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1. Introduction

Investment has always been a crucial question for firms. Should a given project be undertaken?
And, if so, when is it the best time to invest? In order to answer these questions, the neo-classical
criterion of Net Present Value (N.P.V.) is still widely used. It consists in investing if and only if
the sum of the project discounted benefits is higher than the sum of its discounted costs. Such
a criterion does however have several weaknesses. Among many others, the following facts are
often mentioned:

- The N.P.V. method does not take into account potential uncertainty of future cash flows;

- It uses an explicit calculation for the cost of the risk;

- It focuses on present time: the investment decision can only be taken now or never.



But, reality is often more complex and flexible including, for instance, optional components for
the project: a firm may have the opportunity (but not the obligation) to undertake the project,
not only at a precise and given time, but during a whole period of time (or even without any
time limit). In that sense, these characteristics may be related to that of an American call
option, the underlying asset being, for example, the ratio discounted benefits/discounted costs,
and the strike level ”1”. Therefore, the N.P.V. criterion implies that the American option has
to be exercised as soon as it is in the money, which is obviously a sub-optimal strategy.

The use of a method based on option theory, such as the real option theory would improve
the optimality of the investment decision. Several articles appear as benchmark in this field.
The seminal studies of Brennan et al. (1985), Mc Donald et al. (1986), Pindyck (1991) or
Trigeorgis (1996) are often quoted as they present the fundamentals of this method, using
particularly dynamic programming and arbitrage techniques. The literature on real options has
been prolific from very technical papers to case studies and manuals for practitioners (see among
many references, the book edited by Brennan and Trigeorgis (2000) or that of Schwartz and
Trigeorgis (2001)). Such an approach better suits reality by taking into account project optional
characteristics such as withdrawal, sequential investment, delocalization, crisis management...
In that sense real option theory leads to a decision criterion that adapts to each particular
project assessment.
But real options have also some specific characteristics compared to ”classical” financial options.
In particular, the ”risk-neutral” logic widely used in option pricing cannot apply here: the real
options’ underlying asset corresponds to the investment project flows and is generally not quoted
on financial markets. Any replicating strategy of the option payoff is then impossible. So the
pricing is made under a prior probability measure (the historical probability measure or another
measure chosen according to the investor’s expectations and beliefs). Moreover, a specific feature
of a real option framework is the key points of interest for the investor. More precisely, she is
interested in:

- the cash flows generated by the project. They are represented by the ”price” of the real
option. Note that the notion of ”price” is not so obvious in this framework. It corresponds
rather to the value a particular investor gives to this project. However, for the sake of
simplicity in the notations, we will use the terminology ”price” in the rest of the paper.

- But also, the optimal time to invest. This optimal time corresponds to the exercising
time of the real option.

Therefore, it is important noticing that real options are above all a management tool for decision
taking. Once the investment project has been well-specified, the major concern for the investor
is indeed summarized in the following question: ”When is it optimal to invest in the project?” In
that sense, knowing the value of the option is less important than knowing its optimal exercising
time. For that reason, in this paper, we focus especially on the properties of this optimal time.
Moreover, real options studies are usually written in a continuous framework for the underlying
dynamics. But the existence of crises and shocks on investment markets generates disconti-
nuities. The impact of these crises on the decision process is then an important feature to
consider. This is especially relevant when some technical innovations may lead to instabilities
in production fields.
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For all these reasons, this paper is dedicated to the analysis of the exercising time properties
in an unstable framework. The modeling of the underlying dynamics involves a mixed-diffusion
(made up of Brownian motion and Poisson process). The jumps are negative as to represent
troubles and difficulties occurring in the underlying market.
In the second section of this paper, we describe the framework of the study and analyze the
consequences of different modeling choices. The crisis effect may be expressed via a Poisson
process or the compensated martingale associated with it. Of course, there is an obvious relation
between these models and they are equivalent from a static point of view. But when studying
the real option characteristics and their sensitivity towards the jump size, these models lead to
various outcomes.
After analyzing the real option characteristics in the third section, we focus on the discount
rate. We prove the existence of an optimal discount rate, considering the maximization of the
Laplace transform of the optimal time to invest as a choice criterion. We also characterize the
average waiting time.
In the fifth section we study the robustness of the element decision characteristics. We first
specify the robustness of the optimal time to enter the project with respect to the jump size.
We establish in particular that its Laplace transform is a decreasing function.
Then, assuming that the investor only knows the expected value of the random jump size, we
prove that this imperfect knowledge leads her to undertake the project too early.
In the last section, we focus on the impact of a wrong model specification, assuming that the
investor believes in continuous underlying dynamics. In such a framework, we specify the error
made in the optimal investment time.

All proofs are delayed in Appendix.

2. The model

2.1. Notation

In this paper, we consider a particular investor evolving in a universe, defined as a filtered prob-
ability space (Ω,F , (Ft) ,P). She has to decide whether she will undertake a given investment
project and, if so, when it is optimal to invest. We assume that the investor has no time limit
to take her decision. Consequently, the time horizon we consider is infinite. The investment
opportunity value at time t = 0 is then on the form

C0 = sup
τ∈Υ

E
h
exp (−µτ) (Sτ − 1)+

i
where E denotes the expectation with respect to the prior probability measure P, Υ is the set
of the (Ft)- stopping times and (St, t ≥ 0) is the process of the profits/costs ratio.
It is worthwhile noticing that the discount rate µ is usually different from the instantaneous
risk-free rate. We will come back later to the real meaning of discount rate in such a framework
and to the problem related to its choice.
The profits/costs ratio related to the investment project is characterized by the following dy-
namics ½

dSt = St− [αdt+ σdWt + ϕdMt]
S0 = s0

(A)
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where (Wt, t ≥ 0) is a standard (P, (Ft))-Brownian motion and (Mt, t ≥ 0) is the compensated
martingale associated with a (P, (Ft))-Poisson process N . The Poisson process is assumed to
have a constant intensity λ and the considered filtration is defined byFt = σ (Ws, Ms, 0 ≤ s ≤ t).
Equivalently, the process (St, t ≥ 0) may be written on the form:

St = s0 exp(Xt)

where (Xt, t ≥ 0) is a Lévy process with the Lévy exponent Ψ
E (exp (ξXt)) = exp (tΨ (ξ))

with

Ψ (ξ) = ξ2
σ2

2
+ ξ

µ
α− λϕ− σ2

2

¶
− λ

³
1− (1 + ϕ)ξ

´
(2.1)

Hence, we have

E (exp (iX1)) = exp

µ
iξ

µ
α− λϕ− σ2

2

¶
− ξ2

σ2

2
+ λ

³
eiξ ln(1+ϕ) − 1

´¶
= exp (−Φ (ξ))

Therefore, the Lévy measure associated with the characteristic exponent Φ is expressed in terms
of the Dirac measure δ as:

ν (dx) = λδln(1+ϕ) (dx)

Assumptions
In the rest of the paper, the following hypothesis (H) holds. i) 0 < s0 < 1,

ii) σ > 0
iii) 0 > ϕ > −1.

(H)

Assumption i) states that s0 is (strictly) less than 1: this is not a restrictive hypothesis, since
the problem we study is a ”true” decision problem. In fact, delaying the project realization is
only relevant in the case where the profits/costs ratio is less than one.
Assumption iii) states that the jump size is negative as we study a crisis situation. The jump
process allows to take into account falls in the project business field. These negative jumps may
be induced, for instance, by a brutal introduction of a direct substitute into the market, leading
to a decrease in the potential sales. Moreover, we assume that the jump size is greater that −1.
This hypothesis together with the identity

St = s0 (1 + ϕ)Nt × e(α−λϕ)t × eσWt− 1
2σ

2t

ensure that the process S remains strictly positive.

We also impose the integrability condition

µ > sup (α; 0) (2.2)
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There exists an optimal frontier L∗ϕ such that

sup
τ∈Υ

E
³
e−µτ (Sτ − 1)+

´
= E

µ
e
−µτL∗ϕ

³
SτL∗ϕ − 1

´+¶
where τL is the first hitting time of the boundary L by the process S, defined as

τL = inf {t ≥ 0;St ≥ L} (2.3)

(For the proof, see for instance Darling et al. (1972) or Mordecki (1999)).
Before the profits/costs ratio S reaches the optimal boundary L∗ϕ, it is optimal for the investor
not to undertake the investment project and to wait. However, as soon as S goes beyond this
threshold, it is optimal for her to invest.

2.2. Consequence of the modeling choice

In the framework previously described, we may work a priori with either of the two following
models:

(A)

½
dSt = St− [αdt+ σdWt + ϕdMt]
S0 = s0

(B)

½
dSt = St− [αdt+ σdWt + ϕdNt]
S0 = s0

In the case where all the parameters are constant, these models are obviously equivalent and
writing

α = α+ λϕ (2.4)

is sufficient to see why. Note that the integrability condition for model (B) is expressed as

µ > max (α+ λϕ; 0)

However, when studying the sensitivity of the different option characteristics with respect to the
jump size, choosing (A) or (B) really matters. Indeed, monotonicity properties are significantly
different in both frameworks, as underlined below.
• Let us first focus on the optimal time to enter the project, characterized by its Laplace transform
defined as E

³
exp

³
−µτL∗ϕ

´´
.

Considering model (A), if the initial value of the profits/costs ratio is not ”too small”, the Laplace
transform of the optimal investment time is monotonic (this result is proved in Proposition 5.1).
But this monotonicity property does not hold any more for model (B) as it is illustrated in
Figure 1, which is done for the following set of parameters:

s0 = 0.8 λ = 0.1 α = 0.05 µ = 0.15 σ = 0.2
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Figure 1

• We now focus on the investment opportunity value C0.

Proposition 2.1. Let us consider model (B). Then the investment opportunity value is an
increasing function of the jump size.

Figure 2 illustrates Proposition 2.1. It represents the variations of the investment value with
respect to the jump size for different values of the jump intensity and for the following set of
parameters:

s0 = 0.8 α = 0.05 µ = 0.15 σ = 0.2
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Figure 2

However, this property of the investment opportunity value does not hold any more when con-
sidering model (A). Intuitively, the studied model leads to a double effect of the jump size on
the underlying level: ϕ has a positive effect on the underlying by increasing the drift but it also
has a negative effect on the underlying by acting on the Poisson process level:

dSt = St− ((α− λϕ) dt+ σdWt + ϕdNt)

This double effect explains the differences between models (A) and (B), and in particular ac-
counts for the following result: in setting (A), the maximum value of C0 is not necessarily
obtained for ϕ = 0.
As a conclusion, it cannot be said that one of these models is better or more relevant than the
other one. From a static point of view (with respect to the parameter ϕ), both are mathemat-
ically equivalent. In particular, given condition (2.4), they lead to the same first and second
moments for S. But, from a dynamic point of view with respect to the jump size, they are
different.
In the setting (B), crisis is only detected as the spread between the level of S before and after
a shock while on the other hand, in the setting (A), there is an additional effect of the shocks
on the drift term of S. Economically speaking, both have their own interests and motivations.
However, once a model is chosen, the consequences of this choice must be kept in mind, especially
the implications for the monotonicity properties of the real option characteristics.
In this study, since we are especially interested in the optimal time to invest, we choose a

martingale representation for the stochastic part of
dSt
St−

, therefore the model defined by (A)

prevails in the following.
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3. The real option characteristics

In this section, we first recall the classical formulae for the optimal time to invest and for the
investment opportunity.
We denote by kϕ the unique real number defined in terms of the Lévy exponent Ψ defined in
euqation (2.1) since it satisfies:

kϕ > 1 and Ψ (kϕ) = µ

Then the optimal profits/costs ratio L∗ϕ satisfies:

L∗ϕ =
kϕ

kϕ − 1
The investment opportunity value at time 0 is given by:

C0 =

µ
s0
kϕ

¶kϕ µ 1

kϕ − 1
¶1−kϕ

(3.1)

and the optimal investment time is characterized by its Laplace transform:

E
³
exp

³
−µτL∗ϕ

´´
=

µ
s0 (kϕ − 1)

kϕ

¶kϕ
(3.2)

(For detail proofs, see among others Gerber and Shiu (1994), Bellamy (1999), Mordecki (1999)
and (2002)).
It can be noticed that kϕ, as well as the optimal profits/costs ratio L∗ϕ, depend on ϕ, λ and µ.

Remark 1. In the framework we deal with, the so-called principle of smooth pasting is satisfied.
Such a principle is always satisfied in a continuous framework but if the model is driven by
discontinuous Lévy processes, this property can fail. In the model we consider, however, the
smooth pasting principle still holds (see for instance Chan (2003) and (2004), Boyarchenko and
Levendorskii (2002), Alili and Kyprianou (2004) or Avram et al. (2004))

It is also easy to check that the optimal profits/costs ratio satisfies L∗ϕ > 1. This underlines the
interest of waiting before undertaking the project, as well as the gain in optimality obtained from
considering a real option approach rather than the standard N.P.V. method (see, for instance,
Dixit et al. (1993)).
The value of the optimal ratio may be much greater than the limit value ”1”. This fact is at
variance with the N.P.V. criterion and perfectly illustrates what Mc Donald et al. (1986) have
called ”The value of waiting to invest”.

As an illustration, the optimal ratio L∗ϕ is calculated in the table below for the following set of
parameters:

µ = 0.15 λ = 1 α = 0.1 s0 = 0.8

Values of the optimal benefits/costs ratio L∗ϕ as a function of σ and ϕ
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σ \ ϕ -0.9 -0.5 -0.3 -0.1
0.1 16.25 6.59 4.39 3.29
0.2 17.13 6.93 4.74 3.69
0.4 18.24 8.19 6.08 5.12
0.6 20.23 10.26 8.19 7.29

Note that high values for the volatility coefficient σ are also considered in this study. This is
relevant since the underlying market related to the investment project may be more highly
volatile than traditional financial markets (for instance, markets related to new technology).

4. Optimal discount rate and average waiting time

4.1. Optimal discount rate

We now focus on the discount rate µ and present some general comments about its choice, which
is indeed crucial in this study. The rate µ does not correspond to the instantaneous risk-free
rate, traditionally used in the pricing of standard financial options. In fact, in this real option
framework, the rate µ characterizes the preference of the investor for the present or her aversion
for the future. Choosing the ”right” µ is extremely difficult. Many different authors have been
interested in this question (among many others, M. Weitzman (1998)). Some have also proved
the existence of a specific relationship between discount rate and future growth rate (C. Gollier
(1999), C. Gollier et al. (1998) and M.S. Kimball (1990)). The optimal choice criterion for
the rate µ depends however on the considered framework. We present here a relevant criterion
for this particular problem, corresponding to the maximization of the Laplace transform of the
optimal investment time.

Proposition 4.1. i) There exists a unique real number bµ strictly positive such that
E
³
exp

³
−bµτL∗

µ

´´
= max

µ
E
³
exp

³
−µτL∗µ

´´
The real number bµ agrees with an optimal choice of the discount rate µ.
ii) The optimal discount rate bµ increases with the jumps intensity and decreases with the jumps
size.

This optimal discount rate is increasing with the absolute value of the jump size and with
the intensity of the jumps. Such a behaviour seems rather logical as the occurrence and the
frequency of negative jumps in the future make the value of the project decrease and represent
an additional risk for the investor. The more important the jump intensity and size in absolute
value are, the more the investor favors the present. Thus, she will choose a higher discount rate.
Figure 3 shows the variations of the optimal rate bµ with respect to ϕ for different values of λ
and for the following set of parameters:

s0 = 0.8 α = 0.1 σ = 0.2
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Figure 3

Remark 2. Other criteria may have been considered in order to choose an optimal rate. For
instance, the maximization of C0 could appear as an alternative. But it is not a relevant criterion,
since the function

µ 7→ C0 =
³

kϕ
kϕ−1 − 1

´³
s0(kϕ−1)

kϕ

´kϕ
is strictly decreasing.

4.2. Average waiting time

Another question relative to the best time to invest is of course that of the characterization of
an average waiting time. If we denote it by Tc, it is defined as the unique element of R∗+ such
that:

E
³
exp

³
−bµτL∗

µ

´´
= exp (−bµTc)

Hence Tc corresponds to the average waiting time. In fact, it is the certainty equivalent of τL
when the utility criterion is exponential and the risk aversion coefficient is bµ. As previously
seen, this rate bµ can easily be interpreted as a future aversion coefficient (or a present preference
coefficient) and Tc may be explicitly determined as:

Tc = − 1bµ lnE³exp³−bµτL∗µ´´
From Proposition 4.1 we deduce that the average waiting time decreases with respect to the
jump intensity as well as to the absolute value of the jump size. This mathematical property
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can be economically understood as previously. In fact jumps induce additional risks, increasing
with previous jump intensity and the jump size absolute value.
The average waiting time can be related to an exponential utility criterion. Therefore, the
investor we consider appears to be risk averse, with an exponential utility function and a risk
aversion coefficient of bµ. So, in her decision process, she will take into account the expected
profit as well as the associated risk. She will tend to reduce the risk induced by the business field
by entering earlier in the project. Obviously, the more she waits, the greater the probability of
jumps and then the risk are.
Figure 4 highlights this fact. It represents the variations of the average waiting time with respect
to the jump size. The graphs are done for different values of the jump intensity. All these curves
converge to the same point as the jump size tends to zero: this point corresponds to the average
waiting time in the model without jump, or, in other words, in an universe without crisis. The
following set of parameters has been used:

s0 = 0.8 α = 0.1 σ = 0.2

Figure 4

5. Robustness of the investment decision characteristics

All the different parameters of the model have to be estimated using historical data or strategic
anticipations. Every estimation and calibration may lead to an error on the choice of the input
parameters. Some stability (or robustness) of the results is an essential condition for a real
practical use of a model.
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5.1. Robustness of the optimal time to invest

As it has already been underlined, the optimal time to invest is the major concern of the
investor. Hence, the robustness of its Laplace transform appears as a key point to be checked.
We particularly focus on the study of the sensitivity of this quantity with respect to the jump
size.
We study the behaviour of the Laplace transform of the optimal time to invest when the jump
size is not perfectly known: the investor only knows that there exists ϕ and ϕ such that

−1 < ϕ ≤ ϕ ≤ ϕ < 0

We first provide a monotonicity result.

Proposition 5.1. Let bs0 be the level defined as bs0 = k0
k0−1 exp

³
− 1

k0−1
´
. We assume that s0

satisfies bs0 < s0 < 1 (5.1)

Then the Laplace transform of the optimal time to invest is an increasing function of the jump
size.

Proposition 5.1 can be heuristically interpreted as follows: the more the jump size increases
(hence decreases in absolute value), the more the investor delays entering the investment project.
The maximum waiting time is attained in the lack of jump.

Remark 3. The Assumption bs0 < s0 amounts to consider investment project only if the initial
value is not ”too small”. From an economic point of view, such an assumption is not very
restrictive. In fact, the investor will stop being interested in the project as soon as s0 is below
a given threshold. If, for example we consider the following standard set of parameters

α = 0.10 ; σ = 0.20 ; µ = 0.15,

then we get bs0 = 0.276
Note that this level bs0 is far from the strike value 1.

Figure 5 shows the changes in the Laplace transform of the optimal time to invest time with
respect to ϕ for different values of λ. The following set of parameters is used:

s0 = 0.8 ; α = 0.10 ; σ = 0.20 ; µ = 0.15
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Figure 5

The robustness property of the Laplace transform is a straightforward consequence of Proposi-
tion 5.1.

Corollary 5.2. We assume that condition (5.1) holds and

−1 < ϕ ≤ ϕ ≤ ϕ < 0

Then we have

E
³
exp

³
−µτL∗ϕ

´´
≤ E

³
exp

³
−µτL∗ϕ

´´
≤ E

³
exp

³
−µτL∗ϕ

´´
This result underlines the model robustness as far as the Laplace transform of the optimal time
to invest is concerned. More precisely, if the investor does not know exactly the size of the
jump, in other words the impact of the market crisis on the project, but knows however some
boundaries for it, then she has an idea of the optimal time to enter the project. More precisely,
the Laplace transform boundaries are expressed in terms of the boundaries for the market crisis
impact. Equivalently, having some control or knowledge of the crisis impact enables the investor
to have some control of her optimal time to invest.

5.2. Random jump size

We now consider the situation where the jump size is an unknown random variable Φ. We focus
on the impact that this additional hazard may have on the investor decision.
Assuming that the investor estimates the jump size Φ by its expected value E (Φ), we focus on
the impact of such an error on her decision. Will she invest too early or too late? In order to
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answer these questions, we compare the ”true” Laplace transform of the optimal time to invest,
with the Laplace transform estimated by means of E (Φ).
The dynamics of the process of the project is now:

dSΦt = SΦt− (αdt+ σdWt +ΦdMt) ; SΦ0 = s0

and the investor builds her strategy from S
E(Φ)
t where

dS
E(Φ)
t = S

E(Φ)
t− (αdt+ σdWt + E (Φ) dMt) ; S

E(Φ)
0 = s0

We assume that the random variable Φ is independent of the filtration generated by the Brownian
motion and the Poisson process.
Let L∗Φ be the true optimal benefit-cost ratio. If the investor only knows E (Φ), she estimates
this ratio by L∗E(Φ). The next proposition provides a comparison between this two quantities.

Proposition 5.3. We assume that condition (5.1) holds. Then the wrong specification in the
model leads the investor to underestimate the optimal profits/costs ratio.

Moreover we can precise the consequences of this error on the decision taking. We assume that
the investor undertakes the project when the observed process of the benefits/costs ratio reaches
what she supposes to be the optimal level. Therefore, her strategy is determined by the first
hitting time of L∗E(Φ), instead of the first hitting time of L

∗
Φ by process S. This proposition

can be interpreted as follows: when the investor only knows E (Φ), she tends to undertake the
project too early.

6. Continuous model versus discontinuous model

In this section, we focus on the impact of a wrong model choice. This part extends the previous
study of robustness. We suppose that the investor believes in a continuous underlying dynamics
for S, while its true dynamics is given by (A). As a consequence, the investor governs her
strategy according to the following process:

deSt = eSt (eαdt+ eσdWt) ( eA)
where 

eS0 = s0eα = αeσ2 = σ2 + λϕ2

These equalities come directly from the calibration of both model (A) and ( eA) on the same data
set, leading to the same first and second moments for S and eS. The volatility parameter of the
model without jump is different from that of the model with jumps: the absence of jump in
the dynamics is indeed compensated by a higher volatility. In order to obtain the ”equivalent”
volatility, the right brackets of S and eS have to be equal. The process eS is called ”equivalent
process without jump”.
We now focus on the impact of such a wrong specification on the investment time. To this end,
we first consider the error in the optimal profits/costs ratio.
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6.1. Error in the optimal profit-cost ratio

We denote by eL∗ϕ the optimal profits/costs ratio in the model defined by ( eA). More precisely,
using the same arguments as in Subsection 3, eL∗ϕ is given by the following ratio

eL∗ϕ = ekϕekϕ − 1
where ekϕ is solution of

eψ (k) = σ2 + λϕ2

2
k2 +

µ
α− σ2 + λϕ2

2

¶
k = µ (6.1)

Note that this optimal ratio depends on the volatility parameter of the model, or equivalently
on both jump parameters ϕ and λ. For the sake of simplicity, as we are especially interested in
the sensitivity with respect to the jump size, we use the notation eL∗ϕ.
Proposition 6.1. The previous wrong specification of the model leads the investor to under-
estimate the optimal profits/costs ratio if and only if

σ2 + λϕ2 + 2α ≥ µ (6.2)

Note that for usual values of the parameters, inequality (6.2) often holds. For instance, if we
consider λ = 1, α = 0.1, σ = 0.2, µ = 0.15, then σ2 + λϕ2 + 2α ≥ µ is true for all ϕ in ]−1, 0[.

As an illustration, the relative error (expressed in percentage) on the optimal profits/costs ratio

RE(L∗, ϕ) = 100×
Ã
L∗ϕ − eL∗ϕ

L∗ϕ

!
is calculated in the table below for different values of the jump size ϕ and for the standard set
of parameters:

s0 = 0.8 ; α = 0.1 ; σ = 0.20 ; µ = 0.15 ; λ = 1
Relative error on the optimal profits/costs ratio as a function of ϕ

ϕ −0.995 −0.7 −0.5 −0.3 −0.1 −0.01
RE(L∗, ϕ) 38.30 15.81 7.11 1.87 0.08 0.01

Very naturally, the relative error becomes negligible as the jump size tends to zero. This error
is still managable when the jump size is not too large (up to −0.5). For larger values however,
the relative error becomes quite important to reach more than a third of the value of the ratio
when the jump size is maximal.

Using the same argument as in the previous section, we can precise the consequences this wrong
specification has on the investor’s strategy. The investor’s waiting time is determined by eL∗ϕ
instead of L∗ϕ. So, if condition (6.2), we can assert that the error in the model leads the investor
to undertake the project too early.
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This fact is brought to the fore by Figure 6. The optimal time to enter the project for a well-
informed investor as well as that of the previous investor are respectively characterized by the
Laplace transforms E

³
exp

³
−µτL∗ϕ

´´
and E

³
exp

³
−µτL∗ϕ

´´
.

Figure 6 represents the variations of these Laplace transforms with respect to the jump size ϕ.
This is done for the following values:

s0 = 0.8 ; α = 0.1 ; σ = 0.20 ; µ = 0.15 ; λ = 1

Figure 6

As another illustration, the relative error (expressed in percentage) on the Lapace transform of
the optimal time to invest

RE(LT,ϕ) = 100×
Ã
LT − fLT

LT

!
is calculated in the table below for different values of the jump size ϕ and for the previous set
of parameters:

Relative error on the Laplace transform of the optimal time to invest as a function of ϕ
ϕ −0.995 −0.7 −0.5 −0.3 −0.1 −0.02

RE(LT,ϕ) −51.77 −14.68 −5.58 −1.26 −0.04 −0.01
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The interpretation of these results is very similar to those associated with the relative error on
the optimal profits/costs ratio. It can be noticed however that for large values of the jump size,
the relative error becomes quite important to reach more than a half of the Laplace transform
when the jump size is maximal. Hence, the impact of a wrong model specification could be
important if the investor focuses on the optimal time to invest in the project.

6.2. Error in the investment opportunity value

In the ”true” model with jumps, the investment opportunity value is C0. If we assume that the
investor becomes involved in the project when the ”true” process S reaches the level eL∗ϕ, then
her investment opportunity value is

eC0 = ³eL∗ϕ − 1´E³exp³−µτL∗ϕ´´
where

eC0 = ³eL∗ϕ − 1´×
Ã
s0eL∗ϕ
!kϕ

where ekϕ is solution of equation (6.1).
The following graph represents the variations of C0 and eC0 with respect to the jump size ϕ. Of
course, since eL∗ϕ defers from the optimal frontier L∗, we have for any ϕ,

eC0 ≤ C0

and the loss C0 − eC0 comes from a wrong investment time. This loss tends to zero when the
jump size tends to zero and this fact was expected as eL∗ϕ tends to the optimal frontier L∗ when
ϕ tends to 0.
Figure 7 is done for the following values:

s0 = 0.8 ; α = 0.1 ; σ = 0.20 ; µ = 0.15 ; λ = 1
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Figure 7

As another illustration, the relative error (expressed in percentage) on the investment opportu-
nity value

RE(C,ϕ) = 100×
Ã
C0 − eC0

C0

!
is calculated in the table below for different values of the jump size ϕ and for the previous set
of parameters:

Relative error on the investment opportunity value as a function of ϕ
ϕ −0.995 −0.7 −0.5 −0.3 −0.1 −0.02

RE(C,ϕ) 9.02 5.33 3.19 1.14 0.06 0.01

The relative error remains managable even for large values of the jump size since it is always less
than 10%. Therefore, the impact of a wrong model specification is relatively not so important
if the investor focuses on the value of the investment opportunity.

7. Conclusion

In this paper, we study the impact of market crises on investment decision via real option theory.
The investment project, modeled by its profits/costs ratio, is characterized by a mixed diffusion
process, whose jumps represent the consequences of crises on the investment field.
After having analyzed the implications of different model choices, we study the real option
associated with this investment project.
We establish the existence of an optimal discount rate, given a criterion based on this investment
time and we characterize the average waiting time.
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We study in details the properties of the optimal investment time, through its Laplace transform,
and focus in particular on its robustness when the underlying dynamics of the project is not
well-known or is wrongly specified. We interpret the results in terms of the investment decision.
More precisely, when the investor bases her decision on the expected value of the random jump
size, she tends to undertake the project too early. The same property holds if she believes in a
continuous dynamics for the underlying project.
In this paper, we focus on a single investor. The complexity of reality suggests however that
different other aspects, in particular strategic relationships between the economic agents, may
play an important role. Investigating more general models involving strategic dimensions and
game theory is a topic for future research.

8. Appendix

Proof of Proposition 2.1
Let S be defined by equation (B). We define C (ϕ,L) as
C (ϕ,L) = (L− 1)× E (exp (−µτϕL)) where τϕL = inf {t ≥ 0;St ≥ L}. Hence

C0 (ϕ) = C
¡
ϕ,L∗ϕ

¢
where L∗ϕ is the optimal frontier, that is to say, the optimal benefit-cost ratio.
Let ϕ2 and ϕ1 be such that −1 < ϕ2 < ϕ1 < 0. We have

C0 (ϕ1) = C
³
ϕ1, L

∗
ϕ1

´
≥ C

³
ϕ1, L

∗
ϕ2

´
Then inequality ϕ1 > ϕ2 leads to

∀t ≥ 0, St (ϕ1) ≥ St (ϕ2)

and consequently

E
³
exp

³
−µτϕ1L∗ϕ2

´´
≥ E

³
exp

³
−µτϕ2L∗ϕ2

´´
Finally we get C0 (ϕ1) ≥ C (ϕ1, L∗ (ϕ2)) ≥ C (ϕ2, L∗ (ϕ2)) = C0 (ϕ2)

Proof of Proposition 4.1

i) The function k ∈ ]1,+∞[→
³
s0(k−1)

k

´k
admits a maximum for k = bk, defined by:

ln s0 + ln
bk − 1bk +

1bk − 1 = 0 (8.1)

The study of the Lévy exponent Ψ leads to the existence of a unique value of µ, denoted bµ, such
that bµ > α and k

(µ)
ϕ = bk. Moreover bµ satisfies:

E
³
exp

³
−bµτL∗

µ

´´
= max

µ
E
³
exp

³
−µτL∗µ

´´
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Assertion ii) comes from the definition of bµ and the following properties of the Lévy exponent:
∀k ∈

i
1,bki ∀ϕ ∈ ]−1, 0] , λ→ Ψ (k)

is increasing and

∀k ∈
i
1,bki ∀λ > 0, ϕ→ Ψ (k)

is decreasing.

Proof of Proposition 5.1
Let bk be defined by equation (8.1). We have

k0 ≤ bk ⇐⇒ s0 ≥ bs0
where bs0 = k0

k0 − 1 exp
µ
− 1

k0 − 1
¶

and where k0 is the limit: k0 = lim
ϕ→0

kϕ.

In order to get the conclusion, it suffices to prove that kϕ is strictly increasing with respect to
the jump size ϕ.
Let F : ]−1; 0[× ]1;+∞[→ R be the function defined as: F (ϕ, k) = Ψ (k)− µ where Ψ is given
by euqtaion (2.1).
For any (ϕ, k) ∈ ]−1; 0[ × ]1;+∞[ such that F (ϕ, k) = 0, we can easily check that Ψ0

(k) > 0.
Using the implicit function theorem, we get:

∂k

∂ϕ
= −

∂F
∂ϕ (ϕ, k)
∂F
∂k (ϕ, k)

and the inequality ∂F
∂ϕ (ϕ, k) < 0 implies

∂k

∂ϕ
> 0. Hence the function ϕ 7→ kϕ is strictly

increasing.

Proof of Proposition 5.3

We denote by ΨΦ and ΨE(Φ) the Lévy exponents of the processes
¡
XΦt

¢
t≥0 and

³
X
E(Φ)
t

´
t≥0
,

where XΦt = ln(
SΦt
s0
) and X

E(Φ)
t = ln

Ã
S
E(Φ)
t

s0

!
.

Let kΦ (resp. kE(Φ)) be the unique real number strictly greater than 1 such that ΨΦ (kΦ) = µ

(resp. ΨE(Φ)
¡
kE(Φ)

¢
= µ).

We have (
ΨΦ (k) = λE

h
(1 +Φ)k

i
− λkE (Φ) + g (k)

ΨE(Φ) (k) = λ (1 + E (Φ))k − λkE (Φ) + g (k)
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where g (k) = σ2

2 k
2 +

³
α− σ2

2

´
k − λ.

Jensen inequality implies that

∀k > 1, ΨE(Φ) (k) ≤ ΨΦ (k)

Hence

kΦ ≤ kE(Φ)

and from this last inequality, we conclude L∗Φ ≥ L∗E(Φ).

Proof of Proposition 6.1

Let eΨ be the Lévy exponent of the process ³ eXt

´
t≥0

where eXt = ln(
eSt
s0
) and ekϕ be the unique

real number such that

ekϕ > 1 eΨ³ekϕ´ = µ.

Then, from the equalities

Ψ (0) = eΨ (0) = 0 and Ψ (2) = eΨ (2) = σ2 + λϕ2 + 2α,

we get ekϕ ≥ kϕ

if and only if
σ2 + λϕ2 + 2α ≥ µ.

and therefore we have

L∗ϕ ≥ eL∗ϕ

References

[1] Alili, L. and A. Kyprianou (2004). Some Remarks on First Passage of Lévy Processes, the
American Put and Pasting Principles, Working Paper.

[2] Avram, F., A. Kyprianou and M. Pistorius (2004). Exit Problems for Spectrally Negative
Lévy Processes and Applications to Russian, American and Canadized Options, Annals of
Applied Probability, 14, 215-238.

[3] Bellamy, N. (1999). Hedging and Pricing in a Market Driven by Discontinuous Processes,
Thesis, Université d’Evry Val d’Essonne, France.

[4] Boyarchenko, S.I. and S.Z. Levendoskii (2002). Perpetual American Options under Lévy
Processes, SIAM Journal of Control Optim., 40, 1663-1696.

21



[5] Brennan, M.J. and E.S. Schwartz (1985). Evaluating Natural Resource Investments. Journal
of Business, 58, 135-157.

[6] Brennan, M.J. and L. Trigeorgis, editors (2000). Project Flexibility, Agency, and Product
Market Competition - New Developments in the Theory and Applications of Real Options,
Oxford University Press.

[7] Chan, T. (2003). Some Applications of Lévy Processes in insurance and finance. To Appear
in Finance.

[8] Chan, T. (2004). Pricing Perpetual American Options Driven by Spectrally One-sided Lévy
Processes, To appear in Exotic Option Pricing under Advanced Lévy Models (eds: A. Kypri-
anou, W. Schoutens, P. Wilmott), EURANDOM, Wiley and Wilmott.

[9] Darling, D.A., T. Ligget and H.M. Taylor (1972). Optimal Stopping for partial sums, The
Annals of Mathematical Statistics, 43, 1363-1368.

[10] Dixit, A.K. and R. S. Pindyck (1993). Investment under Uncertainty, Princeton University
Press.

[11] Gerber, H.U. and E.S. Shiu (1994). Martingale Approach to Pricing Perpetual American
Options, ASTIN Bulletin, 24, 195-220.

[12] Gollier, C. (2002). Time Horizon and the Discount Rate, Journal of Economic Theory, 107,
463-473.

[13] Gollier, C. and J.C. Rochet (2002). Discounting an Uncertain Future, Journal of Public
Economics, 85, 149-166.

[14] Kimball, M.S. (1990). Precautionary Saving in the Small and in the Large. Econometrica,
58, 53-73.

[15] Mc Donald, R. and D. Siegel (1986). The Value of Waiting to Invest, The Quarterly Journal
of Economics, 101, 707-727.

[16] Mordecki, E. (1999). Optimal Stopping for a Diffusion with Jumps, Finance and Stochastics,
3, 227-236.

[17] Mordecki, E. (2002). Optimal Stopping and Perpetual Options for Lévy Processes, Finance
and Stochastics, 6, 473-493.

[18] Pindyck, R.S. (1991). Irreversibility, Uncertainty, and Investment, Journal of Economic
Literature, 29, 1110-1148.

[19] Schwartz, E.S. and L. Trigeorgis (2001). Real Options and Investment under Uncertainty:
Classical Readings and Recent Contributions, MIT Press.

[20] Trigeorgis, L. (1996). Real Options - Managerial Flexibility and Strategy in Resource Allo-
cation, MIT Press.

[21] Weitzman, M.L. (1998). Why the Far-distant Future Should be Discounted at its Lowest
Possible Rate, Journal of Environmental Economics and Management, 36, 201-208.

22


