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Abstract

In this short note we show that the method introduced by Beibel and
Lerche in [1] for solving certain optimal stopping problems for Brownian
motion can be applied as well to some optimal stopping problems involving
processes with one-sided jumps.
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1 Introduction

In [1] Beibel and Lerche proposed a method for solving certain optimal stopping
problems for a Brownian motion B. They used a change of measure to reduce
the optimal stopping problem to the problem of �nding the maximum of a
(deterministic) function. One example solved in [1] is

sup
�
E

�
B�

� + 1

�
: (1)

This problem was �rst solved in ([5], Theorem 1) and, independently, in ([6],
Example 2). In section 10 of [5] it was suggested that it is of interest to replace
B in (1) by a stable process of index � 2 (1; 2). In this note we show that in
some cases, the method proposed in [1] can be used as well for processes with
one-sided jumps. In particular, for a spectrally negative strictly stable process
of index � 2 (1; 2) we solve the problem (1) in two ways : �rstly by a change
of measure similar to the one used in Problem 3 in [1] and secondly by using
results from [3] about generalised Ornstein-Uhlenbeck processes.

2 Alphabolic boundaries

Denote by fXtgt�0 a spectrally negative strictly stable process of index � 2
(1; 2) de�ned on (
; fFtgt�0;P), a �ltered probability space which satis�es the
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usual conditions. We denote by Px the translation of P under which X0 = x:
Without loss of generality we assume that the Laplace exponent of X is given
by  (�) = ��. We refer to Chapter VIII in [2] and Chapter 3 in[4] for further
details about stable processes. Let � > 0 and de�ne the (�nite) function

H(x) =

Z 1

0

eux�u
�

u���1du:

Suppose h is a function on R such that there exists some x� satisfying

x� = argmax
x

h(x)

H(x)
: (2)

Denote by T the set of stopping times with respect to fFtgt�0. The aim of this
section is to �nd the optimal stopping time in

V (x) := sup
�2T

Ex

"
h
�
(� + 1)�1=�X�

�
(� + 1)�

1f�<1g

#
: (3)

We have the following result.

Theorem 1. Let h be a function on R such that x� in (2) exists. Suppose
x < x�. The optimal stopping time in (3) is given by

�� = infft � 0 : Xt = (t+ 1)1=�x�g:

Furthermore

V (x) =
h(x�)

H(x�)
H(x):

Proof. By changing variables y = u(t+ 1)�1=� we �nd that

H((t+ 1)�1=�Xt) =

Z 1

0

eu(t+1)�1=�Xt�u
�

u���1du

= (t+ 1)�
Z 1

0

eyXt�y
�t�y�y���1dy:

Since feyXt�y
�tgt�0 is a martingale, it follows that fMtgt�0 de�ned by

Mt =
H((t+ 1)�1=�Xt)

H(x)(t+ 1)�

is a mean 1 martingale under Px. Hence for any Px stopping time � we have
that

Ex

�
h((� + 1)�1=�X� )

(� + 1)�
1f�<1g

�
= Ex

�
H(x)

h((� + 1)�1=�X� )

H((� + 1)�1=�X� )
M�1f�<1g

�

� H(x)
h(x�)

H(x�)
Ex[M�1f�<1g]

� H(x)
h(x�)

H(x�)
;
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and thus
�� := infft � 0 : (t+ 1)�1=�Xt = x�g

is the optimal stopping time if we can show that Px(�
� < 1) = 1 and that

Ex[M�� ] = 1. By the law of iterated logarithm for spectrally negative stable
processes (see Theorem 5 (ii) in [2]) we deduce that for any x < x�

Px(�
� <1) = 1:

Also, since H is an increasing function and since (�� + 1)�1=�X�� � x� we
deduce that for x < x� and any n 2 N

M��^n �
H(x�)

H(x)
under Px:

We use the optional sampling theorem and bounded convergence to conclude
that

1 = lim
n!1

Ex[M��^n]

= Ex[M�� ]:

This completes the proof.

3 Generalised Ornstein-Uhlenbeck process

Let Z be a spectrally negative L�evy Process de�ned on a �ltered probability
space (
; fFtgt�0;P) satisfying the usual conditions. The Laplace exponent  
of Z is given by

 (�) =
�2

2
�2 + a�+

Z 0

�1

�
e�x � 1� �x1fx��1g

�
�(dx); � � 0:

Again we refer to [2] for further details. The Generalised Ornstein-Uhlenbeck
process fYtgt�0 is the solution to

dYt = ��Ytdt+ dZt; Y0 = y under Py:

Let r > 0. In this section we consider optimal stopping problems of the form

U(y) := sup
�2T

Ey[e
�r�g(Y� )1f�<1g]; : (4)

where g belongs to a class of functions which is yet to be speci�ed. Assume that

� > 0 or a�

Z 0

�1

z�(dz) > �y; (5)

since otherwise the Generalised Ornstein-Uhlenbeck process never hits points
b > y with probability one (see Remark 1 in [3]). Clearly (5) is satis�ed when
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Z is of unbounded variation.
To simplify we also assume that

E[log(1 + (�Z1)
+)] <1: (6)

Denote

�(u) =
1

�

Z u

0

 (v)

v
dv:

Introduce for r > 0

G(x) =

Z 1

0

eux��(u)u�1+r=�du

and
Nt = e�rtG(Yt): (7)

Theorem 1 in [3] states that under the assumptions (5) and (6) the process
fNtgt�0 is a martingale for any r > 0. Introduce the locally equivalent measure
Q by

dQy

dPy

����
Ft

=
Nt

G(y)
:

We see that (4) can be written as

U(y) = G(y) sup
�2T

EQy

�
g(Y� )

G(Y� )
1f�<1g

�
:

Theorem 2. Suppose g is a function on R such that g=G attains its maximum
at y� and suppose that fZtgt�0 is a spectrally negative L�evy process satisfying
(6) and

� > 0 or a�

Z 0

�1

z�(dz) > �y�:

Then for any Y0 = y < y� the optimal stopping time in (4) is given by

�� = infft � 0 : Yt = y�g:

Furthermore

U(y) =
g(y�)

G(y�)
G(y):

Proof. Let y < y�. It su�ces to prove that �� is almost surely �nite under Py
and Qy. The �rst statement is contained in Theorem 2 in [3]. The proof of the
second statement is similar to the end of the proof of Theorem 1.

Denote by Y (�) the generalised Ornstein-Uhlenbeck process which has a
spectrally negative strictly stable process X(�) with index � 2 (1; 2) as driving

L�evy process and for which � = 1=� and Y
(�)
0 = 0. It is not di�cult to show
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that e�t=�(X(�)(et � 1)) is equal in distribution to Y
(�)
t (they have the same

Laplace exponent). We deduce that

sup
�
E

"
X

(�)
�

� + 1

#
= sup

�
E
h
e��X(�)(e� � 1)

i
= sup

�
E
h
e�(1��

�1)�Y (�)
�

i
:

Hence for a spectrally negative strictly stable process we can also solve (1) by
applying Theorem 2 to the case g(x) = x and r = (�� 1)=�.
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