. We can write

ln
{

1 + g
(
θ̂k

)}
− ln

{
1 + g

(
θ̂
)}

≈
g′

(
θ̂
)

1 + g
(
θ̂
)∆k (32)

≈ g′
(
θ̂
)(

1− g
(
θ̂
))

∆k +
1
2
g′′

(
θ̂
)

∆2
k

with

g
(
θ̂
)

=
K4

8K2
2

− 5K2
3

24K3
2

g′
(
θ̂
)

=
K5

8K2
2

− 2K3K4

3K3
2

+
5K3

3

8K4
2

g
′′ (

θ̂
)

=
K6

8K2
2

− 2K2
4

3K3
2

− 11K3K5

12K3
2

+
31K2

3K4

8K4
2

− 5K4
4

2K5
2

Computation of ln qk
q0

:power in 1

Kj
2

up to j = 2 only Using the approximation (27) we have ∆k ≈ k
K2

.

Replacing ∆k in the formulas (28) (29) (30) we (32) �nally have if we retain only terms in 1
K2

and 1

Kj
2

:

ln
qk

q0
≈ −kθ̂ − 1

2K2
k2 − K3

2K2
k

so the relation between the density Q (Xz (t) = m0 + k) and Q (Xz (t) = m0) is �nally:

Q (Xz (t) = m0 + k) = Q (Xz (t) = m0) exp
(
−k

(
θ̂ +

K3

2K2

)
− 1

2K2
k2

)

G.1 Higher order expansions:
Order 2: The previous result consist in expanding the polynomial in k2 but to use ∆k ≈ k

K2
. We can re�ne

the result with higher order terms in 1

Kj
2

by replacing ∆k with (27) in (28) (29) (30) . We �nally �nd:

Q (Xz (t) = m0 + k) = Q (Xz (t) = m0) exp
(
a1k + a2k

2
)

with

a1 = −θ − 1
2

K3

K2
2

+
1
8

K5

K3
2

− 2
3

K3K4

K4
2

+
5
8

K3
3

K5
2

a2 = −1
2

1
K2

− 1
4

K4

K3
2

+
(

1
4
K2

3 +
1
4
K3

3

)
1

K4
2

− 5
16

K5
3

K7
2

− 1
16

K2
3K5

K5
2

+
1
3

K3
3K4

K6
2
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Order 3: If we go up to order k3, we have to rewrite (27) :

∆k =
1

K2
k − (K3)

2

2 (K2)
3 k2 +

(
(K3)

2

2 (K2)
5 −

K4

6K4
2

)
k3

and also (32) :

ln
{

1 + g
(
θ̂k

)}
− ln

{
1 + g

(
θ̂
)}

≈ g1∆ +
1
2
g2∆2

with

g1 =
K5

8K2
2

− 2K3K4

3K3
2

+
5K3

3

8K4
2

g2 =
K6

8K2
2

− 2K2
4

3K3
2

− 11K3K5

12K3
2

+
31K2

3K4

8K4
2

− 5K4
4

2K5
2

and (30) :

lnK(2)
(
θ̂k

)
− ln K(2)

(
θ̂
)
≈ −1

2

(
K3

K2
∆ +

1
2

(
K4

K2
− (K3)

2

(K2)
2

)
∆2 +

1
6

(
K5

K2
− 3

K4K3

K2
2

+ 2
K3

3

K3
2

)
∆3

)

We then �nd by expanding in k :

Q (Xz (t) = m0 + k) = Q (Xz (t) = m0) exp
(
b1k + b2k

2 + b3k
3
)

with
b1 = −θ − 1

2
K3

K2
2

+
1
8

K5

K3
2

− 2
3

K3K4

K4
2

+
5
8

K3
3

K5
2

b2 = −1
2

1
K2

− 1
4

K4

K3
2

+
(

1
16

K6 +
1
4
K2

3 +
1
4
K3

3

)
1

K4
2

−
(

11
24

K3K5 +
1
3
K2

4 +
1
16

K2
3K5

)
1

K5
2

+
(

31
16

K2
3K4 +

1
3
K3

3K4

)
1

K6
2

−
(

5
16

K5
3 +

5
4
K4

4

)
1

K7
2

b3 =
1
6

K3

K3
2

− 1
12

K5

K4
2

+
(

1
3
K3K4 +

1
4
K2

3K4

)
1

K5
2

−
(

1
48

K4 +
5
12

K3
3 +

1
4
K4

3 +
1
16

K2
3K6

)
1

K6
2

+
(

1
9
K3K

2
4 +

1
16

K2
3K5 +

11
24

K3
3K5 +

1
3
K2

3K2
4

)
1

K7
2

−
(

7
16

K3
3K4 +

31
16

K4
3K4

)
1

K8
2

+
(

5
16

K5
3 +

5
4
K2

3K4
4

)
1

K9
2
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H Additional numerical results
The spreads di�erences reported in the part Numerical results are based on a portfolio of 100 names with
identical recovery (= 0) and identical spread (= 50bps). The tranches maturity is 5Y and with assume zero
discounting rate. The tranches expected loss computed for those tranches is given by the following table:

 rho = 2%

tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%
Recursion 73.5% 62.2% 52.2% 30.8% 12.9% 8.2% 4.9% 1.6% 1.2% 0.3% 0.1% 0.0% 0.0%

Saddle Point 2 72.9% 61.4% 51.7% 30.6% 13.5% 8.9% 5.4% 1.8% 1.4% 0.3% 0.1% 0.0% 0.0%
Saddle Point 4 73.0% 61.9% 52.0% 31.1% 13.1% 8.5% 5.1% 1.7% 1.3% 0.3% 0.1% 0.0% 0.0%

Large Dev 82.6% 65.3% 53.1% 23.6% 9.9% 6.6% 4.0% 1.4% 1.1% 0.2% 0.1% 0.0% 0.0%
Normal 72.2% 62.2% 52.5% 32.9% 13.2% 8.0% 4.6% 1.3% 0.9% 0.1% 0.0% 0.0% 0.0%

Jarrow-Rudd 3 72.5% 61.7% 51.9% 31.3% 13.3% 8.7% 5.2% 1.7% 1.3% 0.3% 0.1% 0.0% 0.0%
Jarrow-Rudd 4 72.1% 61.5% 51.8% 31.5% 13.4% 8.8% 5.3% 1.8% 1.3% 0.3% 0.1% 0.0% 0.0%

rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 63.5% 53.9% 46.2% 28.9% 16.0% 12.5% 8.9% 5.4% 4.5% 2.4% 1.3% 1.0% 0.5%
Saddle Point 2 62.7% 53.5% 45.9% 29.2% 16.2% 12.7% 9.1% 5.5% 4.6% 2.4% 1.4% 1.1% 0.5%
Saddle Point 4 63.0% 53.7% 46.1% 29.1% 16.1% 12.6% 9.0% 5.4% 4.6% 2.4% 1.3% 1.1% 0.5%

Large Dev 71.0% 57.0% 47.6% 24.2% 13.6% 10.7% 7.7% 4.7% 4.0% 2.1% 1.2% 0.9% 0.4%
Normal 62.8% 53.9% 46.3% 29.7% 16.2% 12.5% 8.9% 5.3% 4.5% 2.3% 1.3% 1.0% 0.4%

Jarrow-Rudd 3 62.7% 53.6% 46.0% 29.4% 16.2% 12.7% 9.1% 5.5% 4.6% 2.4% 1.3% 1.1% 0.5%
Jarrow-Rudd 4 61.6% 53.1% 45.9% 30.1% 16.7% 13.0% 9.3% 5.5% 4.6% 2.4% 1.3% 1.0% 0.5%

rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 53.6% 45.8% 39.8% 26.0% 16.5% 13.9% 11.0% 8.0% 7.1% 4.8% 3.3% 2.9% 1.8%
Saddle Point 2 53.0% 45.5% 39.6% 26.2% 16.7% 14.1% 11.1% 8.1% 7.2% 4.8% 3.4% 3.0% 1.9%
Saddle Point 4 53.3% 45.7% 39.7% 26.2% 16.6% 14.0% 11.0% 8.0% 7.1% 4.8% 3.4% 2.9% 1.9%

Large Dev 60.0% 48.7% 41.3% 22.7% 14.7% 12.4% 9.9% 7.3% 6.5% 4.4% 3.1% 2.7% 1.7%
Normal 53.2% 45.8% 39.8% 26.4% 16.7% 14.0% 11.0% 8.0% 7.1% 4.7% 3.3% 2.9% 1.8%

Jarrow-Rudd 3 53.1% 45.6% 39.7% 26.3% 16.7% 14.1% 11.1% 8.0% 7.1% 4.8% 3.4% 2.9% 1.9%
Jarrow-Rudd 4 51.9% 45.2% 39.5% 27.2% 17.1% 14.3% 11.2% 8.1% 7.2% 4.8% 3.4% 2.9% 1.8%

rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 45.4% 39.0% 34.3% 23.1% 15.9% 13.9% 11.5% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Saddle Point 2 44.9% 38.8% 34.1% 23.3% 16.0% 14.0% 11.6% 9.1% 8.4% 6.2% 4.8% 4.4% 3.1%
Saddle Point 4 45.1% 38.9% 34.2% 23.3% 16.0% 14.0% 11.6% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%

Large Dev 50.7% 41.6% 35.7% 20.7% 14.5% 12.8% 10.6% 8.5% 7.8% 5.8% 4.5% 4.1% 3.0%
Normal 45.1% 39.0% 34.2% 23.4% 16.0% 14.0% 11.5% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%

Jarrow-Rudd 3 45.0% 38.9% 34.2% 23.4% 16.0% 14.0% 11.6% 9.1% 8.3% 6.2% 4.8% 4.4% 3.1%
Jarrow-Rudd 4 44.0% 38.5% 34.0% 24.1% 16.3% 14.2% 11.7% 9.2% 8.4% 6.2% 4.8% 4.4% 3.1%

rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 31.6% 27.6% 24.7% 17.7% 13.5% 12.3% 10.7% 9.2% 8.7% 7.2% 6.1% 5.7% 4.7%
Saddle Point 2 31.4% 27.5% 24.6% 17.9% 13.6% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
Saddle Point 4 31.5% 27.5% 24.6% 17.8% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%

Large Dev 35.3% 29.5% 25.8% 16.4% 12.6% 11.5% 10.2% 8.8% 8.3% 6.8% 5.9% 5.6% 4.5%
Normal 31.5% 27.6% 24.7% 17.8% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.7% 4.7%

Jarrow-Rudd 3 31.4% 27.5% 24.6% 17.9% 13.5% 12.3% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%
Jarrow-Rudd 4 30.7% 27.3% 24.6% 18.4% 13.7% 12.4% 10.8% 9.2% 8.7% 7.2% 6.1% 5.8% 4.7%

rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 25.6% 22.6% 20.4% 15.1% 11.9% 11.0% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%
Saddle Point 2 25.4% 22.5% 20.3% 15.3% 12.0% 11.1% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%
Saddle Point 4 25.5% 22.5% 20.3% 15.2% 12.0% 11.1% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%

Large Dev 28.7% 24.2% 21.4% 14.1% 11.3% 10.4% 9.4% 8.4% 7.9% 6.7% 6.0% 5.8% 4.9%
Normal 25.5% 22.5% 20.4% 15.2% 12.0% 11.1% 9.9% 8.7% 8.2% 7.1% 6.2% 5.9% 5.0%

Jarrow-Rudd 3 25.4% 22.5% 20.3% 15.2% 12.0% 11.1% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%
Jarrow-Rudd 4 24.9% 22.4% 20.3% 15.6% 12.1% 11.2% 9.9% 8.7% 8.3% 7.1% 6.2% 5.9% 5.0%

rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 20.0% 17.8% 16.3% 12.5% 10.3% 9.6% 8.7% 7.8% 7.5% 6.6% 6.0% 5.8% 5.1%
Saddle Point 2 19.9% 17.7% 16.2% 12.6% 10.3% 9.7% 8.7% 7.8% 7.5% 6.7% 6.0% 5.8% 5.1%
Saddle Point 4 19.9% 17.8% 16.2% 12.6% 10.3% 9.6% 8.7% 7.9% 7.5% 6.6% 6.0% 5.8% 5.1%

Large Dev 39.2% 30.3% 25.3% 11.4% 9.4% 9.0% 8.1% 7.2% 6.9% 6.1% 5.5% 5.3% 4.6%
Normal 19.9% 17.8% 16.2% 12.6% 10.3% 9.6% 8.7% 7.9% 7.5% 6.6% 5.9% 5.7% 5.1%

Jarrow-Rudd 3 19.8% 17.8% 16.2% 12.6% 10.3% 9.6% 8.8% 7.9% 7.5% 6.6% 6.0% 5.8% 5.1%
Jarrow-Rudd 4 19.5% 17.7% 16.2% 12.9% 10.4% 9.7% 8.8% 7.9% 7.6% 6.6% 6.0% 5.8% 5.1%
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The expected loss relative di�erence with the recursion (in percentage) for each tranche is given by:

 rho = 2%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 0.9% 1.2% 0.9% 0.8% 4.5% 8.0% 8.8% 12.9% 13.1% 14.6% 14.9% 15.2% 17.1%
Saddle Point 4 0.8% 0.5% 0.3% 0.7% 1.9% 2.8% 3.2% 5.4% 5.5% 7.4% 8.2% 9.0% 12.2%

Large Dev 12.4% 5.1% 1.8% 23.5% 23.4% 20.4% 18.9% 11.4% 10.9% 6.5% 4.9% 4.1% 2.4%
Normal 1.8% 0.0% 0.7% 6.6% 2.3% 2.5% 5.6% 21.6% 23.3% 41.0% 50.5% 56.9% 68.3%

Jarrow-Rudd 3 1.4% 0.8% 0.5% 1.7% 3.6% 5.1% 5.2% 5.6% 5.1% 0.9% 7.4% 12.2% 24.4%
Jarrow-Rudd 4 1.9% 1.1% 0.7% 2.1% 4.3% 7.0% 7.8% 12.0% 11.5% 5.8% 2.0% 8.5% 24.4%

rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.1% 0.8% 0.5% 0.9% 1.6% 1.9% 2.0% 2.3% 2.4% 2.6% 2.6% 2.7% 2.7%
Saddle Point 4 0.7% 0.4% 0.3% 0.8% 1.0% 1.0% 1.1% 1.1% 1.1% 1.2% 1.2% 1.2% 1.2%

Large Dev 11.8% 5.8% 3.1% 16.1% 15.0% 14.1% 13.5% 12.1% 11.9% 11.2% 10.3% 9.4% 8.4%
Normal 1.1% 0.1% 0.2% 2.9% 1.3% 0.6% 0.0% 1.3% 1.6% 2.8% 3.5% 3.9% 4.7%

Jarrow-Rudd 3 1.2% 0.6% 0.4% 1.6% 1.6% 1.6% 1.6% 1.4% 1.4% 1.2% 1.1% 1.1% 0.9%
Jarrow-Rudd 4 2.9% 1.5% 0.7% 4.1% 4.2% 4.0% 3.7% 2.8% 2.5% 1.4% 0.5% 0.2% 0.9%

rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.1% 0.6% 0.4% 1.0% 1.1% 1.1% 1.0% 0.9% 0.8% 0.8% 0.9% 0.7% 0.8%
Saddle Point 4 0.7% 0.4% 0.2% 0.7% 0.6% 0.6% 0.6% 0.5% 0.5% 0.4% 0.4% 0.4% 0.4%

Large Dev 11.9% 6.3% 3.9% 12.7% 11.1% 10.8% 10.0% 8.7% 8.5% 7.8% 7.5% 7.2% 5.9%
Normal 0.8% 0.2% 0.0% 1.6% 0.8% 0.5% 0.3% 0.1% 0.1% 0.4% 0.5% 0.6% 0.7%

Jarrow-Rudd 3 1.0% 0.5% 0.3% 1.3% 1.0% 0.9% 0.8% 0.7% 0.6% 0.5% 0.5% 0.5% 0.4%
Jarrow-Rudd 4 3.2% 1.4% 0.7% 4.6% 3.1% 2.6% 2.2% 1.5% 1.4% 0.9% 0.6% 0.4% 0.2%

rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 1.0% 0.5% 0.3% 0.9% 0.7% 0.7% 0.6% 0.5% 0.6% 0.7% 0.4% 0.2% 0.3%
Saddle Point 4 0.6% 0.3% 0.2% 0.7% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%

Large Dev 11.6% 6.5% 4.2% 10.3% 8.8% 8.5% 7.8% 6.8% 6.7% 5.8% 5.6% 6.1% 4.1%
Normal 0.6% 0.2% 0.0% 1.1% 0.5% 0.4% 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.2%

Jarrow-Rudd 3 0.9% 0.4% 0.3% 1.1% 0.7% 0.6% 0.5% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2%
Jarrow-Rudd 4 3.2% 1.2% 0.6% 4.5% 2.4% 1.9% 1.5% 1.0% 0.9% 0.6% 0.4% 0.4% 0.2%

rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 0.8% 0.5% 0.2% 0.9% 0.6% 0.2% 0.3% 0.4% 0.2% 0.1% 0.6% 0.6% 0.5%
Saddle Point 4 0.5% 0.3% 0.2% 0.5% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%

Large Dev 11.7% 7.0% 4.7% 7.7% 6.4% 6.1% 5.1% 3.8% 4.7% 5.6% 3.4% 2.8% 4.0%
Normal 0.5% 0.2% 0.1% 0.7% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%

Jarrow-Rudd 3 0.8% 0.4% 0.2% 0.8% 0.4% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.8% 1.1% 0.5% 3.7% 1.6% 1.2% 0.9% 0.6% 0.5% 0.4% 0.2% 0.2% 0.2%

rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 0.9% 0.3% 0.2% 0.8% 0.4% 0.5% 0.3% 0.1% 0.1% 0.2% 0.6% 0.6% 0.3%
Saddle Point 4 0.5% 0.2% 0.1% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1%

Large Dev 12.1% 7.1% 5.1% 6.9% 5.7% 6.1% 4.9% 3.3% 4.0% 4.6% 2.7% 2.3% 2.1%
Normal 0.5% 0.2% 0.1% 0.6% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.0% 0.1% 0.0%

Jarrow-Rudd 3 0.7% 0.3% 0.2% 0.7% 0.3% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.6% 0.9% 0.5% 3.1% 1.3% 1.0% 0.8% 0.5% 0.5% 0.3% 0.1% 0.0% 0.2%

rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Saddle Point 2 0.6% 0.4% 0.3% 0.2% 0.7% 0.9% 0.2% 0.7% 0.3% 0.6% 0.5% 0.5% 0.2%
Saddle Point 4 0.5% 0.2% 0.1% 0.4% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%

Large Dev 96.4% 69.9% 55.7% 9.2% 8.2% 6.9% 7.8% 8.8% 8.7% 8.0% 7.7% 7.8% 8.5%
Normal 0.4% 0.2% 0.1% 0.5% 0.2% 0.0% 0.2% 0.4% 0.3% 0.0% 0.3% 0.4% 0.1%

Jarrow-Rudd 3 0.6% 0.3% 0.2% 0.6% 0.3% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%
Jarrow-Rudd 4 2.2% 0.9% 0.4% 2.6% 1.1% 0.4% 0.6% 0.8% 0.6% 0.0% 0.1% 0.1% 0.3%

The PV01 for each tranche is given by:
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 rho = 2%

tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%
Recursion 2.46 2.93 3.27 4.08 4.45 4.53 4.58 4.62 4.62 4.63 4.64 4.64 4.64

Saddle Point 2 2.50 2.95 3.28 4.05 4.43 4.52 4.57 4.62 4.62 4.63 4.64 4.64 4.64
Saddle Point 4 2.48 2.94 3.27 4.07 4.44 4.53 4.57 4.62 4.62 4.63 4.64 4.64 4.64

Large Dev 2.28 2.89 3.26 4.23 4.49 4.55 4.59 4.62 4.63 4.63 4.64 4.64 4.64
Normal 2.46 2.92 3.26 4.06 4.46 4.54 4.58 4.63 4.63 4.64 4.64 4.64 4.64

Jarrow-Rudd 3 2.49 2.94 3.27 4.05 4.44 4.52 4.57 4.62 4.62 4.63 4.64 4.64 4.64
Jarrow-Rudd 4 2.54 2.96 3.28 4.01 4.42 4.51 4.56 4.62 4.62 4.63 4.64 4.64 4.64

rho = 10%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 2.73 3.11 3.38 4.03 4.34 4.42 4.49 4.56 4.57 4.60 4.62 4.62 4.63
Saddle Point 2 2.76 3.12 3.39 4.01 4.33 4.42 4.48 4.55 4.57 4.60 4.62 4.62 4.63
Saddle Point 4 2.75 3.12 3.38 4.02 4.34 4.42 4.49 4.56 4.57 4.60 4.62 4.62 4.63

Large Dev 2.57 3.05 3.36 4.14 4.39 4.46 4.51 4.57 4.58 4.61 4.62 4.62 4.63
Normal 2.74 3.11 3.38 4.01 4.34 4.43 4.49 4.56 4.57 4.61 4.62 4.62 4.63

Jarrow-Rudd 3 2.76 3.12 3.38 4.01 4.34 4.42 4.49 4.55 4.57 4.60 4.62 4.62 4.63
Jarrow-Rudd 4 2.82 3.14 3.39 3.96 4.32 4.41 4.48 4.55 4.57 4.60 4.62 4.62 4.63

rho = 20%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 3.02 3.32 3.53 4.03 4.29 4.35 4.42 4.49 4.51 4.55 4.58 4.59 4.61
Saddle Point 2 3.05 3.33 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4.55 4.58 4.59 4.61
Saddle Point 4 3.04 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4.55 4.58 4.59 4.61

Large Dev 2.87 3.25 3.50 4.12 4.33 4.38 4.44 4.50 4.52 4.56 4.58 4.59 4.61
Normal 3.03 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.51 4.55 4.58 4.59 4.61

Jarrow-Rudd 3 3.04 3.32 3.53 4.02 4.28 4.35 4.42 4.49 4.50 4.55 4.58 4.59 4.61
Jarrow-Rudd 4 3.09 3.34 3.53 3.98 4.27 4.34 4.41 4.48 4.50 4.55 4.58 4.59 4.61

rho = 30%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 3.27 3.51 3.67 4.07 4.27 4.32 4.38 4.45 4.46 4.51 4.54 4.55 4.58
Saddle Point 2 3.29 3.51 3.67 4.06 4.26 4.32 4.38 4.44 4.46 4.51 4.54 4.55 4.58
Saddle Point 4 3.28 3.51 3.67 4.06 4.27 4.32 4.38 4.44 4.46 4.51 4.54 4.55 4.58

Large Dev 3.14 3.44 3.64 4.14 4.31 4.35 4.41 4.46 4.48 4.52 4.55 4.56 4.58
Normal 3.28 3.51 3.67 4.06 4.27 4.32 4.38 4.45 4.46 4.51 4.54 4.55 4.58

Jarrow-Rudd 3 3.29 3.51 3.67 4.06 4.27 4.32 4.38 4.44 4.46 4.51 4.54 4.55 4.58
Jarrow-Rudd 4 3.33 3.52 3.67 4.02 4.26 4.32 4.38 4.44 4.46 4.51 4.54 4.55 4.58

rho = 50%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 3.70 3.84 3.93 4.17 4.30 4.33 4.37 4.42 4.43 4.47 4.50 4.51 4.53
Saddle Point 2 3.71 3.84 3.94 4.16 4.29 4.33 4.37 4.42 4.43 4.47 4.50 4.51 4.53
Saddle Point 4 3.70 3.84 3.94 4.17 4.29 4.33 4.37 4.42 4.43 4.47 4.50 4.51 4.53

Large Dev 3.60 3.79 3.90 4.21 4.32 4.35 4.39 4.43 4.44 4.48 4.50 4.51 4.54
Normal 3.70 3.84 3.93 4.17 4.30 4.33 4.37 4.42 4.43 4.47 4.50 4.51 4.53

Jarrow-Rudd 3 3.71 3.84 3.94 4.17 4.29 4.33 4.37 4.42 4.43 4.47 4.50 4.51 4.53
Jarrow-Rudd 4 3.73 3.85 3.94 4.15 4.29 4.33 4.37 4.41 4.43 4.47 4.50 4.51 4.53

rho = 60%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52
Saddle Point 2 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52
Saddle Point 4 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52

Large Dev 3.80 3.94 4.03 4.26 4.35 4.37 4.40 4.43 4.44 4.47 4.49 4.50 4.52
Normal 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52

Jarrow-Rudd 3 3.89 3.99 4.06 4.23 4.33 4.35 4.39 4.42 4.43 4.46 4.49 4.50 4.52
Jarrow-Rudd 4 3.91 3.99 4.06 4.22 4.32 4.35 4.38 4.42 4.43 4.46 4.49 4.50 4.52

rho = 70%
tranche 0%-2% 0%-3% 0%-4% 2%-4% 3%-6% 4%-6% 4%-8% 6%-8% 6%-9% 8%-10% 9%-12% 10%-12% 12%-14%

Recursion 4.06 4.13 4.18 4.30 4.37 4.39 4.41 4.44 4.44 4.47 4.49 4.49 4.51
Saddle Point 2 4.06 4.13 4.18 4.30 4.37 4.38 4.41 4.44 4.44 4.47 4.49 4.49 4.51
Saddle Point 4 4.06 4.13 4.18 4.30 4.37 4.39 4.41 4.44 4.44 4.47 4.49 4.49 4.51

Large Dev 3.85 4.00 4.09 4.32 4.38 4.40 4.42 4.45 4.45 4.48 4.50 4.50 4.52
Normal 4.06 4.13 4.18 4.30 4.37 4.39 4.41 4.44 4.44 4.47 4.49 4.49 4.51

Jarrow-Rudd 3 4.06 4.13 4.18 4.30 4.37 4.38 4.41 4.44 4.44 4.47 4.49 4.49 4.51
Jarrow-Rudd 4 4.07 4.13 4.18 4.29 4.36 4.38 4.41 4.44 4.44 4.47 4.49 4.49 4.51

This quantity varies less that the spread as a function of the numerical method, as we can expect from a
PV01.
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I The Esscher Transform
The Esscher Transform is more often used in insurance than n Finance. It refers to a paper from F. Esscher, in
1932 (cf. [12]). As quoted in [15], �The Esscher transform was developed to approximate the aggregate claim
amount distribution around a point of interest, x0, by applying an analytic approximation (the Edgeworth
series) to the transformed distribution with a parameter θ chosen such that the new mean is equal to x̂0.
When the Esscher transform is used to calculate a stop-loss premium, the parameter θ is usually determined
by specifying the mean of the transformed distribution as the retention limit.” The Esscher Transform has
an analogy in Finance with the Change of Measure, and the commonly used Change of Numeraire discovered
by H. Geman, N. El Karoui, J.C. Rochet [14].

I.1 General de�nition and analogy with a change of measure
Let suppose that a random variable X has a density function f (x) in a probability space (Ω, F, Ft, Q) . We
de�ne for θ ∈ R:

fθ (x) =
eθxf (x)
M (θ)

and M (θ) = E
(
eθX

)
. (33)

We check easily that
∫

fθ (x) dx = 1. We call fθ the �tilted measure� of X, or Esscher transform of f. Note
that if K (θ) = ln (M (θ)) then fθ (x) = f (x) eθx−K(θ).

When X is Gaussian , its tilted measure is simply the measure of X shifted with a new mean θ.

I.1.1 Example with a process: X is a Brownian motion at time t

Let X = Wt be a Brownian motion at time t. Then M (θ) = e
θ2

2
t and fθ (x) = f (x) eθx− θ2

2
t.We guess

immediately the analogy with the Girsanov theorem: eθx− θ2

2
t is the density of the Radon-Nykodim derivative

from the probability measure Q to the probability measure Q̂, under which Ŵt = Wt − θt is a Brownian
motion. As we have dQ̂

dQFt
= eθWt− θ2

2
tand by applying Bayes' rule:

EQ̂ [φ (Wt)] = EQ

[
φ (Wt)

dQ̂

dQ

]
=

∫
φ (x) f (x) eθx− θ2

2
tdx =

∫
φ (x) fθ (x) dx.

But by Girsanov theorem, we also know that:

EQ̂ [φ (Wt)] = EQ̂
[
φ

(
Ŵt + θt

)]
= EQ [φ (Wt + θt)]

as both Wt and Ŵt are Brownian motions under their respective measures.
So �nally:

EQ [φ (Wt + θt)] =
∫

φ (x) fθ (x) dx

We conclude that fθ (x) is the density of the translated Brownian motion Wt + θt, with mean θt. So fθ (x)
is the measure of the original process translated with θt. Transforming the process into a translated one
is also similar to sampling when dealing with Monte Carlo methods. We will see that the application to
multivariate distribution of the tilted measure turns out to be also a kind of importance sampling for the
N th to default or the Loss process.
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I.1.2 Example with a non-continuous variable : X is a binomial distribution
Let X be a binomial distribution with p = Q (X = 1) . Then we have the following relations:

f (x) = P (X = x) = px (1− p)1−x

M (θ) = E
[
eθX

]
= 1− p + peθ

and the tilted measure is:

fθ (x) =
eθxpx (1− p)1−x

1− p + peθ
=

(
peθ

1− p + peθ

)x (
1− peθ

1− p + peθ

)1−x

=
(
pθ

)x (
1− pθ

)1−x
.

In other words, the tilted measure is the measure of a binomial distribution with parameter pθ = peθ

1−p+peθ .

Note that pθ spans ]0, 1[ as θ spans ]−∞, +∞[ and pθ=0 = p. In our applications, p is close to λT with T a
year fraction and λ the default intensity. So for λ = 100bps then p = 1%. As we can see, θ = 5 is enough to
transform p to pθ = 0, 5.

I.1.3 Example with a non-continuous variable : X is a multinomial distribution
Let now X =

∑N
i=1 Xi with Xi a binomial distribution where Q (Xi = 1) = pi. Thanks to the last example

we have:

M (θ) = E
[
eθX

]
=

N∏

i=1

E
[
eθXi

]
=

N∏

i=1

Mi (θ)

and

K (θ) =
N∑

i=1

lnMi (θ) =
N∑

i=1

ln
(
1− pi + pie

θ
)

=
N∑

i=1

Ki (θ) .

The tilted measure applied to X is the measure of a random variable Xθ. More precisely, for any
measurable function h we have:

E
[
h

(
Xθ

)]
=

∫

(x1,...,xN )∈{0,1}N
h (x1 + ... + xN ) eθ(x1+...+xN )−K(θ)

N∏

i=1

fi (xi) dxi

=
∫

(x1,...,xN )∈{0,1}N
h (x1 + ... + xN )

N∏

i=1

eθxi
fi (xi)
Mi (θ)

dxi

=
∫

(x1,...,xN )∈{0,1}N
h (x1 + ... + xN )

N∏

i=1

fθ
i (xi) dxi

with
fθ

i (xi) =
(
pθ

i

)xi
(
1− pθ

i

)1−xi

and pθ
i =

pie
θ

1− pi + pieθ
.

So we see that the tilted measure of X is a multinomial distribution associated with
(
pθ

i

)
i=1,N

. Then applying
the tilted measure on X is surprisingly equivalent to applying it individually to each Xi. This is quite
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remarkable and comes from the dependence of the Xi. Note that we have:

E [X] =
N∑

i=1

pi and E
[
Xθ

]
=

N∑

i=1

pθ
i

and if we de�ne:
ηk = Q (X = k) and ηθ

k = Q
(
Xθ = k

)

then
ηk = ηθ

k.e
K(θ)−θk

Let de�ne our shift by �xing an arbitrary mean m0 and search for θ̂ such that
∑N

i=1 pθ̂
i = m0 .

Then θ̂ is called Saddle-point associated to the �new mean� m0 because E
[
Xθ

]
= m0. The transformation

from the distribution (pi)i=1,N to the distribution
(
pθ̂

i

)
i=1,N

is called �Esscher Transform� (cf. [12]):

K ′
(
θ̂
)

=
N∑

i=1

pθ̂
i =

N∑

i=1

pie
θ̂

1− pi + pieθ̂
= m0

The new distribution is not centered at the initial E [X] but at m0.Note that K ′ (−∞) = 0+ and that
K ′ (+∞) = Ñ where Ñ is the number of pi strictly positive pi.Said di�erently, Ñ is the maximum number of
defaults that can occur in the portfolio, and K ′

(
θ̂
)
is always smaller or equal to that number. This remark

is important as in the computation of tail probabilities for CDO portfolio, because it can happen that the
conditioning on a state variable Z some pz

i may be null.
As a conclusion, we have seen through 3 examples that the Esscher Transform does "not modify the

nature of the random variable, but just modify its mean" (cf. [13]).

I.2 Application to the pricing of a N th to default swap, using FFT method
In a credit derivatives basket, the number of names n is typical around 125 or more for CDOs and much
smaller for mth

0 -to-defaults. The expected number of defaults implied for the credit curves is usually below
5. So computing the fair spread of a mth

0 -to-default tranche for m0 greater than 5 will usually turn into
numerical imprecision as we reach the machine precision of 10−16. This is a problem that often happens
when one wants to compute the �tail probabilities�. So shifting the counting process mean to a higher mean
will remove this problem.

Let suppose that we want to value a mth
0 -to-default swap and m0 is greater that the expected number of

defaults.
In order to compute the fair spread of a mth

0 to default swap, we need to compute its �xed leg and its
protection leg. We assume that both of those legs expected values are only function of the discount factors
and the survival probabilities of the mth

0 -to-default event. Said di�erently, we only need to compute

Q (X (t) < m0) = κ0 (t) + ... + κm0−1 (t) = 1−Q (X (t) ≥ m0) and κk (t) = Q (X (t) = k)

so we actually only need to compute the tail Q (X (t) ≥ m0) .
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Using the third example in the �rst part �X is a multinomial distribution�, we �rst have to �nd θ̂ such
that

n∑

i=1

pθ̂
i = m0 with pθ̂

i =
pie

θ̂

1− pi + pieθ̂
and pi = Q (τi ≤ t) .

In other words, we shift the mean of the distribution of X (t) to be exactly at m0. We �nd easily θ̂ us-
ing a Newton Raphson algorithm. Using the FFT method, we compute ηθ

k (t) = Q
(
X θ̂ (t) = k

)
for this

transformed Xθ (t) . Finally we back out κk (t) using κk (t) = κθ
k (t) .eθ̂k−K(θ̂).

As the names are independent conditional on the latent variable Z = z we have the survival probability
of the nth tho default basket given by :

Q (X (t) ≥ m0) =
∫ +∞

−∞
Q

(
XZ (t) ≥ m0

)
φ (z) dz

where Q
(
XZ (t) ≥ m0

)
is computed using independent XZ

i .
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