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independence are derived. Connections with the well-known marginal problem are
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1. Introduction

In the past thirty years, log-linear methods have gained wide accep-
tance in categorical data modeling. More recently, the methods are
being extended in order to allow the analysis of marginal distributions
of contingency tables (see, for example, McCullagh and Nelder, 1989;
Liang et al., 1992; Lang and Agresti, 1994; Glonek and McCullagh,
1995; and Bergsma, 1997). However, little attention has been paid to
the feasibility of restrictions on marginals. In the present article, a class
of parameterizations is defined which can be useful in the log-linear
modeling of marginal distributions. Necessary and sufficient conditions
for variation independence of these parameterizations are derived. Im-
portantly, if the parameterization is variation independent, it can be
arbitrarily restricted.

To see the importance of the above, consider a 2 × 2 × 2 contin-
gency table ABC. Assume that in the AB and BC marginals the cells
(1, 1) and (2, 2) and in the AC table the cells (1, 2) and (2, 1) have
probabilities equal to 1/2. Although these marginals are (weakly) com-
patible, because they imply uniform one-way marginal distributions,
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there exists no three-way distribution with these two-way marginals.
A (well-known) reason that this incompatibility can occur is that the
set of marginals {AB,BC,AC} is not decomposable (Kellerer, 1964).
If the marginals are decomposable then weak compatibility (the given
distributions coincide on the intersections of the marginals) implies
strong compatibility (the existence of a joint distribution with the given
marginal distributions). The apparent problem in the previous example
is that parameterizations of the marginals which are prescribed are not
variation independent. It will be shown in this paper that variation
independence of a set of parameters pertaining to different marginals of
the table depend on a generalization of the concept of decomposability.

Decomposability is only defined for incomparable (with respect to inclu-
sion) marginals (Haberman, 1974). However, for many practical prob-
lems it is necessary to consider restrictions on comparable marginals
also. Rather than fully prescribing marginals as in the example above,
these restrictions usually pertain to the (marginal) dependence struc-
ture in the table.

In Section 2, set-theoretical concepts which are needed in the later
sections, are defined. These include decomposability and ordered de-
composability, where the latter is a generalization of the former. In
Section 3, (marginal) log-linear parameters are introduced, and a class
of useful parameterizations of distributions over a contingency table
is defined. In Section 4, necessary and sufficient conditions for the
variation independence of the parameterizations are given.

Extensions to continuous distributions, in particular the multivariate
normal, are possible but are not considered in the present paper.

2. Decomposable and ordered decomposable hypergraphs

Let V be a finite set, called the base set. A hypergraph is a collection of
subsets of V . An ordering (h1, . . . , hs) of the elements of a hypergraph is
called hierarchical if hi 6⊆ hj if i > j. It satisfies the running intersection
property if s ≤ 2 or, for k = 3, . . . , s, there exists a jk < k such that

(
∪k−1

i=1 hi

)
∩ hk = hjk

∩ hk

A hypergraph is called reduced if its subsets are pairwise incomparable
in the sense that none is a subset of the other. A reduced hypergraph
is called decomposable if there is an ordering of its elements satis-
fying the running intersection property. An arbitrary hypergraph is
ordered decomposable if there is a hierarchical ordering of its elements,
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say (h1, . . . , hs), such that, for k = 1, . . . , s, the maximal elements
of {h1, . . . , hk} form a decomposable set. This ordering is also called
ordered decomposable. Note that decomposable hypergraphs are also
ordered decomposable.
The above definitions can be illustrated by some examples. Suppose
V = {A,B, C, D}. Omitting braces and commas for the subsets of V ,
the reduced hypergraphs

{AB, BC, CD}, {ABC,BCD}
are decomposable (and therefore also ordered decomposable). On the
other hand,

{AB, BC, AC}, {AB, BC, CD, AD}, {ABC, ACD, BCD}
are all non-decomposable. If a hypergraph is not reduced, i.e., it con-
tains comparable subsets, the decomposability concept does not apply,
but the ordered decomposability concept does. The hypergraphs

{AB, BC, ABC}, {ABC, BCD, ABCD}
are ordered decomposable, while

{AB,BC, AC, ABC}
{AB, BC, CD, AD, ABCD}
{ABC,ACD,BCD,ABCD}

are not.
A sufficient condition for ordered decomposability is that all subsets are
decomposable. An example illustrating that there is no necessity is the
hypergraph {AB,BC,ACD,ABC}, which has the non-decomposable
subset {AB,BC, ACD}. However, the ordering (AB, BC, ABC, ACD)
is an ordered decomposable one, so the hypergraph is ordered decom-
posable.

3. Marginal log-linear parameterizations

3.1. Log-linear parameters

Let V be a finite set of categorical variables, and for v ∈ V let Iv be
a finite index set. A contingency table TV is defined as the Cartesian
product ×v∈V Iv. An element of TV is called a cell. A probability dis-
tribution over TV is defined by positive numbers πV

i (i ∈ T ) for which∑
i∈TV

πV
i = 1. The number πi is called a cell probability.
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Log-linear parameters are defined as certain sums and differences of
logarithms of cell probabilities. Marginal log-linear parameters are log-
linear parameters calculated from marginal probabilities. A general
(standard) definition can be found in Bergsma and Rudas (2001). Here,
we suffice with a description of log-linear parameters when V = {A,B}
has only two elements. The log-linear decomposition for the cell prob-
abilities in the usual notation is

log πA
i

B
j = λ + λA

i + λB
j + λA

i
B
j

For the present paper, log-linear parameters are taken from different
marginal tables, and therefore the following notation is more conve-
nient:

log πA
i

B
j = λA

∗
B
∗ + λA

i
B
∗ + λA

∗
B
j + λA

i
B
j (1)

Here, the superscript indicates to which marginal table the parameters
belong. An asterisk (∗) in the subscript indicates that the parameter
does not depend on the value of the corresponding variable in the
superscript.
With the identifying restrictions

λA
+

B
∗ = λA

∗
B
+ = λA

i
B
+ = λA

+
B
j = 0

(where a ‘+’ in the subscript denotes summation over the index) the λ
parameters can be uniquely determined.
The A and B marginal probabilities are defined as

πA
i = πA

i
B
+ =

∑
j∈IB

πA
i

B
j

πB
j = πA

+
B
j =

∑
i∈IA

πA
i

B
j

respectively. The log-linear decompositions for the marginal probabili-
ties are

log πA
i = λA

∗ + λA
i

log πB
j = λB

∗ + λB
j

respectively, with identifying restrictions

λA
+ = λB

+ = 0

We now illustrate the calculation of the above log-linear parameters for
the case IA = IB = {1, 2}. The one-variable marginal parameters are
marginal logits:

λA
1 = 1

2
log

πA
1

πA
2

λB
1 = 1

2
log

πB
1

πB
2
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(Note that the redundant parameters with index 2 are omitted.) The
one variable parameters in TAB are average conditional logits:

λA
1

B
∗ =

1
2

(
1
2
log

πA
1

B
1

πA
2

B
1

+ 1
2
log

πA
1

B
2

πA
2

B
2

)

λA
∗

B
1 =

1
2

(
1
2
log

πA
1

B
1

πA
1

B
2

+ 1
2
log

πA
2

B
1

πA
2

B
2

)

Finally, the two variable parameter is the log odds-ratio:

λA
1

B
1 = 1

4
log

πA
1

B
1 πA

2
B
2

πA
1

B
2 πA

2
B
1

3.2. Construction of parameterization

The (marginal) log-linear parameters defined above can be used to
construct parameterizations of distributions over the contingency table
TV . The first step is to choose a set of marginals of interest (i.e., a
hypergraph with V as the base set), and to order them hierarchically.

We illustrate the construction of a parameterization by an example.
The general case presents no special additional difficulties, and is de-
scribed formally in Bergsma and Rudas (2001). Suppose the marginals
of interest are {AB, BC, ABC}. There are two hierarchical orderings,
namely (AB,BC,ABC) and (BC, AB, ABC). For the ordering (AB,
BC,ABC), the construction of a marginal log-linear parameterization
is as follows:

(i) {πA
i

B
j }∪ {πB

j
C
k }∪ {πA

i
B
j

C
k }

(ii) {πA
i

B
j }∪ {πB

j
C
k }∪ {λA

i
B∗ C

k , λA
i

B
j

C
k }

(iii) {πA
i

B
j }∪ {λB∗ C

k , λB
j

C
k }∪ {λA

i
B∗ C

k , λA
i

B
j

C
k }

(iv) {λA∗ B∗ , λA
i

B∗ , λA∗ B
j , λA

i
B
j }∪ {λB∗ C

k , λB
j

C
k }∪ {λA

i
B∗ C

k , λA
i

B
j

C
k }

In (i), the marginal probabilities belonging to the tables TAB, TBC ,
and TABC are given. In the next steps, the (marginal) probabilities
are replaced by (marginal) log-linear parameters, in order going from
right to left. In (ii), {πA

i
B
j

C
k } has been substituted by the set of those

log-linear parameters belonging to TABC for which the non-asterisked
variables are not contained in AB or BC (i.e., the marginals appearing
before ABC in the sequence (AB,BC, ABC)). For example, the non-
asterisked set of variables of {λA

i
B∗ C

k } is AC (omitting braces), which
is not contained in either AB or BC. In (iii), be the same logic,
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{πB
j

C
k } has been replaced by {λB∗ C

k , λB
j

C
k }. Note that the set of param-

eters {λB∗ C∗ , λB
j

C∗ }, which also belong to table BC, are omitted because
∅ ⊆ AB and B ⊆ AB. Finally, in (iv), {πA

i
B
j } is replaced by the set of

all log-linear parameters belonging to TAB. Since, omitting redundant
parameters, every transformation is a homeomorphism, the final prod-
uct is a proper parameterization of the probability distribution over
table T .

The above procedure directly generalizes, in that arbitrary hierarchical
orderings of marginals generate a marginal log-linear parameterization
of the distribution.

4. Variation independence of parameterizations

A multidimensional parameter is called variation independent if its
range is the Cartesian product of the separate ranges of its coordi-
nates. In the previous section a class of parameterizations of probability
distributions over a contingency table was given. The question now
arises when such parameterizations are variation independent. Below,
the problem is illustrated by two examples.

Consider the parameterization generated by the sequence of marginals
(AB,BC,ABC), as discussed in Section 3.2. If the parameters have
been assigned given values, the probability distribution over ABC can
be reconstructed by following the steps (i) to (iv) in reverse order. The
parameters in (iii) can be calculated from those in (iv) directly by ap-
plying formula (1). From {πA

i
B
j } we can immediately calculate {πB

j } by
appropriate summation. Now {πB

j , λB∗ C
k , λB

j
C
k } forms a so-called mixed

parameterization of {πB
j

C
k }. A mixed parameterization has variation

independent components (Barndorff-Nielsen, 1978), so {πB
j

C
k } in (ii)

can be calculated from the parameters in (iii). The calculation can
be carried out using the so-called iterative proportional fitting proce-
dure (see, e.g., Agresti, 1990). Similarly, the parameters in (ii) form
a mixed parameterization of {πA

i
B
j

C
k }, and {πA

i
B
j

C
k } can be calculated

using iterative proportional fitting.

The reason that the above reconstruction process can always be carried
out, whatever the initial assignment of values to the λ parameters, is
that the marginals which are calculated at the intermediate stages form
a decomposable set, and hence have an extension. This is not always the
case for parameterizations generated by arbitrary hierarchical orderings
of marginals. For example, consider the parameterization based on the
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sequence of marginals (AB, BC, AC,ABC), which is

{λA
i

B
∗ , λA

∗
B
j , λA

i
B
j } ∪ {λB

∗
C
k , λB

j
C
k } ∪ {λA

i
C
k } ∪ {λA

i
B
j

C
k } (2)

If the λ parameters have been assigned given values, then an interme-
diate stage in the reconstruction of πA

i
B
j

C
k yields the marginals

{πA
i

B
j } ∪ {πB

j
C
k } ∪ {πA

i
C
k } (3)

Since the hypergraph {AB, BC, AC} is non-decomposable, (3) may
not have an extension. That is, it is possible to assign values to the
parameters in (2) for which there does not exist a joint distribution. It
follows that the parameters in (2) are not variation independent.
In general, we have the following theorem.

THEOREM 1. A marginal log-linear parameterization generated by a
hierarchical ordering of marginals is variation independent if and only
if the ordering is ordered decomposable.

A formal proof is given in Bergsma and Rudas (2001).
Note that in the context of log-linear modeling, decomposability is
studied as a possible property of the log-linear effects in the model
(Haberman, 1974), while in the above theorem ordered decomposability
is a property of the marginals within which the effects are defined. In
a log-linear parameterization there is only one marginal involved and
ordered decomposability holds true.
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