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Abstract. We develop a methodology to optimally design a financial issue to
hedge non-tradable risk on financial markets. Economic agents assess their risk

using monetary risk measure. The inf-convolution of convex risk measures is

the key transformation in solving this optimization problem. When agents’ risk
measures only differ from a risk aversion coefficient, the optimal risk transfer

is amazingly equal to a proportion of the initial risk.

For dynamic risk measures defined through their local specifications using
BSDE’s, their inf-convolution is equivalent to that of their associated drivers.

In this case, it is also possible to characterize the optimal risk transfer.

Introduction

In recent years, a new type of financial instruments (among them, the so-called
“insurance derivatives”) has appeared on financial markets. Even though they
have all the features of financial contracts, they are very different from the classical
structures. Their underlying risk is indeed related to a non-financial risk (natural
catastrophe, weather event...), which may somehow be connected to more tradi-
tional financial risks. Their high level of illiquidity, deriving partly from the fact
that the underlying asset is not traded on financial markets, makes them difficult
to evaluate and to use. Several authors (see, for instance, D. Becherer [Be1], M.
Davis [Da2] or M. Musiela and T. Zariphopoulou [MuZ]) have been interested in
these new products, especially in their pricing. However, neither their impact on
“classical” investments nor their optimal design are mentioned in the literature.
On the other hand, this accrued complexity of financial products has naturally lead
to an increasing interest in quantitative methods of assessing the risk related to a
given financial position.
This paper focuses on these problems in a framework where economic agents may
take positions on two types of risk: a purely financial risk (or market risk) and a
(non-financial) non-tradable risk. The optimal structure of a contract depending
on the non-tradable risk and its price are determined.
Since the structure represents a new diversification instrument for any investor,
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optimal wealth allocation becomes a more complex question and the question of
an efficient quantitative risk assessment becomes crucial. Different authors have
recently been interested in defining and constructing a coherent, in some sense, risk
measure (see, for instance, Artzner et al. [ADEH] or Föllmer and Schied [FS1]),
using a systematic axiomatic approach. The framework developed by these authors
will be that of this study.

This paper is structured as follows: in the first section, after having recalled
some basic properties of convex risk measures, we generate new risk measures as
the inf-convolution of convex risk measures. Then, in the second section, we solve
the problem of an optimal non-tradable risk transfer. In the third section, we
introduce dynamic risk measures defined through their local specifications with the
help of Backward Stochastic Differential Equations in order to propose a method
to characterize completely the optimal structure.

1. Risk transfer and inf-convolution of risk measures

In this section, we first present a general class of risk measures introduced by
Föllmer and Schied ([FS1] and [FS2]). Then, we generate new risk measures as
the inf-convolution of different risk measures. We finally apply these results to
the optimal design of a transaction based on a non-tradable risk. In particular,
we obtain a necessary and sufficient condition to the existence of an optimal risk
transfer.

1.1. Convex risk measures.
1.1.1. Definition and basic properties . We first recall the definition and some

key properties of the convex risk measures introduced by Föllmer and Schied ([FS1]
and [FS2]). In the following, X denotes a linear space of bounded functions in-
cluding constant functions, defined on the measurable space (Ω,F).

Definition 1.1. The functional ρ : X → R is a convex risk measure in the
sense of Föllmer and Schied if, for any X and Y in X , it satisfies the following
properties:
a) Convexity: ∀λ ∈ [0, 1] ρ (λX + (1− λ) Y ) ≤ λρ (X) + (1− λ) ρ (Y );
b) Monotonicity: X ≤ Y ⇒ ρ (X) ≥ ρ (Y );
c) Translation invariance: ∀m ∈ R ρ (X + m) = ρ (X)−m.

Intuitively, ρ (Ψ) may be interpreted as the amount the agent has to hold to
completely cancel the risk associated with her risky position Ψ

ρ (Ψ + ρ (Ψ)) = 0

The risk measure ρ induces a particular set of positions: the acceptance set, Aρ,
defined as the set of all acceptable positions as they carry no positive risk:

(1.1) Aρ = {Ψ ∈ X , ρ (Ψ) ≤ 0}

We now present a key result obtained by Föllmer and Schied [FS2] (Theorem 4.12)
in the following Theorem.

Theorem 1.2. Let M1,f be the set of all additive measures on (Ω,F). Another
formulation of the convex risk measure is given in terms of a penalty function, α (Q)
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taking values in R ∪ {+∞}:

(1.2) ∀Ψ ∈ X ρ (Ψ) = sup
Q∈M1,f

{EQ (−Ψ)− α (Q)}

By duality between M1,f and X ,

(1.3) ∀Q ∈M1,f α (Q) = sup
Ψ∈X

{EQ (−Ψ)− ρ (Ψ)} (≥ ρ (0))

or equivalently

(1.4) ∀Q ∈M1,f α (Q) = sup
Ψ∈Aρ

EQ (−Ψ)

In the following, we are especially interested in risk measures related to prob-
ability measures. In general, the assumption of decreasing continuity from below
is made and suffices to imply that the dual formulation of risk measure (Equation
(1.2)) is satisfied for Q ∈ M1, where M1 is the set of all probability measures on
the considered space. In this case, the equations previously obtained concerning
the penalty function (Equations 1.4 and 1.3) still hold replacing M1,f by M1.
Moreover, Föllmer and Schied have proven in [FS2] (Theorem 4.12) that there al-
ways exists a measure ofM1,f such that the supremum in Equation (1.2) is reached.
When working with M1, the supremum is reached under some conditions presented
in Theorem 4.22 of [FS2]. These results will be quite important in the following
as they ensure the existence of an “optimal” measure (or “optimal” probability
measure under some assumptions).

Example 1.3. A classical example of convex risk measure is the entropic risk
measure
(1.5)

∀Ψ ∈ X eγ (Ψ) = sup
Q∈M1

(EQ (−Ψ)− γh (Q/P)) = γ ln EP

(
exp

(
− 1

γ
Ψ

))
where γ is the risk tolerance coefficient and h (Q/P) is the relative entropy1 of Q
with respect to the prior probability P.

1.1.2. Risk measure generated by a convex set and coherent risk measure . We
now introduce some particular convex risk measures generated by a convex set as
follows

Definition 1.4. Let H be a non-empty convex subset of X such that

inf {m ∈ R, such that ∃ξ ∈ H, m ≥ ξ} > −∞

Then the functional vH defined as

vH (Ψ) = inf {m ∈ R; such that ∃ξ ∈ H, m + Ψ ≥ ξ}

is a convex risk measure. The associated penalty function α is given by:

∀Q ∈M1,f αH (Q) = sup
H∈H

EQ (−H)

1When finite (i.e. if Q � P), the relative entropy is defined by

h (Q/P) = EP

(
dQ
dP

ln
dQ
dP

)
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and the acceptance set is defined by

AvH = {Ψ ∈ X ,∃ξ ∈ H, m + Ψ ≥ ξ}

When H is a cone, the penalty function associated with vH can only take two
possible values

α (Q) = 0 if Q ∈QH and +∞ otherwise

where QH is the set of all additive measures such that ∀ξ ∈ H, EQ (ξ) ≥ 0. The
risk measure vH is then coherent 2 in the sense of Artzner et al. ([ADEH]) and its
dual formulation is simply given by

∀Ψ ∈ X vH (Ψ) = sup
Q∈QH

EQ (−Ψ)

1.1.3. Inf-convolution of risk measures. Rockafellar ([Ro]) has given some sta-
bility properties of the inf-convolution of convex functions. The following Theorem
extends these results to the inf-convolution of convex functionals:

Theorem 1.5. Let ρ1 and ρ2 be two convex risk measures with respective
penalty functions α1 and α2. Let ρ1,2 be the inf-convolution of ρ1 and ρ2 defined as

Ψ → ρ1,2 (Ψ) ≡ ρ1�ρ2 (Ψ) = inf
H∈X

{ρ1 (Ψ−H) + ρ2 (H)}

and assume that ρ1,2 (0) > −∞. Then ρ1,2 is a convex risk measure, which is finite
for all Ψ ∈ X . The associated penalty function is given by

∀Q ∈M1,f α1,2 (Q) = α1 (Q) + α2 (Q)

Note that the convex risk measure ρ1,2 may also be defined as the value func-
tional of the program

ρ1,2 (Ψ) = inf {ρ1 (Ψ−H) ,H ∈ Aρ2}

Proof. Please refer to Barrieu-El Karoui [BEK2]. �

Moreover, using Subsection 1.1.2, the following result is a direct consequence
of Theorem 1.5:

Corollary 1.6. Let H be a cone of X and ρ be a convex risk measure with
penalty function α such that

inf {ρ (−H) ,H ∈ H} > −∞

The inf-convolution of ρ and νH, ρH ≡ ρ�νH, also defined as

ρH (Ψ) ≡ inf {ρ (Ψ−H) ,H ∈ H} = sup
Q∈QH

{EQ (−Ψ)− α (Q)}

is a convex risk measure with penalty function α on QH and +∞ otherwise.

2It satisfies indeed the positive homogeneity property ∀Ψ ∈ X , ∀λ ≥ 0, vH (λΨ) =

λvH (Ψ). (For more details, please refer to Föllmer and Schied [FS2], Remark 4.13). This
property simply translates the fact that the size of the transaction or exposure does not have any
particular impact.
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Remark 1.7. This property may be interpreted in terms of hedging strategies.
The inf-convolution ρH is simply the residual risk measure after having optimally
chosen the hedging strategy for Ψ with elements of H. For instance, one may see H
as the cone of all gain processes related to a given financial market. In the following,
we will refer to ρH (sometimes denoted ρm) as the modified market risk measure,
when appropriate.

1.1.4. Market modified risk measure in the entropic framework.
Incomplete market. In this entropic framework (corresponding to an ex-

ponential utility function), this problem has been widely studied as an hedging
problem when H is the space of bounded gain processes written on locally bounded
semi-martingale price processes S, at a future time T ,

VT =

ξT =

T∫
0

〈ϕt, dSt〉 ; ϕt ∈ Kt


associated with financial strategies, ϕ, satisfying some geometric constraints de-
scribed by Kt. Several authors (for instance, Frittelli [Fr1], Delbaen et al. [DGRSS],
Becherer [Be1]) have solved the dual problem (1.6 to obtain the existence of an op-
timal hedging strategy. El Karoui-Rouge [EKR] have established the same type of
results and characterized the solution using a different approach based on BSDE’s
techniques presented in the last section of this paper. Musiela-Zariphopoulou
[MuZ] have also been interested in this problem and completely solved a particular
example using PDE’s.

Partial information. Some economic agents, unable to observe the non-
tradable risk, base their financial strategies only on the information contained in the
financial asset prices S. In particular, they can observe the filtration FS

T generated
by σ(Su; 0 ≤ u ≤ T ). A measurability constraint is then added to the geometric
constraint on the financial strategies. The space of gain processes is denoted by
VS

T :

VS
T =

ξT =

T∫
0

〈ϕt, dSt〉 ; ϕt ∈ FS
t and ϕt ∈ Kt


In the entropic case, it is possible to solve the problem as previously, given that

em,S(Ψ) = inf{γ ln EP

(
exp(− 1

γ (Ψ− ξ))
)

; ξ ∈ VS
T }

= inf{γ ln EP

(
exp(− 1

γ (ΨS − ξ))
)

; ξ ∈ VS
T }

where

ΨS ≡ −γ ln EP

[
exp

(
− 1

γ
Ψ

)
/=S

T

]
is the opposite of the conditional entropic risk measure of Ψ given FS

T , assessing
the cost of partial information.
In the so-called “filtering framework”, the financial assets’ prices S are associated
with a risk premium depending on the non-tradable risk. Different authors (see
for instance Lakner [La1] [La2], Lefèvre [Le], Pham-Quenez [PhQ]) have shown
however that there exists a “risk-neutral” probability measure Q̂T such that the
=S-market is complete. The set QH is then the set of all probability measures on



6 PAULINE BARRIEU AND NICOLE EL KAROUI

the considered measurable space (Ω,=) such that their restriction to =S is the risk-
neutral probability measure Q̂T . In particular, the market modified risk measure
may be written as

em,S (γ, Ψ) = γEQ̂T

(
ln EP

[
exp

(
− 1

γ
Ψ

)
/=S

T

])
For more details, please refer to Barrieu-El Karoui [BEK4].

2. Optimal design problem

In the following, we focus on the question of an optimal transaction between two
economic agents. These agents, respectively denoted A and B, are evolving in an
uncertain universe modeled by a probability space (Ω,=, P). At a fixed future date
T , agent A is exposed towards a non-tradable risk Θ for an amount X ≡ X (Θ, ω)
in the scenario ω. A wants to issue a financial product F ≡ F (Θ, ω) and sell it to
agent B for a forward price at time T denoted by π as to reduce her exposure. We
assume that X and F belong to X .

2.1. General framework. Both agents assess the risk associated with their
respective positions by a convex risk measure, denoted respectively ρA and ρB , with
associated penalty functions αA and αB .
The issuer, agent A, wants to determine the structure (F, π) as to minimize her
global risk measure

min
F∈X ,π

ρA (X − F + π)

while the issuer’s constraint related to the buyer’s interest in doing the transaction
may be written as

ρB (F − π) ≤ ρB (0)

This constraint now imposes a maximum threshold to the risk the buyer accepts to
bear.
We now consider a more general framework where both agents may also invest
in the financial market in order to reduce their respective exposure. They choose
optimally their financial investments via two cones V(A)

T and V(B)
T , characterizing

the terminal gains associated with their respective admissible financial strategies.
This opportunity to invest optimally in a financial market has a direct impact on the
risk measure of both agents as previously mentioned. As a consequence, provided
the condition inf

ξB∈V(B)
T

ρB (ξB) > −∞ and inf
ξA∈V(A)

T

ρA (ξA) > −∞
we are exactly in the framework of Corollary 1.6 and both agents simply assess their
non-tradable exposure using a market modified risk measure, denoted respectively
by ρm

A and ρm
B . The optimization program related to the F -transaction simply

becomes

inf
F∈X ,π

ρm
A (X − F + π) subject to ρm

B (F − π) ≤ ρm
B (0)

Using the cash translation invariance property and binding the constraint at the
optimum, the pricing rule of the F -structure is fully determined by the buyer as

(2.1) π∗ (F ) = ρm
B (0)− ρm

B (F )

It corresponds to an “indifference” pricing rule from the point of view of agent B’s
market modified risk measure.
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Using again the cash translation invariance property, the optimization program
simply becomes

inf
F∈X

(ρm
A (X − F ) + ρm

B (F )− ρm
B (0))

We are almost in the framework of Theorem 1.5, apart from the constant ρm
B (0).

To deal with it, we consider the reduced program3

(2.2) Rm
AB (X) = inf

F∈X
(ρm

A (X − F ) + ρm
B (F )) = (ρm

A �ρm
B ) (X)

The value functional Rm
AB of this program may be interpreted as a measure of the

residual risk after all transactions.
A direct consequence of Theorem 1.5 is now given:

Proposition 2.1. The inf-convolution of the risk measures ρm
A and ρm

B , Rm
AB (X),

is a convex risk measure with the penalty function given for any Q in4 Q(A) ∩Q(B)

by
αm

AB (Q) = αA (Q) + αB (Q) , +∞ otherwise

2.2. Characterization of the optimal structure.
2.2.1. Generalized entropic framework. In the case of the entropic risk measure

eγ defined by Equation (1.5), we easily obtain the following semi-group property

eγ�eγ′ = eγ+γ′

More generally, let ρ be a convex risk measure with penalty function α. The risk
measure ργ with penalty function γα, is equal to the “right scalar multiplication”
of ρ defined by Rockafellar ([Ro]), more precisely:

(2.3) ∀Ψ ∈ X ργ (Ψ) = γρ

(
1
γ

Ψ
)

In this family of convex risk measures, by duality, the inf-convolution defines a new
convex risk measure of the same family: for any (γ, γ′), strictly positive, indeed,
the following stability property holds

ργ�ργ′ = ργ+γ′

In this case, the optimal structure F ∗ realizing the inf-convolution (2.2) may be
explicitely obtained:

Proposition 2.2. When both agents have the same access to the financial
market and have market modified risk measures of the type described above by (2.3),
the optimal structure F ∗ is given by:

F ∗ =
γB

γA + γB
X P a.s.

Proof. The result is immediately obtained by checking that:

ρm
A (X − F ∗) + ρm

B (F ∗) = γAρm( X
γA+γB

) + γBρm( X
γA+γB

)
= (γA + γB)ρm( X

γA+γB
)

= (ρm
A �ρm

B ) (X)

Hence, the optimality of F ∗ is deduced. �

3The value functional obtained in this case should be translated by the constant −ρm
B (0) in

order to obtain the value function of the previous program.
4Note that Q(A) ∩ Q(B) is the set of all additive measures Q such that ∀ξ ∈ V(A)

T ∩V(B)
T ,

EQ (ξ) ≥ 0.
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Interpretation: when both agents have the same access to the financial market,
the underlying logic of this new asset class is that of insurance and is far away from
that of speculation. The issuer has an interest to sell a structure if and only if she
is initially exposed (or, more precisely, if her initial exposure differs from that of
the buyer). The underlying logic is that of insurance and hedging. It is by no way a
speculative logic and the sale of this type of contract aims to hedge a real exposure
towards a non-financial risk.

2.2.2. Characterization of the optimal structure in a general framework. We
now consider a more general case and find some conditions to have an optimal
structure F ∗ realizing inf-convolution Rm

AB (X) for a given X. First let us give two
definitions of optimality and precise the dual relationship between exposure and
additive measure:

Definition 2.3. Given a convex risk measure ρ and its associated penalty
function α, we say
i) that the measure QΨ

ρ is optimal for (Ψ, ρ) if ρ (Ψ) = EQΨ
ρ

(−Ψ)− α
(
QΨ

ρ

)
.

ii) that the exposure Ψ is optimal for (Q, α) if α (Q) = EQ (−Ψ)− ρ (Ψ).

Let QX
AB be the optimal measure for for (X, Rm

AB), the existence of which has
been mentioned in Subsection 1.1.1.
The following Theorem presents a necessary and sufficient condition to have an
optimal structure F ∗ in terms of this optimal measure QX

AB .

Theorem 2.4. Let

C∗A
(
QX

AB

)
=

{
F ;αm

A

(
QX

AB

)
= EQX

AB
(− (X − F ))− ρm

A (X − F )
}

C∗B
(
QX

AB

)
=

{
F ;αm

B

(
QX

AB

)
= EQX

AB
(−F )− ρm

B (F )
}

The necessary and sufficient condition to have an optimal solution to the inf-
convolution problem described in the Program (2.2) is

C∗A
(
QX

AB

)
∩ C∗B

(
QX

AB

)
6= ∅

Moreover, denoting by F ∗ an optimal solution for the inf-convolution problem, the
following relationships prevail:

QX
AB ” = ” QX−F∗

A ” = ” QF∗

B

Proof. Please refer to Barrieu-El Karoui [BEK3]. �

This Theorem gives a procedure to obtain the optimal structure. For a given
X, there exists an optimal measure QX

AB for Rm
AB . This measure is necessary

and sufficient to have an optimal structure F ∗. Hence, the solutions of the inf-
convolution problem are determined by the dual formulation of the residual risk
measure Rm

AB . Note also that the last equalities translate the fact that both agents
valuate their respective residual risk using the same measure QX

AB . This enables
the transaction.

3. Solving the inf-convolution problem in a dynamic framework

We come back in this section to the inf-convolution problem when considering
various classes of convex functionals. We adopt dynamic programing techniques,
in particular Backward Stochastic Differential Equations (BSDE’s), to study risk
measures defined by their local specifications and propose a method to characterize



OPTIMAL DERIVATIVES DESIGN UNDER DYNAMIC RISK MEASURES 9

the optimal solution of the inf-convolution problem. This approach leads to a
particular definition of dynamic risk measures.

3.1. Localization of convex risk measures.
3.1.1. Introduction. On the probability space (Ω,=, P), let consider a Brownian

filtration (=t = σ (Ws; 0 ≤ s ≤ t) ; t ≥ 0). This enables us to extend the notion of
static entropic risk measure to a more local and dynamic one

eγ,t (X) = γ ln EP

(
exp

(
− 1

γ
X

)
/=t

)
, X ∈ X

with the terminal condition
eγ,T (X) = −X

The dynamics of the adapted process (eγ,t(X); t ∈ [0, T ]) is given by the follow-
ing BSDE with the quadratic driver f (t, z) = 1

2γ ‖z‖
2, using stochastic calculus

arguments:

−deγ,t (X) =
1
2γ
‖zt‖2 dt−〈zt, dWt〉 with the terminal condition eγ,T (X) = −X

The idea is then to introduce families of solutions driven by convex generators
f (t, z) of the same kind. As we will see, they generate local convex risk measures.
Under some regularity assumptions5 for the function f , implying the existence and
uniqueness of a solution to this BSDE, the key tool is the so-called Comparison
Theorem. It corresponds to the maximum principle when working with PDEs.

Theorem 3.1. Consider the general BSDE with the solution (Yt, zt)

(3.1) −dYt = f (t, zt) dt− 〈zt, dWt〉 with terminal condition YT = X

Let X1 and X2 be two elements of X and f1 and f2 two “regular” drivers. We
denote by (Y 1, z1) and (Y 2, z2) the associated solutions.
We assume that X1 ≥ X2 P a.s. and f1

(
t, z2

t

)
≥ f2

(
t, z2

t

)
dt× dP a.s.. Then we

have
∀t ≥ 0 Y 1

t ≥ Y 2
t

3.1.2. Local specification. We are now able to generalize the notion of static
convex risk measure to a more dynamic notion, by considering the BSDE’s solutions
as functional of their terminal condition. More precisely, thanks to the Comparison
Theorem 3.1, properties as monotonicity, convexity of the drivers are also satisfied
by the solution.

Theorem 3.2. Suppose that the regular driver f(t, z) is convex w.r. to z.
The solution (ρt (X))t ≤ T of the BSDE (3.1) with terminal conditon −X.

−dρt (X) = f (t, zt) dt− 〈zt, dWt〉 >, ρT (X) = −X

is for any time t a convex risk measure.

The convexity result has been proved in the study of pricing functionals with
constraints (see, for instance, El Karoui-Quenez [EKQ], Peng [P] or Gianin [Gi]).
The cash invariance property is a consequence of the independence between f and
ρ.

5For example, f uniformly Lipschitz or with quadratic growth, as shown by El Karoui-Quenez

[EKQ] , Kobylanski [Kob] or Lepeltier-San Martin [LSMa].
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3.2. Inf-convolution. In this subsection, given f1 and f2 two regular convex
drivers, we compare the solution of different BSDE’s related to

(1) −dρ1
t (Ψ) = f1

(
t, z1

t

)
dt−

〈
z1
t , dWt

〉
, ρ1

T (Ψ) = −Ψ
(2) −dρ2

t (Ψ) = f2
(
t, z2

t

)
dt−

〈
z2
t , dWt

〉
, ρ2

T (Ψ) = −Ψ

In particular, we will study for any t the inf-convolution of the convex functionals
ρ1

t and ρ2
t defined as

(3.2)
(
ρ1�ρ2

)
t
(X) = inf

F

{
ρ1

t (X − F ) + ρ2
t (F )

}
The first step is to introduce the following BSDE

(3.3) −dρ1,2
t (X) =

(
f1�f2

)
(t, zt) dt− 〈zt, dWt〉 , ρ1,2

T (X) = −X

where the driver f1�f2(t, z) is the inf-convolution between both convex functions
f1(t, z) and f2(t, z). In that follows, we assume its regularity.
The next step is to verify that, under some additional assumptions, the solution
of BSDE generated by f1�f2 is the inf-convolution ρ1�ρ2 of the dynamic risk
measures ρ1 and ρ2.

Theorem 3.3. For a given X ∈ X , let
(
ρ1,2

t (X) , zt

)
be the solution of (3.3)

with a regular driver f1�f2 and terminal condition −X.
Then, the following results hold:
i) For any (F, t) ∈ X × [0, T ], ρ1,2

t (X) ≤ ρ1
t (X − F ) + ρ2

t (F ) P a.s.
ii) If there exists an admissible ẑ2

t such that

∀t ≥ 0 f1�f2 (t, zt) = f1
(
t, zt − ẑ2

t

)
+ f2

(
t, ẑ2

t

)
.

then
∀t ≥ 0 ρ1,2

t (X) =
(
ρ1�ρ2

)
t
(X) P a.s

iii) Under this assumption, let F ∗ the structure defined by the forward equation

F ∗ =

T∫
0

f2
(
t, ẑ2

t

)
dt−

T∫
0

〈
ẑ2
t , dWt

〉
Then F ∗ is an optimal solution for the inf-convolution problem (3.2) of the dynamic
risk measures.

Proof. i) By definition of inf-convolution,

∀ (t, z, y)
(
f1�f2

)
(t, z) ≤ f1 (t, z − y) + f2 (t, y)

On the other hand, for any F ∈ X , ρ1
t (X − F ) + ρ2

t (F ) satisfies

−d
(
ρ1

t (X − F ) + ρ2
t (F )

)
=

(
f1(t, z1

t ) + f2(t, z2
t )

)
dt− 〈z1

t + z2
t , dWt〉

=
(
f1(t, zt − z2

t ) + f2(t, z2
t )

)
dt− 〈zt, dWt〉

with terminal condition −X.
The second formulation expresses that ρ1

t (X − F ) + ρ2
t (F ) is solution of a BSDE

with terminal condition −X and a driver written as f1(t, zt− z2
t ) + f2(t, z2

t ) where
z2
t is fixed as the solution of the BSDE (2) with terminal condition −F .

This driver is always greater than that of the BSDE (3.3) and their respective
terminal conditions are identical. Thanks to the Comparison Theorem 3.1, the
result is obtained.
ii) and iii) Let us assume that there exists an admissible ẑ2

t such that

∀t ≥ 0
(
f1�f2

)
(t, zt) = f1

(
t, zt − ẑ2

t

)
+ f2

(
t, ẑ2

t

)
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where zt is the solution of (3.3) with the terminal condition −X.
We now introduce the structure F ∗ defined by the forward equation

F ∗ =

T∫
0

f2
(
t, ẑ2

t

)
dt−

T∫
0

〈
ẑ2
t , dWt

〉
Let us observe that −R2

t ≡
t∫
0

f2
(
u, ẑ2

u

)
du−

t∫
0

〈
ẑ2
u, dWu

〉
satisfies

R2
t (F ∗) = −F ∗ +

T∫
t

f2
(
u, ẑ2

u

)
dt−

T∫
t

〈
ẑ2
u, dWu

〉
Then R2

t

(
F ∗

)
is solution of the BSDE with driver f2 and terminal condition −F ∗.

By uniqueness, this process is the dynamic risk measure ρ2
t (F

∗).
We have seen in i) that ρ1

t (X − F ∗) + ρ2
t (F

∗) is solution of the BSDE with dri-
ver written as f1(t, zt − ẑ2

t ) + f2(t, ẑ2
t ) and terminal condition −X. Given that(

f1�f2
)
(t, zt) = f1

(
t, zt − ẑ2

t

)
+ f2

(
t, ẑ2

t

)
, by uniqueness, the following equality

holds
∀t ≥ 0 ρ1,2

t (X) =
(
ρ1�ρ2

)
t
(X) P a.s

The proof also gives the optimality for the Problem (3.2) of the structure

F ∗ =

T∫
0

f2
(
t, ẑ2

t

)
dt−

T∫
0

〈
ẑ2
t , dWt

〉
�

Given the results of Proposition 2.2, it is natural to study which assumptions
on the driver of such dynamic risk measures lead to a non-speculative logic6.
To simplify the arguments, we now consider normalized risk measures, i.e.

∀t ρ1
t (0) = ρ2

t (0) = 0

Corollary 3.4. Assume that f1(t, 0) = f2(t, 0) = 0 and ∂zf
1(t, 0) = ∂zf

2(t, 0) =
0, then:
i) The inf-convolution

(
f1�f2

)
(t, 0) and that of the associated risk measure (ρ1�ρ2) (t, 0)

are identically null.
Moreover, F ∗ ≡ 0 is an optimal solution for the inf-convolution problem (3.2).
ii) If both drivers f1 and f2 are strictly convex, then F ∗ ≡ 0 is the unique optimal
solution for the inf-convolution problem (3.2).

Proof. i) Since f1(t, 0) = f2(t, 0) = 0, we have(
f1�f2

)
(t, 0) = inf

y
{f1(t,−y) + f2(t, y)} ≤ 0

On the other hand,

∀y f1(t,−y) + f2(t, y) ≥ (−∂zf
1(t, 0) + ∂zf

2(t, 0))y = 0

using the assumption ∂zf
1(t, 0) = ∂zf

2(t, 0) = 0.
Hence

(
f1�f2

)
(t, 0) = 0 and as a consequence (ρ1�ρ2) (t, 0) = 0.

Moreover, as y = 0 is a solution of f1(t,−y)+f2(t, y) = 0, by construction, F ∗ ≡ 0

6By non-speculative logic, we simply mean that the issuer has an interest to sell a structure

if and only if she is initially exposed. The underlying logic is that of insurance and hedging.
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is an optimal solution for the inf-convolution problem (3.2).
ii) When both drivers f1 and f2 are strictly convex, then y = 0 is the unique
solution of f1(t,−y) + f2(t, y) = 0 and consequently F ∗ ≡ 0 is the unique optimal
solution for the inf-convolution problem (3.2). �

4. Conclusion

Standard diversification will occur in exchange economies as soon as agents
have non-speculative risk measures. The regulator has to impose very different
rules on agents as to generate risk measures, which are not non-speculative, if she
wants to increase the diversification in the market. In other words, diversification
occurs when agents are very different one from the other. This result supports for
instance the intervention of reinsurance companies on financial markets in order to
increase the diversification on the reinsurance market.
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