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Chapter 1

Introduction

1.1 Modelling marginal distributions

The motivation for this book stems from the apparent lack of a general
and flexible methodology for testing hypotheses about relations among
correlated categorical marginal distributions (Hagenaars, 1992; Laird,
1991). A basic example of a question concerning marginal distributions
is the following. Consider a two-wave panel study. Suppose a researcher
wants to know whether or not the marginal distributions of a categorical
characteristic, e.g., party preference, have remained the same over time.
Since the observations at time points 1 and 2 are correlated, a standard
chi-squared test is not appropriate. In order to test the null hypothesis
of no net change, the turnover table for party preference has to be set up
and tested for equality of the marginal distributions. The model asserting
equality of correlated marginal distributions is known as the marginal ho-
mogeneity (MH) model. In this book, extensions of the MH model which
are useful for testing whether there are certain specific relations among
correlated marginal distributions are discussed.

It is important to note that, in general, the MH model is not equivalent
to a standard loglinear model. In the literature on social mobility, there
has been some misunderstanding about this. It was thought that so-called
structural mobility, which is mobility implied by changes in marginal
distributions, could be modelled using simple restrictions on first-order
loglinear parameters. Sobel, Hout, and Duncan (1985) pointed out that
this is generally not appropriate, essentially because the logarithm of a
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2 CHAPTER 1. INTRODUCTION

sum of terms is usually not identical to the sum of the logarithms of those
terms.

Since MH and loglinear models are distinct, separate methods must
be used for testing the different types of models. MH tests have received
considerable attention. The literature goes back to 1947, when McNemar
(1947) presented a test for 2×2 contingency tables, known as McNemar’s
test. Stuart (1955) and Bhapkar (1966) each described a more general
quadratic test for square tables, both again named after their creators.
Madansky (1963), Gokhale (1973), and Bishop, Fienberg, and Holland
(1975) presented methods for finding maximum likelihood estimates.

Applications of the marginal homogeneity model are not restricted
to panel studies. In social mobility research, the occupations of fathers
and sons may be tested for homogeneity (Sobel, 1988). Alternatively,
Stuart (1955) tested whether the distributions of the quality of the left
and right eyes of subjects were identical. In medical studies, the condition
of patients may be tested for homogeneity before and after treatment.

The MH model can also be used for three or higher-dimensional con-
tingency tables. For instance, consider a three-way table ABC. It may
be tested whether the distributions of the one-dimensional marginals A,
B, and C is identical. Alternatively, it is possible to test whether the dis-
tributions AB and BC are identical. In a three-wave panel study, where
A, B, and C represent measurements on a variable at time points 1 to 3,
AB = BC corresponds to the hypothesis that turnover from time point 1
to time point 2 is the same as turnover from time point 2 to time point 3.
Finally, it is possible to test whether AB = BC = AC. For multi-way ta-
bles, there are many other possible variations of the model (Bishop et al.,
1975, Chapter 8).

The models described above are examples of models for marginal dis-
tributions. It should be noted that many familiar models for categorical
data are, in fact, also marginal models. For instance, Markov chain mod-
els are essentially models for marginal distributions. Furthermore, in the
modified path modelling approach, because of the assumed causal order of
variables, successive marginal tables of increasing dimension are analyzed
(Goodman, 1973a, 1973b). For instance, for an ordered set of variables
A through D, the relationship between A and B is analyzed in table AB,
the effects on C are analyzed using table ABC, and the effects on D
are analyzed using ABCD. Some but not all modified path models can
be analyzed using standard loglinear models (Croon, Bergsma, & Hage-
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naars, 2000). Still other models, such as cumulative logit (McCullagh,
1980; Agresti, 1990, Chapter 9) and global odds ratio models (Semenya
& Koch, 1980, p. 103–118; Agresti, 1984, Section 8.2; Dale, 1986), are
models for sums of frequencies. Since these sums are correlated, the lat-
ter two types of models yield the same type of problems as models for
marginal distributions.

The MH models described above pertain to testing complete equality
of various marginal distributions. Hypotheses of complete equality are
rather strong, however. Alternatively, one can test a weaker form of MH,
in particular, the equality of specific aspects of marginal distributions.
For instance, for univariate marginal distributions, it may be interesting
to test whether their means are identical. Other models can be used
when marginal distributions are themselves “joint”. For several bivariate
marginal tables, it can be tested whether the association is the same in
each table.

Suppose, for example, that in a panel study, party preference and
preference for prime minister have been measured at two points in time.
It may be interesting to test whether the association between the two
variables is the same at both points. Since association can be measured
using odds ratios, a test for homogeneity of association can be done by
testing whether the odds ratios are identical. Again, it should be stressed
that no standard chi-squared tests can be used since the odds ratios at the
two points in time are correlated. The corresponding model is a loglinear
model for marginal frequencies, a type that has received considerable at-
tention, using basically three different testing approaches. These are: 1)
Weighted least squares (Grizzle, Starmer, & Koch, 1969; Landis & Koch,
1979), 2) Generalized estimating equations (Liang, Zeger, & Qaqish, 1992;
Diggle, Liang, & Zeger, 1994), and 3) Maximum likelihood (Haber, 1985;
Haber & Brown, 1986; Agresti & Lang, 1993; Fitzmaurice & Laird, 1993;
Lang & Agresti, 1994; Molenberghs & Lesaffre, 1994; Glonek & McCul-
lagh, 1995; Becker, 1994). A review of the different methods is provided
by Fitzmaurice, Laird, and Rotnitzky (1993).

When testing the homogeneity of certain aspects of marginal distri-
butions, it is often possible to use different types of measures for the
aspect to be measured. Above, odds ratios were mentioned as a possible
candidate for measuring association. Of course, there are many other pos-
sibilities, such as global odds ratios (Clayton, 1974), gamma, or Kendall’s
tau (Goodman & Kruskal, 1979). It should be noted that odds ratios pro-
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vide a set of measures describing association in a contingency table, while
gamma or Kendall’s tau yields only a single number.

Other aspects of marginal distributions besides association or the
means can be tested for homogeneity, provided one or more appropriate
measures summarizing this aspect are available. For instance, agreement
can be measured using the agreement measure kappa. Agresti (1990, p.
367–370) showed how it can be modelled using “diagonal” odds ratios.

Equality of aspects of marginal distributions are not the only features
that can be modelled. When more than two marginal tables are of in-
terest, a regression model may be used to test whether the distributions
of the tables are related in a specific way. In a panel study consisting
of more than two waves, it is possible to test whether there is a linear
increase over time in the association between two variables. For example,
it is possible to test whether association between party preference and
preference for prime minister increases as the election date approaches.

The models described above lead to complex methods for testing
goodness-of-fit, partly because of the correlations between marginal distri-
butions and partly because of the mathematical complexity of the various
measures. Generally, the correlations between marginal distributions also
depend on higher order moments. The simplest way to test a model for
correlated marginal distributions is the weighted least squares (WLS) or
GSK procedure (Grizzle et al., 1969; Kritzer, 1977). It requires no it-
erative methods and therefore the computational complexity is very low
compared to, for instance, maximum likelihood (ML). However, WLS
is very sensitive to sparse data, and apparantly because of this, other
methods of testing various marginal models have been sought. ML meth-
ods were considered too difficult so alternatives were devised, such as
the quasi-likelihood (Wedderburn, 1974) and the generalized estimating
equations approaches (Liang & Zeger, 1986). A disadvantage of these
methods is that they do not yield statistical models in the proper sense
since they are not based on a probability distribution (Lindsey, 1993, Sec-
tion 2.9). Maximum likelihood is preferred by many statisticians (see, for
instance, the discussion of the paper by Liang et al., 1992). This book
emphasizes maximum likelihood estimation. A general specification for
marginal distribution models is presented and a general method for fitting
and testing them is given.
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1.2 Outline of the subsequent chapters

Chapter 2 discusses loglinear modelling and serves as an introduction to
the basic concepts used in this book. Some important loglinear models
are presented, and it is shown how they can be fitted using the maximum
likelihood method. Testing goodness-of-fit and the asymptotic behaviour
of maximum likelihood estimates of various parameters is discussed. In
the third chapter, it is shown how the marginal homogeneity model and,
more generally, models inducing linear constraints on expected frequen-
cies can be tested. These models are mainly applied to test equality of
various marginal distributions, and are relatively easy to analyze. The
aim of the third chapter is to give an overview of the most important
literature on the marginal homogeneity model.

Chapters 4 and 5 form the core of the book. In Chapter 4, a general
class of models, referred to as marginal models, is presented. Marginal
models generalize both the loglinear models of Chapter 2 and the marginal
homogeneity models of Chapter 3. They can be used to test whether there
are specific relationships between marginal distributions, but also provide
means of modelling joint distributions and various simultaneous models.
The marginal model specification is discussed in Chapter 4; methods for
testing and fitting these models are presented in Chapter 5. Emphasis
is on maximum likelihood estimation, though a brief description is given
of the generalized estimating equations approach and WLS. A modified
maximum likelihood fitting algorithm based on work by Aitchison and
Silvey (1958; 1960), Haber (1985), Lang and Agresti (1994), and Lang
(1996a) is presented. It is shown that, for an important class of loglinear
models for marginal frequencies, the likelihood function is uniquely max-
imized subject to the model constraints. This greatly eases maximum
likelihood estimation. An overview of some unresolved problems relating
to marginal modelling is presented in Chapter 6.

1.3 Notation

Vectors and matrices are always represented in boldtype, where matrices
are capitalized, and vectors are written using small letters. Scalars are
in normal letters. Matrix notation will be used frequently throughout
the book. It may take some time to get used to this type of notation,
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but I think it pays to make the effort, since many derivations of various
formulas are simplified considerably by using matrix algebra. In general,
a diagonal matrix with the elements of a vector q on the main diagonal is
denoted as Dq. Functions of vectors, such as log q or exp(q), are generally
applied elementwise. A vector of ones is denoted as “1”, a vector of zeroes
as “0”, and a matrix of zeroes using the slightly bigger symbol “0” (since
it will be clear from the context whether the vector or the matrix of zeroes
is denoted, a microscope will not be needed to distinguish the latter two
symbols).

The derivative of a vector of functions f with respect to a vector of
variables x can be taken in two ways, namely, by the following matrix
and its transpose:

∂f
∂x′

or
∂f ′

∂x

On the left, one has a matrix with (i, j)th element ∂fi/∂xj , on the right
is a matrix with (i, j)th element ∂fj/∂xi.

The expected frequencies in a contingency table are denoted by the
vector m, and the observed frequencies by the vector n. Expected and
observed marginal frequencies are denoted by the vectors µ and y, re-
spectively. Maximum likelihood estimates (MLEs) are denoted using a
“hat”, i.e., the MLEs of m are written as m̂. The asymptotic covariance
matrix of a vector, say m̂, is denoted as Σ(m̂).

It should be noted that for better readability of this book the math-
ematical notation used is not entirely rigorous. In particular, depending
on the context certain symbols may sometimes represent a variable and
sometimes the population value of a parameter. This is in line with what
is often done in books on applied statistics.



Chapter 2

Loglinear models

In the past three decades, the loglinear model has gained wide popularity
in categorical data analysis. Several textbooks present a comprehensive
overview of the field (Haberman, 1974, 1978, 1978; Bishop et al., 1975;
Fienberg, 1980; Hagenaars, 1990; Agresti, 1990, 1996). The aim of this
chapter is to introduce the basic concepts of loglinear modelling that are
necessary for an understanding of the main chapters of this book.

Different sampling schemes, in particular Poisson and (product) multi-
nomial, are described in Section 2.1. These are presented before the
loglinear model itself because the precise form of the loglinear model
is dependent on the sampling scheme. A basic outline of the loglinear
model and the notation used is given in Section 2.2. Two important
types of models are explained in Section 2.3, namely, hierarchical log-
linear models and models for variables with ordered categories. In Sec-
tion 2.4, maximum likelihood methods for loglinear models are presented.
Included are proofs of existence and uniqueness of maximum likelihood
estimates (MLEs). Two algorithms for finding MLEs are described: iter-
ative proportional fitting and Newton-Raphson. Testing goodness-of-fit
is discussed in Section 2.5. chi-squared test statistics and exact testing
methods are given. Furthermore, attention is paid to conditional testing
of a hypothesis against a directed alternative. To analyse why there is
lack of fit of a model, the analysis of cell residuals is also explained. The
chapter ends with Section 2.6, which deals with the asymptotic behaviour
of MLEs, and is the most technical part of the chapter. General methods
for deriving asymptotic distributions of estimators are explained.

7
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2.1 Sampling distributions

Commonly used sampling distributions for categorical data are Poisson
and (product) multinomial. A Poisson distribution implies that the events
to be counted occur randomly over time or space, and that the outcomes
in disjunct periods are independent. A Poisson distribution becomes a
multinomial one when the sample size is fixed a priori.

For Poisson sampling, the probability of observing the counts n =
(n1, n2, . . . , nr)′ with expected values m = (m1,m2, . . . ,mr)′ is

∏
i

mni
i e
−mi

ni!
. (2.1)

Multinomial sampling is obtained when the total number of observations
n+ in (2.1) is fixed by design, i.e., when

m+ = n+, (2.2)

where the “+” in the subscript represents a summation over the index
values, i.e., m+ =

∑
imi. In vector notation, (2.2) can be written as

1′m = 1′n,

where 1 is a r×1 vector of 1’s. For two multinomial samples with expected
frequencies m1j and m2j respectively, one has

m1+ = n1+ (2.3)
m2+ = n2+. (2.4)

Here, the frequencies can be assembled in a 2× r contingency table with
fixed row totals. With I samples and J categories per sample, the ex-
pected frequencies can be put in a rectangular contingency table with I
rows and J columns. For such a table, the row totals are fixed by design.

In matrix notation, with m = (m11, . . . ,m1r,m21, . . . ,m2r)′ and n =
(n11, . . . , n1r, n21, . . . , n2r)′, the equations (2.3) and (2.4) can be written
as (

1′ 0′

0′ 1′

)
m =

(
1′ 0′

0′ 1′

)
n.
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In general, when linear combinations of cells are fixed by design, these
restrictions can be represented, using the appropriate matrix W, by the
formula

W′m = W′n. (2.5)

Though the restrictions will usually represent a (product) multinomial
design, the notation allows for more generality.

2.2 The loglinear model

Loglinear modelling is used to model the relations between categorical
variables. A loglinear model defines a multiplicative structure on the
expected cell frequencies of a contingency table. The expected frequencies
are regarded as the product of a number of parameters which can be
interpreted in useful ways.

Below, following Lang (1996b) and Aitchison and Silvey (1960), two
approaches to the loglinear model specification will be given. First is the
more common freedom equation approach, where the cell frequencies are
written as the product of a number of freedom parameters, or, equiva-
lently, where the log cell frequencies are written as the sum of freedom
parameters. The adjective “freedom” is used because the more freedom
parameters are used, the less restricted the expected cell frequencies are.
That is, for the saturated loglinear model, the expected cell frequencies
are unrestricted by the model, and the number of independent freedom
parameters is maximal, i.e., equal to the number of cells. The second
approach to specifying a loglinear model is the constraint equation ap-
proach, where the loglinear model is written in terms of multiplicative
constraints on the expected frequencies, or, equivalently, in terms of lin-
ear constraints on the log expected frequencies. This approach is less
common, but will be shown to be useful for certain calculations.

In general, when a certain loglinear model holds, the expected fre-
quencies mi (i = 1, . . . , r) of a contingency table can be written in the
form

logmi =
b∑

j=1

xijβj , ∀i (2.6)
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where the xij are constants, and the βj are unknown parameters. In
matrix notation, with m = (m1, . . . ,mr)′ denoting the vector of expected
frequencies, β = (β1, . . . , βb)′ the vector of loglinear parameters, and
X the r × b matrix with elements xij , the expected frequencies given a
loglinear model can be written as

log m = Xβ, (2.7)

where the logarithm is taken elementwise. The matrix X is called the
design matrix.

For Poisson sampling, a model is defined to be loglinear if it can be
defined by constraint (2.7) with the restriction on X that

range(X) ⊃ range(1), (2.8)

where the range of a matrix (or vector) is defined as the vector space
spanned by its columns. The restriction (2.8) means that there is a vector
w such that X′w = 1. For instance, the restriction is satisfied if the vector
1 is a column of X. When the expected frequencies are subject to the
sampling restrictions (2.5), the restriction that will be imposed on the
design matrix X is

range(X) ⊃ range(W,1), (2.9)

where range(W,1) is the space spanned by the columns of W and the vec-
tor 1. These restrictions ensure that the same model is obtained whether
the model equations are specified for the expected cell frequencies or for
the expected cell probabilities π, i.e., that for every β, a β∗ can be found
such that

log m = Xβ ⇔ logπ = Xβ∗. (2.10)

The restrictions (2.8) and (2.9) do not seem to exclude many models of
practical interest. They are used because (2.10) is a convenient prop-
erty, ensuring that the same maximum likelihood fitting methods can be
used under all sampling restrictions. The definition of loglinear models is
slightly nonstandard, because usually only the requirement (2.8) is made
rather than (2.9). For the more standard definition, see Lauritzen (1996,
p. 72).
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An alternative way of specifying a loglinear model is by using con-
straints on the expected frequencies, rather than by parameterizing them.
This is the constraint equation approach. For instance, independence in a
2×2 table with expected frequencies (m11,m12,m21,m22) can be defined
by requiring the odds ratio to equal one, i.e., by imposing the constraint
equation

m11m22

m12m21
= 1.

Taking logarithms on both sides, one gets

logm11 − logm12 − logm21 + logm22 = 0.

In matrix notation, the latter equation can be written as

(
1 −1 −1 1

)
log


m11

m12

m21

m22

 = 0,

where the logarithm of the vector is taken elementwise. More generally,
any loglinear model can be written in the form

C′ log m = 0, (2.11)

where C is a matrix of constants. Restriction (2.9) on X is equivalent to
the restriction on C that

C′W = 0. (2.12)

For instance, for multinomial sampling, W = 1, and (2.12) is equivalent
to the requirement that C′ is a contrast matrix, i.e., that the rows sum
to zero.

Equation (2.11) is called a constraint equation, while equation (2.7) is
called a freedom equation. It is important to see that, provided all expec-
ted frequencies are greater than zero, both formulations (2.7) and (2.11),
subject to restrictions (2.9) and (2.12) respectively, describe the same
class of models. The formulations are equivalent if and only if C is the
orthogonal complement of X, i.e., if and only if C′X = 0 and the rows of
C and X together span the whole vector space of the expected frequencies.
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2.3 Modelling relations between variables

2.3.1 Hierarchical loglinear models

Consider a frequency table formed by three categorical variables, say A,
B, and C, which have I, J , and K categories respectively. Let mijk be
the expected frequency in cell (i, j, k) in frequency table ABC. Then the
saturated loglinear model for the three-way table ABC is given by the
parameterization

mijk = τ × τAi × τBj × τCk × τABij × τBCjk × τACik × τABCijk , (2.13)

where all parameters are constrained to be positive. Taking the logarithm
on both sides, (2.13) is equivalent to the loglinear form

logmijk = λ+ λAi + λBj + λCk + λABij + λBCjk + λACik + λABCijk , (2.14)

where

λ = log τ λAi = log τAi λBj = log τBj λCk = log τCk
λABij = log τABij λBCjk = log τBCjk λACik = log τACik λABCijk = log τABCijk

.

The saturated model does not restrict the expected frequencies in any
way, and any other loglinear model is a special case of the saturated
model.

Equations (2.13) and (2.14) contain too many parameters to be iden-
tifiable. Given the expected frequencies mijk, there is no unique solution
for the λ and τ parameters. Restricting attention to formula (2.14),
identification of the parameters can be achieved by imposing additional
constraints, such as the following:∑

i

λAi =
∑
j

λBj =
∑
k

λCk = 0

∑
i

λABij =
∑
j

λABij =
∑
j

λBCjk =
∑
k

λBCjk =
∑
i

λACik =
∑
k

λACik = 0

∑
i

λABCijk =
∑
j

λABCijk =
∑
k

λABCijk = 0

for all i, j, and k. This method of identifying the parameters is called
effect coding. An alternative method of identification is dummy coding,
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where certain parameters are set to zero, e.g.,

λAI = λBJ = λCK = 0
λABiJ = λABIj = λBCjK = λBCJk = λACiK = λACIk = 0

λABCijK = λABCiJk = λABCIjk = 0

for all i, j, and k.
Effect coding is used in most applications of loglinear modelling. Using

this parameterization, the following interpretation can be given to the
parameters (Alba, 1987). The parameter λ is called the intercept. It is
equal to the mean of the log expected frequencies, i.e.,

λ =
1

IJK

∑
logmijk.

Equivalently, τ = exp(λ) is equal to the geometric mean of the expected
frequencies. The intercept ensures that the loglinear model is the same
whether specified for probabilities or frequencies. The one-variable pa-
rameters λAi , λBj , and λCk are equal to the average deviation from λ of
the log expected frequencies in category i of A, j of B, and k of C re-
spectively. Normally, these parameters are included in a loglinear model.
The parameters λABij , λBCjk , and λACik reflect the strength of the associa-
tion between A and B, B and C, and A and C respectively, given the
level of the third variable. Finally, the λABCijk parameters indicate how
much the conditional two-variable effects differ from one another within
the categories of the third variable. The latter parameters are also called
the three-variable, or three-factor interaction effects.

Loglinear models other than the saturated model are obtained by
imposing additional linear constraints on the loglinear parameters. The
no-three-factor interaction model can be obtained by setting the term
λABCijk to zero for all (i, j, k), which yields

logmij = λ+ λAi + λBj + λCk + λABij + λBCjk + λACik .

For this model, the association between any two variables is the same
whatever the level of the third variable. To model complete statistical
independence between A, B, and C, all two-variable effect parameters
should additionally be set to zero. The following parameterization is
obtained

logmijk = λ+ λAi + λBj + λCk .
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In general, the hierarchical no k-factor interaction model is defined as the
model for which all k-factor and higher-order effects are set to zero.

Models of the type described above are examples of hierarchical log-
linear models. A loglinear model is called hierarchical if, when a certain
λ parameter is set to zero, all effects of the same or a higher order which
include all the letters of the superscript of this λ parameter are also set
to zero. For instance, if in equation (2.14) the two-factor interaction pa-
rameters λABij are set to zero, then all the higher-order effects λABCijk (i.e.,
those parameters which include AB in the superscript) must also be set
to zero.

Given the sampling restrictions (2.5), the requirement (2.9) implies
that not all parameters can be set to zero. If certain marginals are fixed
by design, the requirement implies that the parameters pertaining to the
marginal frequencies that are fixed by design must be included in the
model. For instance, if, for a three-way table, the sampling design is such
that mij+ = nij+, then the parameters λ, λAi , λBj , and λABij in (2.14) must
be included in the model. For a single multinomial sample, the intercept
λ must be included.

2.3.2 Models for variables with ordered categories

In many situations, variables with ordered categories are used. The mod-
els described in the previous section treat the variables as nominal and do
not exploit this ordering. In some situations, the no-three-factor interac-
tion model fits the data well, while the complete independence model is
too restrictive and yields a bad fit. If variables have ordered categories,
one can try fitting a model which is more parsimonious than no-three-
factor interaction, but less restrictive than complete independence, and
which takes account of the ordering of the categories of the variables. Be-
low, two types of loglinear models, developed by Haberman (1979, Chap-
ter 6), will be discussed. For other loglinear and non-loglinear models for
modelling the association, see Goodman (1984) or Clogg and Shihadeh
(1994).
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The linear-by-linear association model

Consider an I × J table with expected frequencies mij , pertaining to
variables A and B. The saturated model is

logmij = λ+ λAi + λBj + λABij .

For the linear-by-linear model, fixed ordered scores are assigned to the
row and column categories. Assigning fixed values uAi to the row and uBj
to the column categories, the interaction parameter λABij is decomposed as
βABuAi u

B
j , where the βAB-parameter reflects the strength of association.

The following formula is obtained:

logmij = λ+ λAi + λBj + βABuAi u
B
j . (2.15)

Variables A and B are independent if βAB = 0. With monotone category
orderings,

uA1 ≤ uA2 ≤ · · · ≤ uAI
uB1 ≤ uB2 ≤ · · · ≤ uBJ

should be taken. Identification of the parameters can be achieved by
requiring

∑
λAi =

∑
λBj = 0. The model has one parameter more than

the independence model, so the number of degrees of freedom is one less
than for the independence model, i.e., (I − 1)(J − 1)− 1. Let ζij be the
local odds ratios, defined as

ζij =
mijmi+1,j+1

mi+1,jmi,j+1
,

for i = 1, . . . , I − 1 and j = 1, . . . , J − 1. It follows from (2.15) that

log ζij = βAB(uAi − uAi+1)(uBj − uBj+1). (2.16)

It can be seen that the association, measured in terms of the log odds
ratios, is a linear function of the differences of both the successive row and
the successive column scores, hence the name “linear-by-linear”. With
equally spaced row and column scores, the log odds ratios are equal to
βAB everywhere.
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The model can be generalized in a straightforward manner when there
are more than two variables. For a three-way table, when the model of no-
three-factor interaction holds, with one β parameter for the association
between each pair of variables,

logmijk = λ+ λAi + λBj + λCk + βABuAi u
B
j + βACvAi v

C
k + βBCwBj w

C
k

can be used. One may take uAi = vAi , uBj = wBj , and vCk = wCk .

The row-effects and column-effects models

Here, only I×J tables will be considered. If either the row or the column
effect scores are unknown, they can, instead of using fixed values, be
estimated. Substituting µi for βABuAi in (2.15), the loglinear model

logmij = λ+ λAi + λBj + µiu
B
j

is obtained The uBj are fixed constants, and the µi are parameters called
row effects, hence the name “row-effects model.” Analogously, the column-
effects model can be defined. Identification can be achieved by requiring∑
i λ

A
i =

∑
j λ

B
j =

∑
i µi = 0. The number of degrees of freedom is

(I − 1)(J − 2), which is I − 1 less than for the independence model.

2.4 Maximum likelihood estimation

For loglinear models, the maximum likelihood (ML) method has some
appealing properties. The log likelihood is a concave function of the
parameters resulting in a unique maximum. An elegant and intuitive
estimation algorithm (iterative proportional fitting) also exists. Further-
more, estimates are identical for Poisson and multinomial sampling.

First, the likelihood equations will be derived, and existence and
uniqueness of maximum likelihood estimators (MLEs) will be proven.
Then two estimation algorithms will be described and compared, namely,
iterative proportional fitting (IPF), which also has an appealing inter-
pretation, and Newton-Raphson (N-R). A comparison of the two will be
given in Section 2.4.4.
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2.4.1 The likelihood equations

The likelihood equations for Poisson sampling are easiest to derive, so
this will be done first. Then it will be shown that, if there are sampling
constraints W′m = W′n, the resulting likelihood equations are the same
as the Poisson equations. Thus, no separate fitting methods are required
for any of the other sampling distributions described in Section 2.1.

For Poisson sampling, the probability of observing the frequencies n =
(n1, n2, . . . , nr)′ given the expected frequencies m = (m1,m2, . . . ,mr)′

is given by (2.1). The MLEs are defined as those expected frequencies
m, which maximize this probability. In practice, it is usually easier to
maximize the kernel of the logarithm of (2.1), which is

L =
∑
i

(ni logmi −mi), (2.17)

i.e., the logarithm of (2.1) is taken and the terms not dependent on any
of the mi are left out. In order to maximize L subject to the loglinear
model log m = Xβ, L can be differentiated with respect to the model
parameters β and the result equated to zero. This yields the following
equations:

ki =
∂L
βj

=
∑
i

xijni −
∑
i

xijmi = 0.

In matrix notation,

k = X′n−X′m = 0 (2.18)

is derived. Together with (2.6), these equations form the likelihood equa-
tions, and the MLEs are their solutions (Haberman, 1974).

A nice property of ML estimation is that not all the information from
all cells is needed to calculate the MLEs: the statistics formed by the el-
ements of X′n are sufficient. These are called the sufficient statistics for
the MLEs. For hierarchical loglinear models, the sufficient statistics are
certain marginal frequencies. For example, for the independence model
for a three-way table, the one-dimensional marginal frequencies ni++,
n+j+, and n++k are sufficient statistics. For the no-three-factor interac-
tion model for three-way tables, the two-dimensional marginal frequencies
nij+, ni+k, and n+jk are sufficient statistics. In general, when there are v
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variables, the sufficient statistics for the hierarchical no-f -factor interac-
tion model, with f ≤ v, are the (f −1)-dimensional marginal frequencies.

It will be shown next that, given a Poisson sampling scheme and
provided ni > 0 for all i, an MLE β̂ exists and is unique (Birch, 1963;
Haberman, 1974). It is assumed here that X has independent columns.
The matrix of second derivatives K of L is

K =
∂2L
∂β∂β′

= −X′DmX, (2.19)

where Dm denotes a diagonal matrix with the elements of m on the main
diagonal. Matrix K is negative definite if all mi > 0 and if the columns of
X are independent. The former is the case for all finite β, and the latter
was assumed, so L is a concave function of β on the whole parameter
space. It can be noted that L → −∞ as logmi → ±∞. This means
that L is maximized in the interior of the parameter space. As L is also
concave, L has a unique maximum.

If, for some h, the observed frequency nh = 0, the definition of the log-
linear model can be extended so that the MLEs m̂i exist and are unique,
though some parameter estimates may tend to plus or minus infinity
(Lauritzen, 1996, p. 73). Even if the sufficient statistics for the model
are all strictly positive, it may still be the case that some parameter es-
timates do not exist (Haberman, 1974). Positivity of sufficient statistics
only guarantees existence of parameter estimates if the model is decom-
posable (Glonek, Darroch, & Speed, 1988). Decomposable models also
have closed form solutions to the likelihood equations.

The MLEs given Poisson sampling can be shown to satisfy the multi-
nomial sampling constraints. Consider the sampling scheme S defined
by W′m = W′n and the loglinear model defined by log m = Xβ. From
basic linear algebra, requirement (2.9) implies the existence of a matrix L
such that W = XL. Thus, if the likelihood equations (2.18) are satisfied,
it follows that

W′m̂ = L′X′m̂ = L′X′n = W′n.

It can be seen that the MLEs for Poisson sampling automatically satisfy
the sampling constraints implied by S. Thus, the existence and unique-
ness results that were given above also apply for sampling scheme S.
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2.4.2 Iterative proportional fitting

A simple and elegant algorithm for calculating MLEs is the iterative pro-
portional fitting (IPF) procedure. It works by successively scaling the cell
frequencies to match the successive estimates of their sufficient statistics.
Starting values must satisfy the model. The method is illustrated by an
example. The no-three-factor interaction model for three-way tables has
sufficient statistics nij+, n+jk, and ni+k for all i, j, and k. Since starting
values may not contain effects not included in the model, they may be
set to one:

m
(0)
ijk = 1.

The first cycle of the estimation process is

m
(1)
ijk = m

(0)
ijk

nij+

m
(0)
ij+

m
(2)
ijk = m

(1)
ijk

n+jk

m
(1)
+jk

m
(3)
ijk = m

(2)
ijk

ni+k

m
(2)
i+k

.

The second cycle is of the same form as the first but uses the updated
estimates:

m
(4)
ijk = m

(3)
ijk

nij+

m
(3)
ij+

m
(5)
ijk = m

(4)
ijk

n+jk

m
(4)
+jk

m
(6)
ijk = m

(5)
ijk

ni+k

m
(5)
i+k

.

The algorithm can be terminated at iteration h when the hth estimates
are close to satisfying the likelihood equations

mij+ = nij+ m+jk = n+jk mi+k = ni+k.

In the literature it is sometimes suggested to to stop the iterations when
the difference between successive values of the log likelihood is small. As



20 CHAPTER 2. LOGLINEAR MODELS

was noted by Bishop, Fienberg, and Holland (1975), this criterion does
not guarantee that expected cell frequencies are accurate. For this reason,
they proposed to stop the iterations when differences in successive values
of expected cell frequencies are small. However, the latter criterion still
does not guarantee that the algorithm is close to convergence, since, even
if cell values change little per iteration, many small changes can add up
to a large change. A better convergence criterion which can be used is
that, for the hth estimates,∑

i,j,k

[
(m(h)

ij+ − nij+)2 + (m(h)
+jk − n+jk)2 + (m(h)

i+k − ni+k)
2
]
< ε2

for a sufficiently small value of ε (say ε = 10−10). This guarantees that
the sufficient statistics are close to being reproduced.

An attractive property of IPF is that, if direct estimates for the cell
frequencies exist and if the dimension of the table is less than seven, the
algorithm finds them after just one full cycle (Haberman, 1974, p. 197).
For instance, it can be verified that, for the independence model for a
three-way table, the MLEs

m̂ijk =
1

n+++
ni++n+j+n++k

are obtained after one full cycle.
Csiszár (1975) showed that IPF can be viewed as a series of I-projections,

and gave an elegant information-theoretic proof of convergence. A dif-
ferent algorithm called generalized iterative scaling (GIS) was developed
by Darroch and Ratcliff (1972). For hierarchical log-linear models they
showed it can be reduced to IPF. The relation between IPF and GIS was
clarified by Csiszár (1989)

General rules for the number of cycles needed to reach satisfactory
convergence are difficult to give. However, the rate of convergence of IPF
is first-order, which means that the convergence satisfies

|β̂(k+1)
i − β̂i| ≤ c |β̂(k)

i − β̂i| for some c > 0.

This implies that the number of iterations needed to obtain an extra digit
of accuracy is bounded. Thus, if the dth digit has been calculated, one
needs, at most, a certain number of iterations, say u, to calculate the
(d+ 1)th digit. However, u is unknown and is possibly large.
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2.4.3 Newton-Raphson

To maximize L with respect to β using N-R, a sequence of estimates is
calculated using the “updating” function v, defined as

v(β, step) = β − step K−1k. (2.20)

Here k and K are defined by (2.18) and (2.19) respectively, and step is a
step size. With m = exp(Xβ), (2.20) becomes

v(β, step) = β + step (X′DmX)−1X′(n−m). (2.21)

Note that (2.21) can be rewritten as

v(β, step) = (X′DmX)−1X′Dm

(
Xβ + stepD−1

m (n−m)
)

= (X′DmX)−1X′Dm

(
log m + stepD−1

m (n−m)
)
. (2.22)

The following algorithm can now be used. As starting values β(0), one can
take (2.22) with m substituted by n and step = 1. Then, for k = 0, 1, . . .,

β(0) = (X′DnX)−1X′Dn log n (2.23)
β(k+1) = v(β(k), step(k)).

If some observed frequencies are zero, a small constant should be added
(say 10−6) for calculating the initial estimate β(0). At iteration k, step(k)

should be chosen such that the value of the likelihood function (2.17)
increases. An appropriate method is to start with step(k) = 1, and, if
necessary, keep halving its value until the likelihood function evaluated
at v(β(k), step(k)) is greater than at β(k). Various other methods for
choosing a step size can be used. See, e.g., Dennis and Schnabel (1983).

The algorithm can be terminated when the likelihood equation X′m =
X′n is close to being satisfied. As noted in the previous section on IPF,
it is not always appropriate to stop the iterative process when there is
little change in the successive values of the log likelihood function. That
criterion does not guarantee that the algorithm is close to convergence,
since, even if the likelihood changes little per iteration, there can still be
a large change over many iterations. A different criterion, is based on an
appropriate measure for the distance of m from satisfying the likelihood
equation X′m = X′n. The following quadratic form can be used:

e(m) = (n−m)′X(X′DmX)−1X′(n−m).
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If, at iteration k, e(m(k)) is small enough, say less than 10−10, the iterative
process can be terminated. Generally, not many iterations are needed
before this criterion is satisfied. In fact, the speed of convergence of N-R
is second-order, meaning that the convergence satisfies

|β̂(k+1)
i − β̂i| ≤ c |β̂(k)

i − β̂i|
2 for some c > 0.

This implies that the number of iterations needed to double the number
of accurate digits is bounded. Thus, if the dth digit has been calculated,
at most a certain number of iterations, say u, are needed to calculate the
next d digits. However, u is unknown and is possibly large.

The first estimate β(0), as given by (2.23), is the weighted least squares
(WLS) estimate of β (Grizzle et al., 1969), which has been used instead of
the MLE. The advantage of WLS is that computing time is saved. How-
ever, WLS parameter estimates are very sensitive to sparse data. For
loglinear models, it seems that WLS is highly inferior to maximum likeli-
hood, and is not to be recommended, except when every cell in the table
has large counts, say at least 5 to 10. In such a case, maximum likelihood
and WLS give similar results. In fact, N-R can be shown to consist of
a sequence of WLS estimates, and for this reason it is sometimes also
called iteratively reweighted least squares (IRLS). For a further discussion
of the relationship between IRLS and ML estimation, see Green (1984),
Jennrich and Moore (1975), and Jørgenson (1984).

2.4.4 Comparison of Newton-Raphson and iterative pro-
portional fitting

In general, IPF is faster per iteration than N-R, because with the latter,
a matrix is calculated and inverted for every iteration. For decomposable
models, IPF uses only one iteration and is therefore recommended. For
non-decomposable models, N-R generally needs fewer iterations than IPF.
Unfortunately, no general recommendation can be given on which method
to use. The relative speeds also depend strongly on how efficiently the
algorithms are programmed.
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2.5 Assessing model goodness-of-fit

2.5.1 Chi-squared tests

The goodness-of-fit of a postulated loglinear model can be assessed by
comparing the observed frequencies, n, with estimated expected frequen-
cies, m̂. For loglinear models, two test statistics are commonly used,
namely, the likelihood ratio test

G2 = 2
∑
i

ni log
ni
m̂i

and Pearson’s chi-squared test

X2 =
∑
i

(ni − m̂i)2

m̂i
.

If the postulated model is true, these test statistics have an asymptotic
chi-squared distribution. Using the freedom equation representation of
a loglinear model, the number of degrees of freedom (df) is equal to the
number of cells minus the number of linearly independent columns of the
design matrix X. When using constraint equations, df is equal to the
number of functionally independent constraints, or the rank of matrix C
in (2.11).

One problem is that a sufficiently large number of observations is
needed in order to obtain a good approximation to the chi-squared distri-
bution. Larntz (1978), Koehler and Larntz (1980), and Koehler (1986),
showed that X2 can be used with smaller sample sizes and sparser tables
than G2. When n/r, with r the number of cells, is less than 5, they
showed that G2 gives a bad approximation to the chi-squared distribu-
tion. Though it is difficult to give general rules, Agresti and Yang (1987)
gave simulation results where X2 tends to do well when n/r exceeds 1.

The Wald statistic (Wald, 1943) can be used for testing goodness-of-
fit even without estimated frequencies. This test is also asymptotically
chi-squared distributed when the null hypothesis is true, but, in general,
converges more slowly to this distribution. To test a hypothesis h(m) =
0, the Wald statistic is

W 2 = h(n)′Σ̃(h(n))−1h(n),
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where Σ̃(h(n)) is the sample value of the estimated covariance matrix
of h(n). When applying this test to the loglinear model, the constraint
equation formulation (2.11) should be used. With h = C′ log m,

W 2 = (log n)′C(C′D−1
n C)−1C′(log n)

can be derived. Using result 2 in Appendix A.3, this expression can be
rewritten using the design matrix X instead of C as

W 2 = (log n)′(Dn −X(X′DnX)−1X′)(log n).

One problem with using W 2 for testing loglinear models is that it is very
sensitive to zero observed cells. For this reason, W 2 is not recommended
unless every cell has a large number of observations. In such cases W 2,
G2, and X2 tend to have similar values if the model is true.

For testing independence in a 2 × 2 table with observed frequencies
(n1, n2, n3, n4), W 2 is

W 2 =
(

sample log odds ratio
sample variance

)2

= n+

(
log n1n4

n2n3

)2

1
n1

+ 1
n2

+ 1
n3

+ 1
n4

with df=1. If one of the observed frequencies approaches zero, the statistic
also approaches zero. Thus, in such a case it cannot be used.

2.5.2 Exact tests

In the previous section, large sample “chi-square” statistics were described
for testing goodness-of-fit. As the sample size increases, these statistics
have a distribution that is more nearly chi-square. If the sample size
is small, hypotheses can be tested using exact distributions rather than
large sample approximations.

A well-known test using an exact distribution is Fisher’s exact test
for independence in a 2× 2 table (Fisher, 1934). By conditioning on the
observed marginal distribution, the frequencies follow a hypergeometric
distribution. The exact p-value is defined as the sum of hypergeometric
probabilities for outcomes at least as favourable to the alternative hypoth-
esis as the observed outcome. For a more extensive description of Fisher’s
exact test, see, for example, Agresti (1990, p. 59–66). A drawback of the
test, and of exact conditional tests for loglinear models in general, is that
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they tend to be conservative and therefore are not powerful (Berkson,
1978).

Testing loglinear hypotheses for larger tables can be done by condi-
tioning on the sufficient statistics for the model, so that a parameter-free
distribution is obtained. The distance of the observed frequencies, n,
from H0 should be measured using some meaningful statistic, such as G2

or X2. The exact p-value is then defined as the probability of the set of
tables for which the test statistic is at least as great as the observed one,
where the probability is calculated using the exact conditional distribu-
tion rather than the large-sample chi-square distribution. For a compre-
hensive review of exact tests for contingency tables, with comments by
various authors, see Agresti (1992). One problem with exact tests is that
the evaluation of p-values can be a computationally expensive procedure.
This is especially problematic for large tables.

2.5.3 Conditional tests

The chi-squared and exact tests described in the previous two sections
are in fact conditional tests against the alternative hypothesis that the
saturated model holds. More generally, a conditional test of a model [ω2]
against the alternative model [ω1] can be performed when [ω2] strictly
implies [ω1]. It is said that such models are nested. The conditional
likelihood-ratio test can be carried out by subtracting the value of G2

for [ω1] from the value of G2 for [ω2]. With m̂1i and m̂2i the MLEs for
models [ω1] and [ω2] respectively, and with [ω0] the saturated model, the
following property holds:

G2(ω2|ω1) = G2(ω2|ω0)−G2(ω1|ω0) = 2
∑

m̂1i log(m̂1i/m̂2i) (2.24)

(Simon, 1973). If [ω2] is true, this test statistic has a chi-squared distribu-
tion, with df equal to df of the first test minus df for the second test. For
X2, the difference between the statistics for the separate models is not of
Pearson form and not even necessarily nonnegative. A more appropriate
definition of the conditional Pearson statistic may be

X2(ω2|ω1) =
∑ (m̂1i − m̂2i)2

m̂1i
. (2.25)

Both G2(ω2|ω1) and X2(ω2|ω1) depend on the data only through the
sufficient statistics for [ω1]. Under the hypothesis that [ω1] holds, both
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statistics have identical large-sample behaviour, and tend to have similar
values, even for fairly sparse tables (Haberman, 1977).

A test against an unsaturated alternative can have several advantages.
First, provided the alternative is true, such a test is more powerful because
it is based on fewer degrees of freedom (Agresti, 1990, p. 97–100). Second,
the test depends only on the data through the sufficient statistics for
the alternative hypothesis, and will therefore be more nearly chi-squared
distributed than a test against the saturated model if the hypothesis is
true.

2.5.4 Analysis of residuals

In the previous two sections, goodness-of-fit statistics have been described
which can be used to ascertain whether a given model fits the data. If the
model does not fit well, insight can be gained in the reasons for this by
analyzing cell residuals, which are measures for the deviation of observed
from fitted cell values.

For cell i, the raw residual ni− m̂i depends strongly on the size of m̂i,
and is therefore of limited use. A measure which adjusts for the size of
m̂i is the standardized residual, which is defined as

ei =
ni − m̂i

m̂
1/2
i

.

The ei are related to the Pearson statistic by
∑
e2
i = X2. As a measure

of the deviation of a fitted value for model [ω2] to a fitted value for a
simpler model [ω1] (i.e., [ω2] implies [ω1]), one can define a conditional
standardized residual. With m̂1i and m̂2i the fitted values for models [ω1]
and [ω2] respectively, the following definition can be used:

ei(ω2|ω1) =
m̂1i − m̂2i

m̂
1/2
2i

. (2.26)

The conditional residuals are related to the conditional X2 statistic (2.25)
by
∑
ei(ω2|ω1)2 = X2(ω2|ω1).

One drawback of standardized residuals is that their variance is less
than 1, so that a comparison with the standard normal distribution is
not appropriate (Sobel, 1995, p. 298). The adjusted residual is defined as
the raw residual ni− m̂i divided by its standard error (Haberman, 1974).
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As its mean is 0 and variance is 1, it is more appropriate for comparison
with the standard normal than the standardized residual. Denoting the
adjusted residuals by ri, the definition is

ri =
ni − m̂i

σ(ni − m̂i)
. (2.27)

Analogous to (2.26), conditional adjusted residuals can be defined as

ri(ω2|ω1) =
m̂1i − m̂2i

σ(m̂1i − m̂2i)
.

Formulae for the variances of the raw residuals will be given in sec-
tion 2.6.2. For further material on residuals and their relative perfor-
mance, see Pierce and Schafer (1986).

2.6 Asymptotic behaviour of MLEs

The asymptotic distribution of MLEs of several statistics, in particular
the cell frequencies, the loglinear parameters, and cell residuals will be
described, given one of the sampling distributions described in Section 2.1,
and assuming that a certain loglinear model is true.

All MLEs that are described have an asymptotic normal distribution.
First, the delta method, which can be used to derive the covariance ma-
trix of a function of a normally distributed estimator, is explained. Then,
expressions are derived for the asymptotic covariance matrices of MLEs.
Finally, in subsection 2.6.3, it is shown how the average precision of es-
timators relates to the number of cells and the number of parameters of
the model.

2.6.1 The delta method

If an estimator θ̂ has an asymptotic multivariate normal distribution with
expected value θ, then a differentiable function g(θ̂) of θ̂ also has an
asymptotic multivariate normal distribution, with expected value g(θ).
The delta method can be used to derive the covariance matrix of g(θ̂).
This is done as follows. Suppose the covariance matrix of θ̂ is Σ. Let
g(θ) be a differentiable function of θ, and let

G =
∂g′

∂θ
.
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The asymptotic covariance matrix of g(θ) is

Σ(g(θ̂)) = G′ΣG.

For further details on the delta method, see also Bishop, Fienberg, and
Holland (1975, Chapter 14), or Agresti (1990, Chapter 12).

2.6.2 The asymptotic distribution of MLEs

The results in Appendix A are used to derive the asymptotic distribution
of log m̂ , given that a sampling distribution described in Section 2.1 is
used, and assuming that a certain loglinear model is true. Then, using
the delta method, the asymptotic distribution of functions of log m̂ is
derived. Finally, the asymptotic distribution of residuals is presented.
Generalizations of known results are given. In particular, the asymp-
totic distribution of MLEs given a broader class of sampling distributions
than previously considered is derived, and the asymptotic distribution of
conditional residuals is given.

The distribution of MLEs of the log expected frequencies

Let m̂s be the MLE of m given a certain sampling scheme S described in
Section 2.1, let m̂m be the MLE of m given a certain loglinear modelM
assuming Poisson sampling, and let m̂s+m be the MLE of m given both
sampling scheme S and loglinear model M. Below, the asymptotic co-
variance matrix of log m̂s is derived first, then of log m̂m. Formula (A.18)
is then used to derive the asymptotic covariance matrix of log m̂s+m.

For a Poisson sampling distribution, the kernel of the log likelihood
function is L = n′ log m− 1′m. With θ = log m, let

B = E

(
− ∂2L
∂θ∂θ′

)
= Dm.

The covariance matrix of the MLE of θ given Poisson sampling is B−1 =
D−1

m . Consider the sampling restriction h1 = W′m −W′n = 0. Differ-
entiating h1 with respect to θ yields

H1 =
∂h′1
∂θ

= DmW.
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Let θ̂1 be the MLE of θ given sampling constraint h1 = 0. Using (A.5),
the asymptotic covariance matrix of log m̂1 = θ̂1 is

Σ(log m̂1) = B−1 −B−1H1(H′1B
−1H1)−1H′1B

−1

= D−1
m −W(W′DmW)−1W′.

It follows that, for any sampling scheme S presented in Section 2.1 (i.e.,
S is either Poisson sampling or Poisson sampling with constraint h1 = 0,
the covariance matrix of the MLE log m̂s given S is

Σ(log m̂s) = D−1
m −Λ(S),

where Λ(S) is a nonnegative definite matrix which depends on S, and
which is defined as

Λ(S) =

{
0 S : Poisson sampling
W(W′DmW)−1W′ S : W′m = W′n

. (2.28)

In the case of multinomial sampling, W = 1, and Λ(S) reduces to

Λ(S) =
1
n+

11′,

with n+ the sample size.
Next, consider the loglinear model defined by the constraint

hm = C′ log m = 0.

Note that the loglinear model is written using constraint equations instead
of the more usual freedom equations. This allows formula (A.5) to be
used. Let m̂m be the MLE of m given the constraint hm = 0. With

Hm =
∂h′m
∂θ

= C,

the asymptotic covariance matrix of log m̂m is

Σ(log m̂m) = B−1 −B−1Hm(H′mB−1Hm)−1H′mB−1

= D−1
m −D−1

m C(C′D−1
m C)−1C′D−1

m . (2.29)

Let X be the orthogonal complement of C, i.e., X is the design matrix
of the loglinear model. Using Result 2, formula 2.29 can be rewritten in
terms of X:

Σ(log m̂m) = X(X′DmX)−1X′.
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It follows from assumption (2.12) that H′mB−1H1 = C′W = 0. Thus,
from definition (A.17), C′ log m and W′m are orthogonal parameters.
Therefore, equation (A.18) can be used to find the covariance matrix of
log m̂s+m, the MLE of log m given sampling scheme S and the constraint
hm(m) = 0. One obtains

Σ(log m̂s+m) = Σ(log m̂s) + Σ(log m̂m)−Σ(log m̂p)
= X(X′DmX)−1X′ −Λ(S), (2.30)

where m̂p is the MLE of m given Poisson sampling, and Λ(S) is given
by (2.28). This generalizes a result by Lang (1996b) to a broader class of
sampling schemes.

The distribution of other parameters

In the previous section, the asymptotic covariance matrix of log m̂s+m

was obtained using results from Appendix A. Here, m̂ is written short for
m̂s+m. Using the delta method, the covariance matrices of the estimators
m̂, X′m̂, and β̂ = (X′X)−1X′ log m̂, which are functions of log m̂, are
derived. The derivative matrices that are needed are

∂m̂
∂θ′

= Dm
∂X′m̂
∂m′

= X′
∂β̂

∂θ′
= (X′X)−1X′.

Using (2.30), the delta method yields

Σ(m̂) = DmΣ(log m̂)Dm

Σ(X′m̂) = X′Σ(m̂)X′

Σ(β̂) = (X′X)−1X′Σ(log m̂)X(X′X)−1.

A simplification is possible:

Σ(X′m̂) = X′Σ(m̂) X

= X′DmX−X′DmΛ(S)DmX

= Σ(X′n).

The asymptotic covariance matrix of X′m̂, the estimated value of the
sufficient statistics is equal to the covariance matrix of the observed suffi-
cient statistics. The MLEs of the sufficient statistics are identical to their
observed value. Thus, asymptotically, the distribution of the sufficient
statistics is independent of the validity of the loglinear model.
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The distribution of residuals

In order to calculate the adjusted residuals, the asymptotic variances of
the raw residuals n − m̂ are needed. Equation (A.3), with the loglinear
constraints C′θ = 0, reduces to

D−1
m (n−m) + D−1

m Cλ = 0.

The MLEs m̂ and λ̂ are a solution to this equation, so

n− m̂ = −Cλ̂.

The raw residuals are clearly a function of λ̂, and, using (A.4), their
covariance matrix can be calculated using the delta method. This yields

Σ(n− m̂) = C(C′D−1
m C)−1C′.

Using result 2, this can be restated in terms of the design matrix X as

Σ(n− m̂) = Dm −DmX(X′DmX)−1X′Dm.

The square root of the ith diagonal element yields the variance of the
residual ni − m̂i, which can be substituted into (2.27).

For the conditional residuals (2.28), the variances of the elements of
m̂1− m̂2 are needed, where m̂1 is the MLE of m given a model [ω1], and
m̂2 is the MLE of m given a simpler model [ω2]. Since both estimators
are functions of the observed frequencies n, the delta method can be used
to obtain the covariance matrix of the residuals. One finds

Σ(m̂1 − m̂2) =
DmX1(X′1DmX1)−1X′1Dm −DmX2(X′2DmX2)−1X′2Dm.

Note that the distribution of the residuals does not depend on the sam-
pling scheme used.

2.6.3 The average precision of MLEs

It is well known that the precision of MLEs is proportional to the sample
size, in the sense that, asymptotically, if the sample size is doubled, the
variance of MLEs halves. It is also well known that the more parsimonious
a model, the smaller the variance of MLEs if the model is true (Altham,
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1984). Below, a new result is presented, which shows that the average
precision of θ̂ = log m̂ is, in fact, proportional to the ratio of the sample
size and the number of free parameters on which the distribution depends.

Let the probability of an observation falling in cell i be πi and denote
the average variance of the elements of θ̂ as σ̄2(θ̂). The average variance
can be defined by using the definition

σ̄2(θ̂) =
∑

πi σ
2(θ̂i).

Let f equal the number of free parameters of the distribution, defined
as the number of identified loglinear parameters minus the number of
sampling constraints. As will be demonstrated below, σ̄2(θ̂) reduces to
the very simple formula

σ̄2(θ̂) =
f

n
. (2.31)

As a result, if the number of parameters is doubled, the number of obser-
vations should also be doubled to keep the same precision.

The result (2.31) can be proven as follows. With the trace of a matrix
defined as the sum of its diagonal elements, observe that, for any loglinear
model,

σ̄2(θ̂) = trace
(
DπΣ(θ̂)

)
= trace

(
Dπ̂X(X′DmX)−1X′

)
= n−1 × trace

(
DmX(X′DmX)−1X′

)
. (2.32)

A result from matrix algebra is that trace(QR)=trace(RQ), for arbitrary
matrices R and Q for which RQ is square (Searle, 1982, p. 45). With If
the f × f identity matrix, moving the leftmost X′ in (2.32) to the left of
the expression in brackets yields

σ̄2(θ̂) = n−1 × trace
(
X′DmX(X′DmX)−1

)
= n−1 × trace(If )

=
f

n
.

It will be shown in Chapter 4 that the result holds for a much more
general class of models.
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Result (2.31) is important as it shows the effect of parsimonious mod-
elling. When there are many variables, the number of parameters can
be greatly reduced by deleting higher-order interaction parameters, and
thereby the precision of estimators is improved. For instance, when there
are ten variables with four categories each, the saturated model has more
than a million parameters. Unless one has literally millions of observa-
tions, the observed log cell frequencies will have such large variances that
they are meaningless as estimates of the true expected log cell frequencies.
However, the model of complete independence has only 31 parameters,
and only, say, several hundred observations are necessary to get reason-
able estimates of the log cell frequencies. Thus, if the independence model
is true, the average precision of the MLEs log m̂i given independence is
more than thirty thousand times greater than the average precision of
the estimated log frequencies given the saturated model. Of course, be-
cause of the inevitable sparseness of such a table, it will be difficult to
test whether independence really holds.
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Chapter 3

Marginal homogeneity
models linear in the
expected frequencies

Marginal homogeneity models, which are used to model homogeneity of
correlated discrete distributions, and other models which are linear in
the expected frequencies are described in this chapter. These models are
generally not loglinear in terms of the expected joint frequencies, and,
therefore, methods other than the ones used in the previous chapter must
be used for estimation and testing. The purpose of this chapter is to
provide an overview of the most important literature on the marginal
homogeneity model.

In the introductory section 3.1, a short explanation of marginal ho-
mogeneity is given, and the notation is presented. Subsequently, max-
imum likelihood estimation is described in Section 3.2. The existence
and uniqueness of maximum likelihood estimates is proven, and several
estimation algorithms are presented. Two alternatives to maximum like-
lihood are considered in Section 3.3, namely, the minimum discrimina-
tion estimation method, and minimum modified chi-squared estimation.
Testing goodness-of-fit and the asymptotic distribution of MLEs of the
expected joint frequencies is described in Section 3.4. Finally, the meth-
ods are illustrated with an example.

35
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Grade of left eye
Highest Second Third Lowest Total

Grade of right eye
Highest 1520 266 124 66 1976
Second 234 1512 432 78 2256
Third 117 362 1772 205 2456
Lowest 36 82 179 492 789
Total 1907 2222 2507 841 7477

Table 3.1: Unaided distance vision for women (Stuart, 1955)

3.1 Introduction and notation

Consider the data in Table 3.1. For a group of 7477 women, the qual-
ity of the left and right eyes were classified into four categories. This is
a classic example, originally analyzed by Stuart (1955). He was inter-
ested in testing the hypothesis that, in the population, the quality of the
left and right eye are the same. In other words, the question is whether
the marginal distributions of Table 3.1 are identical. The corresponding
model is referred to as the marginal homogeneity (MH) model. Denoting
the expected count of subjects with category i for the right eye and cate-
gory j for the left eye as mij , the hypothesis of MH can be written using
the equation

mi+ = m+i ∀i, (3.1)

where the “+” denotes summation over the appropriate subscript.
The MH model for two dimensions, as defined by constraint 3.1, can

be generalized to MH for higher dimensional tables. For three variables,
e.g., three points in time, MH of the one-dimensional marginals can be
represented using the formula

mi++ = m+i+ = m++i ∀i.

Two alternative types of MH for three-way tables can be represented
using constraints such as

mij+ = m+ij ∀i, j
mij+ = m+ij = mi+j ∀i, j.
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The first model may be applied, for instance, in panel studies if one is
interested in knowing whether change is constant, i.e., if the turnover
from time 1 to time 2 is the same as the turnover from time 2 to time 3.
Many other variations of the MH model are possible and generalization
to higher-dimensional tables is straightforward.

In general, MH models are not loglinear, but linear in the expected
joint frequencies. Only for the 2 × 2 table is the MH model loglinear.
In this case, MH is identical to symmetry which can be characterized by
the single constraint m12 = m21. In loglinear form, this is written as
logm12 = logm21.

It should be noted that all MH models considered above are defined
using linear constraints on the expected frequencies. More generally, for
t expected cell frequencies m1, . . . ,mt, a set of c linear constraints can be
written as

t∑
i=1

cijmi = dj ∀j, (3.2)

where cij and dj ≥ 0 are constants. Let C be the matrix with elements
cij , d the vector with elements dj , and m the vector with elements mi.
Then the linear constraints (3.2) can be written in matrix notation as

C′m = d. (3.3)

To illustrate the matrix notation, consider MH for a 3 × 3 table. The
constraints can be written equivalently using three equations or a single
matrix equation as follows:

m1+ −m+1 = 0
m2+ −m+2 = 0
m3+ −m+3 = 0

 ⇐⇒

 0 1 1
0 −1 0
0 0 −1

−1 0 0
1 0 1
0 0 −1

−1 0 0
0 −1 0
1 1 0

m =

 0
0
0

 ,
where m = (m11,m12,m13,m21,m22,m23,m31,m32,m33)′. Note that any
row in matrix C′ is a linear combination of the other two, so if any one
of them is deleted the same model is obtained.

In model equation (3.3), any of the sampling constraints described in
Section 2.1, which are linear constraints of the form W′m = W′n, can
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be included. For example, for a single multinomial sample, the sampling
constraint is the linear equation m+ = n+.

The constraints C′m = d are said to be consistent if a distribution
m, with mi > 0 for all i, satisfying them exists. A redundant constraint
is a linear combination of other constraints. A set of constraints is said
to be independent if it contains no redundant constraints. The number
of degrees of freedom for a model is equal to the number of independent
constraints, not counting the multinomial sampling constraints.

3.2 Maximum likelihood estimation

In this section, the likelihood equations and a proof of existence and
uniqueness of maximum likelihood estimates are given. Furthermore,
three algorithms for solving the likelihood equations are presented: a
maximization method similar to the Newton-Raphson method for log-
linear models (see Section 2.4.3), a minimization method, which finds
MLEs by reparameterizing a Lagrangian log likelihood in terms of La-
grange multipliers, and a “saddle-point method”, which finds a saddle
point of the Lagrangian log likelihood by solving the likelihood equations
simultaneously for Lagrange multipliers and the expected frequencies.

3.2.1 The likelihood equations

MLEs of the expected frequencies are found by maximizing the kernel
of the log likelihood function L = n′ log m − 1′m in terms of m subject
to the linear constraints (3.3). Sampling constraints, as described in
Section 2.1, can be included in the linear model constraints. Using a
vector of Lagrange multipliers λ, the MLE m̂ is a saddle point of the
Lagrangian log likelihood function

L = n′ log m− 1′m + λ′(C′m− d). (3.4)

Differentiating L with respect to log m and equating the result to zero
yields

∂L

∂ log m
= n−m + DmCλ = 0, (3.5)

where Dm is the diagonal matrix with the elements of m on the main
diagonal. (Note that differentiating with respect to log m and equating
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to zero yields the same result as differentiating with respect to m and
equating to zero.) Equation (3.5) and the constraint C′m = d determine
the MLE m̂.

Interestingly, from (3.5), the vector m can be expressed as an explicit
function of the Lagrange multiplier vector λ. One obtains

m =
n

1−Cλ
, (3.6)

where the division of vectors is done elementwise. Substituting this ex-
pression into the constraints (3.3) yields a set of equations in λ which
determine the MLE λ̂ independently of m̂.

Following Bennett (1967) and Bishop, Fienberg, and Holland (1975),
expression (3.6) will be written out explicitly for the models described in
Section 3.1. For square tables with constraints mi+ = m+i, (3.6) becomes

mij =
nij

1− (λi − λj)
. (3.7)

For three-way tables, with constraints mi++ = m+i+ = m++i, an expres-
sion for the MLEs, with Lagrange multipliers λi, µi, and νi, is

mijk =
nijk

1− (λi − λj)− (µj − µk)− (νk − νi)
. (3.8)

With constraints mij+ = m+ij and mij+ = m+ij = mi+j , the MLEs have
forms

mijk =
nijk

1− (λij − λjk)
and

mijk =
nijk

1− (λij − λjk)− (µij − µik)
respectively.

If the model specification is C′m = 0, where C′ is a contrast matrix,
a solution m̂ to equation (3.5) and C′m = 0 automatically satisfies the
multinomial sampling constraint 1′m = 1′n (which is identical to m+ =
n+ in scalar notation). This can be seen as follows. Suppose m satisfies
C′m = 0. Premultiplying (3.5) by 1′ yields

1′(n−m + DmCλ) = 1′(n−m) + m′Cλ = 1′(n−m) = 0.

Thus, the same fitting method can be used for both Poisson and multi-
nomial sampling.
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Existence and uniqueness of MLEs

To prove the existence and uniqueness of solutions m̂ and λ̂ to the linear
constraint C′m = d and equation (3.5), it will be assumed that ni > 0 for
all i, and that there exists an m with strictly positive elements satisfying
the model.

From (3.6), we define m as a function of λ, i.e.,

m(λ) =
n

1−Cλ
. (3.9)

Now λ̂ is a solution to C′m(λ) = d, such that mi(λ̂) > 0 for all i. Using
the Lagrange multiplier theorem (e.g., Bertsekas, 1982, p. 67), such a
solution must exist because of the concavity of the log likelihood and the
assumed consistency of the constraint C′m = d. Below, it is shown that
such a solution is unique.

Consider the set

C = {λ |1−Cλ > 0}.

It follows that λ̂ ∈ C, because otherwise mi(λ̂) would be negative or
undefined for some i. It is easily verified that C is a convex set. Now
consider L as a function of λ, i.e., L = L(m(λ),λ). Define q and Q as
the vector of first and the matrix of second derivatives of L with respect
to λ respectively, i.e.,

q =
∂L

∂λ
= C′m− d

Q =
∂L

∂λ∂λ′
= C′D−1

n D2
mC, (3.10)

where m is written short for m(λ). Since Q is positive definite for all
λ ∈ C, L is a convex function of λ on C. Thus, a stationary point of L is
a minimum of L. Because such a stationary point exists and C is convex,
L has a unique minimum λ̂. Furthermore, m̂ = m(λ̂) is uniquely defined
and has strictly positive elements.

In practice, there will often be zero observed cells in a contingency
table. In general, models linear in the expected frequencies do not have
unique MLEs in such cases. For instance, consider the model defined by
the constraint m1 = m2 + m3, with observations (n1, n2, n3) = (2, 0, 0).
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The MLEs are (m̂1, m̂2, m̂3) = (1, q, 1−q) for all q ∈ [0, 1], which is a solu-
tion that cannot be identified. The type of models for which the existence
and uniqueness of MLEs is still guaranteed when there are zero observed
cells still has to be investigated. In practice, no problems with identifi-
ability seem to occur for the marginal homogeneity models described in
Section (3.1), even when there are many observed zeroes.

3.2.2 A minimization method

In the proof of uniqueness of MLEs presented in the previous section, it
was shown that λ̂ is the minimum of L(m(λ),λ). This suggests the use
of a minimization algorithm to find λ̂. The Newton-Raphson algorithm
presented below was previously described by Madansky (1963), Bennett
(1967), Bishop (1975), and Haber (1985), though these authors did not
put the algorithm in the context of minimization.

Define the “updating” function

v(λ, step) = λ− step Q−1(C′m− d),

with Q defined by (3.10) and with

m = D[1−Cλ]−1n, (3.11)

where D[.] is the diagonal matrix with the elements of the vector in square
brackets on the main diagonal. Then, with appropriate initial estimates
λ(0), for instance, λ(0) = 0, the following iterative scheme can be used:

λ(k+1) = v(λ(k), step(k)),

for k = 0, 1, . . ., and with appropriate values of step(k). The step size
step(k) has to be taken small enough so that the log likelihood function
L(m(λ),λ) decreases and successive estimated frequencies remain posi-
tive, i.e., so that λ(k+1) ∈ C. Since this is a minimization method on a
convex domain, the N-R method is guaranteed to converge if all ni > 0.

Of course, in many practical situations there will be observed zeroes.
One problem with the method is that zero observed cells are estimated as
zero because of (3.11), while the MLEs are not necessarily zero. In some
cases this problem can be overcome by adding a small constant to a zero
observed cell (say 10−8), though this may have serious undesirable effects
on the estimates m̂. Additionally, adding a constant yields a potentially
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serious numerical problem for the method described above. This can be
illustrated as follows. Consider the MH model for square tables, with
nij = 0 for a certain i and j, and

m̂ij ≈
ε

1 + λ̂i − λ̂j

with ε as the added constant. Now suppose that ε = 10−17, λ̂i = 0, and
λ̂j = 1− 10−17, so that m̂ij ≈ 1. On most computers, a number can only
be stored with precision up to a maximum of about 16 digits. Assuming
a precision of 16 decimal digits, λ̂j can be stored only as 1.00 . . . 00 or
as a 0.99 . . . 99, with just 15 0s or 16 9s after the dot respectively. Thus,
using the value ε = 10−17 gives a value of m̂ij of either 0 or 10 instead of
the desired value 1. In order to avoid numerical problems, therefore, the
constant that is added should not be too small relative to the numerical
precision of the computer system used.

3.2.3 A maximization method

In the previous section, the fact that the likelihood function can be written
as a function of the Lagrange multipliers λ, and that the MLE λ̂ is the
minimum value of the likelihood as a function of λ was presented. An
alternative method of finding MLEs is to reparameterize the likelihood
in terms of model parameters β, and then maximize the likelihood in
terms of β. In the literature, two methods have been proposed which use
this approach to find MLEs: a method by Gokhale (1973) and the Fisher
scoring method (see Agresti, 1990, p. 449–451).

The constraint equation C′m = d can be rewritten using model pa-
rameters β in the following way:

m = C−d + Xβ, (3.12)

where C− is a generalized inverse of C′ (i.e., C′C− = I), X the orthogonal
complement of C (i.e., C′X = 0), and β a vector of unknown parameters.
For example, one can use

C− = C(C′C)−1

X = I−C(C′C)−1C′. (3.13)
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The choice of C− and X does not affect the results. Matrix X is square
and not of full column rank. If a matrix of full column rank is needed,

X = (I−C(C′C)−1C′)U (3.14)

can be used, where U is a random I × (I − df) matrix. Then, with
probability 1, X is of full column rank. For completeness, it is noted that,
for the MH model, Firth (1989) and Lipsitz, Laird, and Harrington (1990)
gave specific methods for finding X, without resorting to formulas (3.13)
or (3.14). However, it seems simpler to use one of the formulae. For some
models it may be awkward to find values for βk yielding strictly positive
values for all mi.

Both Gokhale’s method and Fisher scoring are gradient methods. The
search direction used by Gokhale is simply the first derivative vector of
the log likelihood function. Fisher scoring is a modification of N-R, and
uses minus the inverse of the expected value of the matrix of second
derivatives of the log likelihood function as a search direction. Let L be
the kernel of the log likelihood function, i.e.,

L = n′ log m− 1′m.

The first and second derivatives of L with respect to β are

∂L
∂β

= X′D−1
m (n−m) (3.15)

∂2L
∂β∂β′

= −X′D−2
m DnX.

Every element of the matrix of second derivatives is a linear function of
n, which has expected value m. Thus, the expected value of the matrix
of second derivatives is

E

(
∂2L
∂β∂β′

)
= −X′D−1

m X. (3.16)

Both Gokhale’s method and Fisher scoring use (3.15) as a search direction
for β. Define the “updating” functions u and v as

u(β, step) = β + step X′D−1
m (n−m)

v(β, step) = β + step (X′D−1
m X)−1X′D−1

m (n−m)
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with m = m(β) = C−d + Xβ and step a positive number chosen such
that the likelihood increases, while the estimated frequencies must stay
strictly positive. One can start with step = 1 and, if the above conditions
are not satisfied, keep halving step until they are. Gokhale’s method and
Fisher scoring are, for k = 0, 1, . . .,

β
(k+1)
1 = u(β(k)

1 , step(k)
1 )

β
(k+1)
2 = v(β(k)

2 , step(k)
2 ),

respectively. A starting estimate β(0)
h has to be found such that the

corresponding frequencies (3.12) are positive.
Some disadvantages of the methods are that care has to be taken that

no out-of-range estimates are obtained, and for some models, it may be
difficult to find starting values for parameters such that the corresponding
cell frequencies are positive. In general, Fisher scoring requires fewer steps
to reach satisfactory convergence than Gokhale’s method.

For MH for square tables, it can be shown that Gokhale’s algorithm
can be written more simply as follows. Let f (k)

ij = nij/m
(k)
ij . Then, for

k = 0, 1, . . .,

m
(k+1)
ij = m

(k)
ij + step

(
2I(f (k)

ij − 1) + (f (k)
i+ − f

(k)
+i − f

(k)
j+ + f

(k)
+j )

)
.(3.17)

Taking m(0)
ij = 1 for all i and j as starting values suffices.

3.2.4 A saddle point method

The MLE (m̂, λ̂) is a saddle point of the Lagrangian likelihood func-
tion (3.4). Below, a method for searching the saddle point is presented.
The method has the advantages that no out-of-range iterate estimates
are obtained and starting values are not difficult to find. “Saddle-point”
methods like the one proposed below were previously presented by Aitchi-
son and Silvey (1958; 1960) and Lang (1996a).

It is proposed that the updating function (A.14) in the appendix be
used. With

k =
∂L

∂ log m
= n−m B = E

(
− ∂2L
∂θ∂θ′

)
= Dm,
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function (A.14) reduces to

v(log m, step) = log m + step D−1
m (n−m + Cλ(m)),

where

λ(m) = −(C′DmC)−1(C′(n−m) + C′m− d)
= −(C′DmC)−1(C′n− d).

With appropriate starting values, for instance m(0) = n, the algorithm is

log m(k+1) = v(log m(k), step(k)) k = 0, 1, . . . .

The step size step(k) at iteration k must be chosen such that an appro-
priate distance function e(m(k)) for measuring distance from convergence
decreases, if possible. The function

e(m) = k′Dmk

can be used though this gives only a very rough indication of whether one
is on the right “track” to convergence. It will not be possible to obtain a
decrease of e(m) with every iteration, but over several iterations its value
must decrease.

3.2.5 Comparison of the methods

The number of iterations required by the minimization, Fisher scoring,
and saddle-point method seems to be approximately the same. For each
method, one matrix inversion is necessary, for which the number of rows
and columns is equal to the number of degrees of freedom for the model.
For many useful models, this number grows slowly with the number of
variables, and the inversion can be done very fast. Gokhale’s method
requires consistently more iterations than the other methods. However,
the latter method requires only one matrix inversion (or none if an explicit
expression for the matrix to be inverted can be found, as in (3.17) for
the MH model). Gokhale’s method is recommended only if the matrix
inversion is a bottleneck for computations.

A serious disadvantage of the minimization method is that a constant
must be added to zero observed cells. This has a potentially large effect
on estimated frequencies, and can give rise to serious numerical problems.



46 CHAPTER 3. MARGINAL HOMOGENEITY MODELS

Fisher scoring and the saddle-point method behave rather similarly. A
disadvantage of Fisher scoring is that it may be difficult to find appro-
priate starting estimates. A disadvantage of the saddle-point method is
that it is difficult to find a theoretically justifiable method for choosing a
step size. An advantage is that iterate estimates cannot be out-of-range.
The saddle point method will be generalized for use with a much broader
class of models in Section 5.1.

3.3 Alternatives to maximum likelihood estima-
tion

In the literature, two alternatives to maximum likelihood for estimating
expected cell frequencies given MH have been proposed: minimization of
the discrimination information and minimization of Neyman’s statistic.
An advantage of these estimates is that, in general, they can be calcu-
lated using simpler algorithms than those needed for maximum likelihood
estimation.

3.3.1 Minimizing the discrimination information

The discrimination information statistic (Kullback, 1959, p. 117–119) is
an alternative to the likelihood ratio test or Pearson’s chi-squared test for
testing goodness-of-fit of a model. Given estimated frequencies mij for a
certain model and observed frequencies nij , the discrimination informa-
tion is defined as

I =
∑
i,j

mij log
mij

nij
.

If the model under consideration is true, I has an asymptotic chi-squared
distribution, with degrees of freedom equal to the degrees of freedom
for the model. Minimum discrimination information (MDI) estimates
for a certain model are those frequencies mi satisfying the model that
minimize I.

For MH for square tables, Ireland, Ku & Kullback (1968) developed
an algorithm for calculating minimum discrimination information (MDI)
estimates, which is described below. An attractive property of the algo-
rithm is that it is simple and intuitive. In fact, it is strongly related to
IPF for loglinear models (Darroch & Ratcliff, 1972).
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Consider the marginal homogeneity model defined by the constraints
mi+ −m+i = 0, under multinomial sampling. With Lagrange multipli-
ers λi and τ , the MDI estimates can be found as a saddle point of the
Lagrange function

Iλ =
∑
i,j

mij log
mij

nij
−
∑
i

λi(mi+ −m+i)− τ(m++ − n++).

It should be noted that, contrary to ML estimation, the sampling con-
straint m++ = n++ is not automatically satisfied, so the term τ(m++ −
n++) must be included in Iλ. Differentiating Iλ with respect to mij and
equating the result to zero yields

∂Iλ
∂mij

= 1 + logmij − log nij − (τ + λi − λj) = 0.

It follows that

mij = nij exp(τ + λi − λj).

The Lagrange multipliers can be eliminated by noting that these equa-
tions are equivalent to

m11mij

mi1m1j
=
n11nij
ni1n1j

∏
k

mik

mki
=
∏
k

mik

mki
,

i.e., the observed odds ratios are reproduced. These equations together
with the constraints mi+ = m+i yield the MDI estimates. The estimates
thus have to satisfy a set of linear and multiplicative constraints simulta-
neously, and the so called generalized iterative scaling algorithm can be
used to find them. This yields the iterative scheme:

m
(k+1)
ij := γkm

(k)
ij

√√√√√m
(k)
+im

(k)
j+

m
(k)
i+m

(k)
+j

, (3.18)

where γk is a normalizing constant which should be chosen such that the
estimated frequencies add up to N . As starting values the observed fre-
quencies nij can be taken. When estimated frequencies are found, they
can be substituted in I to obtain an asymptotic chi-squared test. A disad-
vantage of MDI estimation is that zero observed frequencies are estimated
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as zero. However, it is not known whether this affects the chi-squared ap-
proximation of I very negatively. An interesting property of the MDI
estimates is that m̃ii ≥ nii. Ireland, Ku, and Kullback (1968) described
the algorithm and proved convergence basically using the convexity prop-
erty of the discrimination information and the Cauchy-Schwarz inequality.
Darroch and Ratcliff (1972) showed that the algorithm is included in a
more general class of algorithms and gave a simplified proof of conver-
gence.

3.3.2 Minimizing Neyman’s statistic

In addition to maximum likelihood and minimum discrimination infor-
mation estimation, a third method of estimating expected frequencies is
by minimizing Neyman’s statistic (Neyman, 1949). An advantage of the
latter method is that closed form solutions for the estimates are obtained.
Bhapkar (1966) showed that estimates obtained by minimizing Neyman’s
statistic are the same as weighted least squares estimates.

Neyman’s statistic, also referred to as the modified Pearson’s chi-
squared (X2

mod) statistic, is

X2
mod =

∑
i

(ni −mi)2

ni
= (n−m)′D−1

n (n−m).

Minimizing Neyman’s statistic subject to the linear constraints C′m− d
can be done using the method of Lagrange multipliers. It should be noted
that, if (product) multinomial sampling is used, the sampling constraints
must be included in the model constraints. With a vector λ of Lagrange
multipliers, a saddle point is sought of

S = 1
2
(n−m)′D−1

n (n−m)− λ′(C′m− d).

(The 1
2

is introduced because it simplifies calculations later on.) Differ-
entiating S with respect to m and equating the result to zero gives

D−1
n m− 1−Cλ = 0. (3.19)

From this equation, m can be written in terms of the unknown λ:

m = n + DnCλ. (3.20)
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Substituting this expression into the linear constraints yields the following
equation in terms of λ.

C′n + C′DnCλ− d = 0. (3.21)

From (3.21), λ can be derived:

λ = −(C′DnC)−1(C′n− d). (3.22)

The estimated frequencies will be denoted by m̃. Substituting (3.22)
into (3.20) yields m̃:

m̃ = n−DnC(C′DnC)−1(C′n− d). (3.23)

There are some drawbacks to these estimates. First, from (3.23) it follows
that, if ni = 0, then m̃i = 0 as well. Second, estimated frequencies may
be negative.

Substituting the estimates m̃ into X2
mod yields the asymptotic chi-

squared statistic

X2
mod = (n−m)′D−1

n (n−m)
= λ′C′DnCλ

= (C′n− d)′(C′DnC)−1(C′n− d). (3.24)

The number of degrees of freedom is equal to the column rank of C
(not counting multinomial sampling constraints). It should be noted that
the sample size is not automatically reproduced, and, with (product)
multinomial sampling, the sampling constraints should be included in
the model constraints.

3.4 Assessing model goodness-of-fit

3.4.1 Chi-squared test statistics

When estimated expected frequencies satisfying the model have been ob-
tained, the chi-squared statistics described in Section 2.5.1, the discrim-
ination information, or Neyman’s statistic can be used to test goodness-
of-fit. The number of degrees of freedom is equal to the number of inde-
pendent constraints of the model.
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The Pearson chi-squared statistic has a special form, which will be
derived next. First note that, from (3.5),

n− m̂ = −Dm̂Cλ̂.

Premultiplying both sides of this equation by −(C′Dm̂C)−1C′ yields

λ̂ = −(C′Dm̂C)−1C′(n− m̂),

so that

n− m̂ = Dm̂C(C′Dm̂C)−1C′(n− m̂).

Thus, since C′m̂ = d,

X2 = (n− m̂)′D−1
m̂ (n− m̂) = (n− m̂)′C(C′Dm̂C)−1C′(n− m̂)

= (C′n− d)′(C′Dm̂C)−1(C′n− d). (3.25)

To use the Wald statistic, no estimated frequencies are needed. For
testing a hypothesis h(m) = 0, the Wald statistic has the form

W 2 = h(n)′Σ(h(n))−1h(n),

with Σ(h(n)) an estimate of the covariance matrix of h(n). This statistic
was used by Stuart (1955) and Bhapkar (1966) to test for MH. Their tests
differ because they estimated Σ(h(n)) differently. Stuart only described
a test for MH for square tables, which was difficult enough to evaluate,
given the state of the art in computing in the mid-fifties. For an I × I
table, with hi = ni+ − n+i and with i, j < I, he estimated the covariance
between hi and hj as

cov(hi, hj) =

{
ni+ + n+i − 2nii i = j
−(nij + nji) i 6= j

.

This is the sample value of the MLE of the covariance between hi and hj
under multinomial sampling, assuming MH holds (Stuart, 1955). Alter-
natively, cov(hi, hj) can be interpreted as the sample value of the MLE of
the covariance between hi and hj under Poisson sampling, without assum-
ing MH. Note that the test does not use the diagonal counts. Denoting
Stuart’s test for an I × I table by S2

I , yields

S2
2 =

(n12 − n21)2

n12 + n21
.
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for a 2× 2 table. This test is best known as McNemar’s test (McNemar,
1947). Explicit formulae for Stuart’s test for 3× 3 and 4× 4 tables were
given by Fleiss and Everitt (1971). Fryer (1971) showed how Stuart’s test
could be generalized to the multi-dimensional case. In matrix notation,
a generalization of Stuart’s test for models involving linear constraints is

S2 = (C′n− d)′(C′DnC)−1(C′n− d),

where the multinomial sampling constraints are not included in the model
constraints. Note that S2 is identical to the sample value of (3.25). It is
of the same form as the minimum modified chi-squared statistic (3.24),
with the difference that there the multinomial sampling constraints are
included.

Bhapkar estimated the covariance matrix of h(n) differently, namely
as

cov(hi, hj) =

{
ni+ + n+i − 2nii − (ni+ − n+i)2 i = j
−(nij + nji)− (ni+ − n+i)(nj+ − n+j) i 6= j

.

This is the sample value of the MLE of the covariance between hi and hj
under multinomial sampling without assuming MH. As it is hard to see
why the diagonal counts should have a large influence on goodness-of-fit
of MH, Stuart’s test seems preferable. Denoting Bhapkar’s test as B2,
Bennett (1967) showed that the following relationship holds between the
two statistics.

B2 =
S2

1− S2/n++
. (3.26)

It follows that B2 > S2. Krauth (1985) did some simulations for the 3×3
table, and found that B2 tends to be liberal, while S2 was sometimes
conservative, sometimes liberal. Thus, it seems better to compare the
tests, rather than use one of them blindly.

3.4.2 A conditional test for MH using standard loglinear
models

Sometimes a computer program for testing MH directly may not be avail-
able, while a program for testing various loglinear models is. In such cases,
the following conditional test for MH can sometimes be used.
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Caussinus (1965) described a conditional test for MH using the log-
linear model of quasi-symmetry (QS) and symmetry (S), which will be
defined below. He noted that

QS ∩ MH = S . (3.27)

A conditional test for MH against the alternative of QS can be obtained
by using an asymptotic partitioning of chi-squared.

The symmetry (S) model for a two-way table is defined by the con-
straint equations

mij = mji.

The sufficient statistics are nij+nji, and the MLEs are m̂ij = (nij+nji)/2.
Quasi-symmetry (QS) is defined by restricting the saturated model

logmij = λ+ λAi + λBj + λABij

by the constraints λABij = λABji . The sufficient statistics are nij +nji, ni+,
and n+i (Haberman, 1979, p. 490).

The sufficient statistics of QS are a linear combination of the marginal
frequencies, so, as demonstrated in Section 5.4.2, it follows that QS and
MH are asymptotically separable, meaning that a chi-squared statistic
can be asymptotically partitioned. That is, if symmetry holds, G2 can
asymptotically be partitioned as

G2(S) = G2(MH) +G2(QS).

The following conditional test of MH is obtained.

G2(MH) = G2(S)−G2(QS), (3.28)

based on df= I − 1. Asymptotically, if QS holds, the conditional test has
the same power as the unconditional one. A drawback of the conditional
test is that it can only be used if the hypothesis QS holds.

3.4.3 Asymptotic behaviour of MLEs

The asymptotic distribution of the MLE m̂ can be derived using the tech-
nique of Aitchison and Silvey, as described in Appendix A. If the model
C′m = d is true, m̂ has an asymptotic multivariate normal distribution,
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with mean converging to the population value of m, and an asymptotic
covariance matrix which can be estimated as

Σ(m̂) = Dm̂ −Dm̂C(C′Dm̂C)−1C′Dm̂.

It should be noted that multinomial sampling constraints should be in-
cluded in the model constraints to obtain the correct estimated covariance
matrix.

3.5 Example: Unaided distance vision

The methods discussed in this chapter are applied to the data in Table 3.1.
The observed frequencies, the MLEs, and the standardized residuals given
the marginal homogeneity model

mi+ = m+i i = 1, 2, 3, 4,

are presented in Table 3.2. Note that the observations on the diagonal
elements of the table are reproduced. The frequencies which minimize
the discrimination information statistic I and those which minimize Ney-
man’s statistic X2

mod given MH are presented in Table 3.3. It should be
noted that the three different types of estimates are remarkably similar.
The most conspicuous difference is that, in Table 3.3, the observations
on the main diagonal are not reproduced, but are equal to the observed
diagonal elements multiplied by a factor greater than one (1.0008 and
1.0016, respectively) for each of the two estimation methods. This is gen-
erally the case: for the MH model under multinomial sampling, the two
estimation methods yield estimated diagonal frequencies greater or equal
than the observed diagonal frequencies.

In Table 3.4, the values of the four different test statistics discussed in
this chapter are presented using estimates obtained with the three esti-
mation methods discussed above. Note that the values of all statistics are
very similar. For all statistics, the p-value is less than 1%. Though MH
does not yield a good fit, the difference between the marginal distributions
is not large: on average, the column totals differ from the corresponding
row totals by only 3.3%. This is the reason that the various estimators
and test statistics have similar values, which would not be expected if the
observed marginals were very different. It can be noted from Table 3.2
that the absolute values of the adjusted marginal residuals are greatest in
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1520 266 124 66 1976
(1520) (252.5) (111.8) (57.0) (1941.3)

0 1.47 2.73 3.18 2.39
234 1512 432 78 2256

(247.2) (1512) (409.4) (70.6) (2239.2)
-1.47 0 1.81 2.37 0.88

117 362 1772 205 2456
(131.3) (383.1) (1772) (195.3) (2481.7)

-2.73 -1.81 0 1.21 -1.36
36 82 179 492 789

(42.8) (91.6) (188.4) (492) (814.8)
-3.18 -2.37 -1.21 0 -2.03
1907 2222 2507 841 7477

(1941.3) (2239.2) (2481.7) (814.8) (7477)
-2.36 -0.90 1.34 2.06 0

Table 3.2: Observed data, maximum likelihood estimates (in brackets),
and adjusted residuals for the data of Table 3.1 given marginal homo-
geneity

1521.22 252.3 111.3 56.3 1941.1
1522.43 252.2 110.7 55.6 1941.0

247.1 1513.2 409.1 70.3 2239.6
246.9 1514.4 408.7 69.9 2240.0
130.6 382.9 1773.4 195.2 2482.1
129.9 382.6 1774.8 195.1 2482.5
42.2 91.2 188.3 492.4 814.1
41.8 90.7 188.2 492.8 813.5

1941.1 2239.6 2482.1 814.1 7477
1941.0 2240.0 2482.5 813.5 7477

Table 3.3: Minimum discrimination information (top) and minimum
modified chi-squared estimates (bottom) for the data of Table 3.1 given
marginal homogeneity
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Test statistics
Estimation method G2 I X2

mod X2

Maximum likelihood 11.987 12.027 12.089 11.970
min. discr. inform. estim. 12.015 11.998 12.003 12.053
min. X2

mod estimation 12.100 12.027 11.976 12.197

Table 3.4: Chi-squared statistics with different estimation methods for
the data of Table 3.1 given marginal homogeneity (df=3)

the first and last categories. Additionally, the adjusted residuals become
greater in absolute value towards the upper left and lower right corners.
For marginal homogeneity to hold, there are too many observations in
the category “Highest” for the right eye and in the category “Lowest” for
the left eye. This indicates that lack of fit may be caused by the right
eye being on average slightly better than the left eye.
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Chapter 4

Marginal models

Two distinct types of models were discussed in the previous two chapters.
Chapter 2 demonstrated how the joint distribution of a set of variables can
be modelled using loglinear models. In Chapter 3, models which induce
linear constraints on expected frequencies were presented. The latter
models are most useful for testing whether there are differences in various
marginal distributions. The aim of this chapter is to discuss extensions
which are relevant for categorical data analysis of both types of models.
To this end, a class of models referred to as marginal models is introduced.
Though marginal models can also be used to model the joint distribution
of a set of variables, the emphasis is on modelling marginal distributions.
The three main applications of marginal models are distinguished below.

Firstly, marginal models provide alternatives to the loglinear models
of Chapter 2 for modelling the joint distribution of several variables. For
example, global odds ratio models can, in certain cases, be used in place
of loglinear models (Dale, 1986; Molenberghs & Lesaffre, 1994). Further-
more, the association between two variables may be modelled by means
of the measure gamma (Agresti, 1984) instead of odds ratios, as in the
loglinear modelling approach. Association is but one aspect of the joint
distribution of variables; many other aspects may be of interest. One
example is agreement, which can be modelled by means of the measure
of agreement kappa (Cohen, 1960).

The second reason for using marginal models is to provide extensions
of the marginal homogeneity models of Chapter 3. The models of Chap-
ter 3 are mostly used for testing equality of various marginal distributions.

57
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However, it may be useful to test whether specific aspects of marginal dis-
tributions are equal, rather than the complete marginal distributions. As
an example, consider a four-way table ABCD. Using the models pre-
sented in Chapter 3, it is possible to test whether the distributions of
AB and CD are equal. A weaker hypothesis is that the association in
tables AB and CD is equal. The latter can be tested by means of the
local odds ratios in AB and CD. Alternatively, other measures of as-
sociation can be used, such as global odds ratios, gamma, or Kendall’s
tau. The homogeneity of aspects other than association may also be of
interest, e.g., agreement, which can be tested for homogeneity using the
agreement measure kappa. Of course, attention need not be restricted to
the two-way marginal tables AB and CD. If A, B, C, and D are inter-
val level variables, the means of the respective variables may be tested
for equality. Furthermore, using a regression model, it is possible to test
whether some other relation between the means holds. In general, mod-
els for testing some form of homogeneity (not necessarily equality) among
marginal distributions are referred to as marginal homogeneity models.

Finally, the third application of marginal models is to provide a meth-
odology for simultaneously modelling different models of the types de-
scribed above. In a four-way table ABCD, a marginal homogeneity model
for tables AB and CD may be tested simultaneously with the restriction
that the linear by linear association model for the joint distribution of
table ABCD holds (Lang & Agresti, 1994). Even though sometimes the
different models may be fitted separately, there can be several statistical
advantages to simultaneous fitting.

Summarizing, marginal models can be used to model the joint dis-
tribution of a set of variables, various types of marginal homogeneity,
and simultaneous models. Some readers may find the term “marginal
model” not entirely appropriate. However, a large body of literature is
accumulating in which this term is used in a similar sense. For instance,
Liang, Zeger, and Qakish (1992), Molenberghs and Lesaffre (1994), and
Becker (1994) used the term “marginal models” to refer to various log-
linear models for marginal (or sums of) frequencies. Besides being useful
for modelling different forms of marginal homogeneity, an important fea-
ture of this latter type is that it can also be used to model the joint
distribution of a set of variables. To be consistent with the literature, the
models introduced in this chapter are also referred to as marginal models.
However, those considered here are much more general than the marginal
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models discussed by the aforementioned authors. This is mainly because
measures which are not of a loglinear type, such as gamma or kappa, can
also be modelled.

A general equation for representing marginal models is given in Sec-
tion 4.1. In Section 4.2, it is shown how marginal models can be applied.
Several measures which are commonly used in categorical data analysis
for summarizing aspects of the joint distribution of variables are described
in Section 4.3, and a convenient matrix notation for implementing these
measures is presented. Finally, the marginal modelling approach is illus-
trated by an example in Section 4.4. A description of methods for fitting
and testing marginal models is dealt with in the next chapter.

4.1 Definition of marginal models

Consider an I1× . . .× IQ contingency table A1 . . . AQ with expected joint
frequencies mi1...iQ . A marginal model is a model for marginal frequen-
cies. A marginal frequency is defined as a frequency formed by (partial)
summation over certain indices of the expected frequencies mi1...iQ . For-
mally, let Iq = {iq1, . . . , iqhq} ⊆ {1, . . . , Iq} (1 ≤ hq ≤ Iq) be a subset of
the indices of variable Aq (q = 1, . . . , Q). A marginal frequency is formed
by summing the expected joint frequencies over the subsets of indices Iq:

µ =
∑
i1∈I1

. . .
∑

iQ∈IQ

mi1...iQ . (4.1)

By way of illustration, consider a 3×3×3 table with expected frequencies
mijk. Let I1 = {1, 2}, I2 = {2}, and I3 = {1, 2, 3}. The marginal
frequency formed by summing over these index sets is∑

i∈{1,2}

∑
j∈{2}

∑
k∈{1,2,3}

mijk = m12+ +m22+.

It is important to note that using this definition, joint frequencies are
also marginal frequencies. With r =

∏
q Iq, the expected frequencies of

an I1× . . .×IQ contingency table can be arranged in an r×1 vector m of
expected joint frequencies. A marginal frequency µ, as defined above, is
a sum of elements of m. Thus, an s× 1 vector µ of marginal frequencies
µi can be represented by the formula

µ = M′m,
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where M is an r × s matrix of zeroes and ones. However, the results
derived in the sequel also apply when M consists of arbitrary nonnegative
elements.

For a vector of marginal frequencies µ, consider a collection of mea-
sures ζi(µ) (i = 1, . . . , z). A marginal model is defined by the equation

gi(ζi(µ)) =
∑
j

xijβj i = 1, . . . , z. (4.2)

Using the generalized linear models terminology, gi is a link function. The
β parameters are unknown, and the xij are known covariates. There may
be no covariates, in which case the right hand side of equation (4.2) is
zero. Let ζ(µ) be the z× 1 vector of measures with ith element ζi(µ). In
matrix notation, the marginal model equation is

g(ζ(µ)) = Xβ, (4.3)

where X may be a zero matrix. Since the µi may be correlated, and since
ζi(µ) may be a complicated function of µ, marginal models are, in general,
not special cases of generalized linear models (McCullagh & Nelder, 1989),
and therefore the fitting and testing methods developed for the latter
models cannot be used. The testing and fitting methods described in the
next chapter are only applicable when g and ζ are “smooth” functions,
in the sense that they are differentiable over the relevant part of the
parameter space.

Equation (4.3) can be used to model a specific property (or aspect)
of a (marginal) distribution. It is necessary that this property be sum-
marizable by a set of one or more numbers (or measures). For instance,
association can be summarized using a set of odds ratios or using gamma.
Various measures commonly used in categorical data analysis for summa-
rizing different aspects of a distribution are described in Section 4.3.

Since a linear predictor Xβ is used in equation (4.3), it is appropriate
that a link function maps a measure ζ monotonically onto the whole real
line. For instance, a Poisson expected frequency mi has range 0 < mi <
∞, so the log link can be used. The link function

g(ζ) = log
1 + ζ

1− ζ
(4.4)

maps the interval 〈−1, 1〉 monotonically onto the whole real line. This
link will be referred to as the log-hyperbolic link. Many useful measures ζ



4.2. APPLYING MARGINAL MODELS 61

have a range −1 ≤ ζ ≤ 1. If the values ζ = ±1 can safely be disregarded,
the log-hyperbolic link can be used. Several measures (such as gamma,
see page 77) which range from −1 to 1 are written naturally as

ζ =
A−B
A+B

(4.5)

for some functions A and B of frequencies. The maximum value ζ = 1
is attained when B = 0, the minimum value ζ = −1 is attained when
A = 0, and ζ = 0 when A = B. The log-hyperbolic link for measures
defined by (4.5) yields

g(ζ) = log
A

B
.

We can see that g transforms ζ into a logit.
The model specification (4.3) is very general. Unfortunately, this is

not without danger. Care should be taken that conflicting constraints are
not specified simultaneously. For instance, for a square table, the loglinear
model of symmetry, which implies marginal homogeneity, is inconsistent
with a constraint such as m1+ − m+1 = d, if d 6= 0. A given model
is consistent if there is at least one vector of frequencies m satisfying
the model. Many interesting models have the equiprobability model, for
which all cells have the same expected frequencies, as a special case. This
provides an easy test for consistency of a given model. However, if this
test fails, inconsistency is not implied. In general, testing consistency is
difficult.

4.2 Applying marginal models

In the previous section, marginal models were presented in a somewhat
formal manner. This section is intended to show in a less formal way how
marginal models can be used. Model equation (4.3) allows two distinct
types of models to be specified: those for describing the joint distribution
of a set of variables and marginal homogeneity (MH) models. Addition-
ally, several of these types can be specified simultaneously. In the three
subsections below, the various types of models are explicated. Occasion-
ally a reference will be made to Section 4.3, where definitions of different
measures are presented. In contrast, the emphasis here is on the kind of
models that can be constructed using these measures.
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4.2.1 Modelling the joint distribution

As explained in the introduction to this chapter, marginal models provide
extensions of the loglinear approach to modelling the joint distribution
of a set of variables. To see how loglinear models can be extended, it is
useful to remember that most interesting loglinear models can be phrased
as models for local odds ratios. This can be illustrated as follows. For an
I × J table, let ζ(1)

ij be the (i, j)th local odds ratio, i.e.,

ζ
(1)
ij =

mijmi+1,j+1

mi+1,jmi,j+1
.

(i = 1, . . . , I − 1, j = 1, . . . , J − 1). The independence model can be
phrased as a model for local odds ratios by the requirement that their
logarithms are zero, i.e., by the requirement that

log ζ(1)
ij = 0 ∀i, j. (4.6)

The independence model (4.6) has the same form as (4.3) with ζ(µ) a
vector consisting of the local odds ratios, g the log link function, and X
the zero matrix. The linear by linear association model (see Section 2.3.2)
can be phrased as a model for local odds ratios by the equation

log ζ(1)
ij = xijβ ∀i, j, (4.7)

where xij = (ai−ai+1)(bj−bj+1) for known ai and bj and β is an unknown
parameter.

The loglinear modelling approach can be extended by substituting the
ζ

(1)
ij in equations (4.6) and (4.7) by measures other than the local odds

ratios. For instance, for ordinal variables, it may be more appropriate to
use global odds ratios which are defined as

ζ
(2)
ij =

(∑
k≤i

∑
l≤jmkl

) (∑
k>i

∑
l>jmkl

)
(∑

k≤i
∑
l>jmkl

) (∑
k>i

∑
l≤jmkl

) ,
with 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1 (see also Section 4.3.5). Equating
all log global odds ratios to zero yields the independence model, and is
therefore equivalent to equating the log local odds ratios to zero. However,
defining the linear by linear association model (4.7) using global odds
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ratios yields a different model than the linear by linear model using local
odds ratios (Clayton, 1974; Wahrendorf, 1980; Anscombe, 1981). More
general models for global odds ratios were presented by Semenya and
Koch (1980, p. 103–118). In general, models for global odds ratios are not
loglinear in expected joint frequencies of the complete table, but rather
loglinear in sums of joint frequencies. This implies that, in general, the
fitting methods described in Chapter 2 cannot be used. Still other types
of odds ratios in addition to the two given above are described by Agresti
(1984).

Besides various types of odds ratios, many other measures have been
devised to measure association between two categorical variables. For in-
stance, gamma (see Section 4.3.5) can be used as a measure of association
for ordinal variables. Other aspects may also be modelled. For example,
for two variables which are ratings, a hypothesis about the strength of
agreement between two raters may be made. Provided one or more ap-
propriate measures describing an aspect of the joint distribution of a set
of variables can be found, this aspect can be modelled using model equa-
tion (4.3).

Finally, some specific methods are given which have been described
in the literature for modelling a joint distribution of dimensionality other
than two. For modelling a univariate “joint” distribution, Agresti (1990,
Chapter 9) provides an overview of several types of logit models. Molen-
berghs and Lesaffre (Molenberghs & Lesaffre, 1994) developed analogues
of global odds ratios for three or more dimensions.

4.2.2 Marginal homogeneity models

In the previous section, it was discussed how the joint distribution of a
set of variables can be modelled. In this section, marginal homogeneity
models, which are used to specify various forms of homogeneity of aspects
of marginal distributions are presented.

In Chapter 3, it was shown how equality of marginal distributions can
be modelled by imposing linear constraints on expected frequencies. The
hypothesis of complete equality is rather strong, and one may wish to
model some weaker form of homogeneity, in particular, homogeneity of
specific aspects of the marginal distributions. For example, in a four-way
table ABCD, there may be interest in testing homogeneity hypotheses for
tables AB and CD. Using the models in Chapter 3, it is possible to test
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whether AB and CD are identically distributed. A weaker homogeneity
hypothesis is whether the association between A and B is the same as the
association between C and D. This can be tested using an appropriate
measure of association, such as local or global odds ratios, or gamma.

More generally, for a set of T bivariate marginal tables, marginal ho-
mogeneity hypotheses other than the one asserting equality of association
may be tested. For instance, if the T tables represent points in time, it is
possible to test whether there is a linear decrease or increase in associa-
tion over time. To illustrate, there may be interest in how the association
between income and level of education changes over time. The hypothesis
can be tested that shortly after leaving school there is a relatively strong
association which decreases over time.

Of course, other aspects of marginal distributions can also be tested
for homogeneity. For univariate marginal distributions of interval level
variables, a regression model may be fitted for modelling homogeneity
of the means. When bivariate marginal distributions are ratings, one
may test for homogeneity of agreement between raters by testing whether
kappa is equal in different marginal tables.

Next, some simple but useful regression models for modelling marginal
homogeneity are presented. Suppose we are interested in a set of T
marginal distributions, denoted by µ(t). For instance, in a six-way table
ABCDEF , one may take µij(1) = mij++++, µkl(2) = m++kl++, and
µgh(3) = m++++gh. Suppose a certain aspect of marginal distribution
µ(t) is summarized by measures ζh(µ(t)) (h = 1, . . . , z). An aspect may
be summarized by a single measure or by a set of measures. For instance,
association may be summarized by the single measure gamma or by a set
of odds ratios. To specify a regression model using model equation (4.3),
an appropriate link function should be chosen for ζh(µ). Suppose the link
gh for ζh(µ(t)) (t = 1, . . . , T ) is chosen. Then let

ηh(t) = gh(ζh(µ(t))) ∀h, t.

A model asserting that ηh(t) is identical for all t can be represented by
the parameterization

ηh(t) = αh ∀h, t

where the αh are unknown parameters. A second model represents the
hypothesis that ηh(t) is a linear function of covariates xt. For known
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covariates xt and with model parameters αh and β, this model can be
specified using the equation

ηh(t) = αh + βxt ∀h, t.

If the distributions µ(t) represent equally spaced points in time, a sensible
choice of the covariates may be xt = t. Many other nonlinear regression
lines may be of interest in a specific situation. For instance, if the marginal
distributions represent points in time, one might entertain the hypothesis
that the value of a measure converges monotonically over time to an
unknown value α, with unknown initial deviation β, and known “rate”
k > 0. Then the model specified by the hyperbolic function

ηh(t) = αh + βx−kt ∀h, t

can be used.

4.2.3 Simultaneous modelling

Sometimes it can prove useful to test several of the models described
above simultaneously. For instance, in a table ABCD, homogeneity of
association between AB and CD may be tested given the additional re-
striction that the linear by linear interaction model holds for both tables
AB and CD. Sometimes the different models may be fitted separately,
and goodness-of-fit may be assessed separately for each model. An ad-
vantage of simultaneous fitting rather than separate fitting is that greater
efficiency of expected joint frequencies (i.e., the frequencies in the cells of
the complete table) is obtained.

However, the efficiency of fitted model parameters or marginal fre-
quencies is not necessarily improved by simultaneous modelling. In par-
ticular, if two models imply restrictions for two sets of orthogonal param-
eters respectively, the asymptotic standard errors of estimators of these
parameters are the same whether the models are fitted separately or si-
multaneously (see Appendix A.3). For instance, in a two-way table with
expected frequencies mij , the marginal frequencies mi+ and m+j are or-
thogonal to the local odds ratios (see Section 5.4.2). Efficiency of the
marginal frequencies is not improved by fitting a model for the odds ra-
tios, such as independence. Still, even in such cases, simultaneous fitting
may be preferable to separate fitting because of the greater efficiency of
estimated expected joint frequencies.
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4.3 Definition and representation of measures
for categorical data

In model equation (4.3), ζ(µ) may be any differentiable measure of fre-
quencies or probabilities. In this section, definitions of some widely used
measures for categorical data are presented, and it is shown how these
measures can be written in matrix notation. It should be noted that in
contrast to the previous section, modelling is not discussed here.

The reason for using matrix notation is the following. In order to
be able to use the fitting and testing methods of the next chapter, the
derivative matrix of ζ(µ) must be calculated. These derivatives can be
calculated directly by hand, but in many computer languages, automatic
differentiation is awkward to implement. It is then more convenient to
have a single general (matrix) formula with which many different mea-
sures can be represented. Only the derivative matrix of this formula needs
to be implemented without having to program rules for differentiation.
Kritzer (1977) gave matrix formulas for several measures of association.
His approach is generalized in Section 4.3.1. All measures are written in
terms of expected probabilities πi, instead of expected frequencies µi.

4.3.1 A recursive “exp-log” notation for representing mea-
sures

A convenient method for representing all measures described in this chap-
ter is formulated. The method of notation will be referred to as the
“exp-log” notation. To illustrate the basic idea of the “exp-log” notation,
consider the fraction (π1 + π2)/(π3 + π4). Using matrices this expression
can be written as

π1 + π2

π3 + π4
= exp(log(π1 + π2)− log(π3 + π4))

= exp

( 1 −1
)

log

(
1 1 0 0
0 0 1 1

)
π1

π2

π3

π4


 .

In general, any product of strictly positive terms involves exponentiating
the sum of the logarithms of the terms. Care must be taken to ensure
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that terms of which the logarithm is taken are positive. By repeated ap-
plication of an “exp-log” function as given above, all measures described
below can be obtained. A definition of “exp-log” functions is given below.
In the remaining part of this section, “sum” will be used for a possibly
weighted sum of terms, and “product” for a product of powers of terms.

First, the simplest nontrivial “exp-log” function is given. Let A be
an c0 × a0 matrix with elements aij ≥ 0, where it is assumed that every
column of A contains at least one nonzero element, and let C be an a0×c1

matrix with elements cjk. With π a c0 × 1 vector of strictly positive
parameters, a vector ζ(µ) which can be written in matrix notation as

ζ(π) = exp(C′ log A′π) (4.8)

is an “exp-log” measure of order 1. The elements of ζ(π) have the form

ζk(π) =
∏
j

(∑
i

aijπi

)cjk
. (4.9)

Using the log link, the marginal model equation (4.3) for measures of the
form (4.8) is specified by the equation

C′ log A′π = Xβ. (4.10)

If C′ is a contrast matrix, it can be verified that ζ(π) is a homogeneous
function of π (i.e., ζ(m) = ζ(π), see Appendix B.2). The model equa-
tion (4.10) was studied by Haber (1985), Lang and Agresti (1994), and
Lang (1996a). Special cases of (4.10) have been considered by McCullagh
and Nelder (1989, p. 219), Liang, Zeger, and Qakish (1992), Molenberghs
and Lesaffre (1994), Glonek and McCullagh (1995), and Becker (1994),
Many well-known measures can be written in the same form as (4.9).
These include various types of odds, such as adjacent-category, cumu-
lative, and continuation-ratio odds, various types of odds ratios, such
as local and global odds ratios, and conditional probabilities. In Sec-
tion 4.3.5, it is described how the matrices A and C for local and global
odds ratios can be obtained. The matrices for representing various types
of odds can be obtained from the matrices for the odds ratios.

Next, a generalization of (4.8) is considered. Suppose that, for i =
0, . . . , k−1, Ai and Ci are given ci×ai and ai×ci+1 matrices respectively,
where Ai contains only nonnegative elements, and each row of Ai contains
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at least one nonzero element. A function tk(π), with π a c0× 1 vector of
strictly positive parameters, can be defined recursively as

t0(π) = π (4.11)
ti+1(π) = exp[C′i log A′iti(π)] i = 0, . . . , k − 1. (4.12)

Thus, ti+1(π) is a product of sums of elements of ti(π). Note that mea-
sures defined by (4.8) are t1-functions. Forthofer and Koch (1973) de-
scribed some useful t2-functions.

All the measures defined below can be written as

ζ(π) = e′tk(π), (4.13)

for some k and some ck × 1 vector e. Vector e can be useful for defining
contrasts of tk functions, but e can also equal one or any other vector.
For a given vector of measures ζ(π), finding appropriate matrices Ai and
Ci such that ζ(π) = tk(π) as defined in (4.11) and (4.12) can be rather
tedious. It is shown below how this can be done for several widely used
measures.

The derivative matrix of ti(π) is straightforward. Define

Ti(π) =
∂ti(π)
∂π′

.

Writing ti and Ti for ti(π) and Ti(π), respectively, we can verify that

T0 = I

Ti+1 = Diag[ti+1] C′i Diag[A′iti]
−1A′i Ti i = 0, . . . , k − 1

where Diag[·] represents a diagonal matrix with the elements of the vector
in square brackets on the main diagonal. The derivative matrix of ζ(π)
with respect to π is

∂ζ(π)
∂π′

= E′Ti+1.

4.3.2 Homogeneity of measures

Consider a t×1 vector π and a measure ζ(π). The measure (or function)
ζ(π) is said to be homogeneous if ζ(π) = ζ(cπ) for all c > 0 (see also
Appendix D; note that homogeneity of functions is not related to marginal
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homogeneity). Homogeneity ensures that the same value of the measure
is obtained whether probabilities or frequencies are used in the argument.
In the next chapter, it will be demonstrated that homogeneity of measures
is also convenient for ML estimation, ensuring that the same algorithm
can be used for both Poisson and multinomial fitting.

The “exp-log” notation can be used to rewrite any measure which is
a function of probabilities as a homogeneous function by using the fact
that π+ = 1. Let ζ∗(π) = ζ(π/π+). Then ζ∗(π) = ζ∗(cπ), so ζ∗ is
homogeneous and has the same value as ζ(π) because π+ = 1. The term
π/π+ can be written using the “exp-log” notation as

1
π+
π = exp(logπ − log 1t1′tπ) = exp

[(
It −It

)
log

(
It

1t1′t

)
π

]
,

where 1t is the t × 1 vector with elements 1, and It is the t × t identity
matrix. Now, using the definitions (4.11) and (4.12), π/π+ = t1(π) with
A0 = (It 1t1′t) and C0 = (It − It)′. It follows that, if ζ(π) can be
written using the “exp-log” notation, so can ζ∗(π).

A measure specified in terms of probabilities can always be rewritten
so that the measure is a homogeneous function. Many measures are
already naturally written as a homogeneous function. For instance, the
logit function ζ(π) = π1/π2 is clearly homogeneous.

4.3.3 Marginal probabilities

Consider an I × J table with expected probabilities πij . Let π be the
vector with elements πij , ordered with the last index changing fastest.
That is,

π′ = (π11, . . . , π1J , π21, . . . , πIJ).

In the sequel, when this method of ordering indexed symbols is used, it
will be said that the symbols are ordered with the last index changing
fastest.

Below we will see how matrices Mr and Mc can be constructed so
that M′

rπ consists of the row marginals πi+ and M′
cπ consists of the

column marginals π+j . For i, k = 1, . . . , I and j, l = 1, . . . , J , let

qkl(i) =

{
1 k = i
0 k 6= i

rkl(j) =

{
1 l = j
0 l 6= j

.
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Then

πi+ =
∑
k,l

qkl(i)πkl π+j =
∑
k,l

rkl(j)πkl.

Let Q(i) and R(j) be the matrices with (k, l)th elements qkl(i) and rkl(j)
respectively. As an example, consider a 2× 3 table, with expected prob-
abilities π = (π11, π12, π13, π21, π22, π23)′. Then

Q(1) =

(
1 1 1
0 0 0

)
Q(2) =

(
0 0 0
1 1 1

)

R(1) =

(
1 0 0
1 0 0

)
R(2) =

(
0 1 0
0 1 0

)
R(3) =

(
0 0 1
0 0 1

)
.

Let qi be the vector with elements qkl(i), and let rj be the vector with
elements rkl(j), both ordered with the last index changing fastest. Now
if Mr has ith column qi and Mc has ith column rj , M′

rπ consists of
the row totals πi+ and M′

cπ consists of the column totals π+j . With
M = (Mr,Mc), the row and column marginals are the elements of M′π.
For a 2× 3 table,

M′π =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





π11

π12

π13

π21

π22

π23


=


π1+

π2+

π+1

π+2

π+3

 .

4.3.4 The difference of proportions

Consider an I × J contingency table AB. The conditional probability
of an observation being in column k, given it is in row i, is denoted as
πk|i. The conditional probabilities of response k for rows i and j can be
compared using

εijk = πk|i − πk|j =
πik
πi+
− πjk
πj+

.

The variables A and B are independent if εijk = 0 for all i, j, and k, or
equivalently, if εij0k = 0 for all i and k with j0 fixed. Using the “exp-log”
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notation, the vector of conditional probabilities πk|i can be expressed as

exp(logπ −Mr log M′
rπ) = exp

[(
I −Mr

)
log

(
I

M′
r

)
π

]
,

where Mr is such that M′
rπ produces the row probabilities, as defined

in 4.3.3.

4.3.5 Measures of association

For an I × J contingency table, association may be measured in many
different ways. Odds ratios provide a set of numbers describing associ-
ation in the table. Other measures summarize association by a single
number. Below, two types of odds ratios, some summary measures of
association for ordinal variables, and Pearson’s correlation coefficient,
which describes association for interval level variables, are presented.
Agresti (1984, Chapter 9) gave an overview of some important measures
of association for ordinal variables. Goodman and Kruskal (1979) repub-
lished some of their most important articles on measures of association
in a book.

Local and global odds ratios

The (i, j)th local odds ratios ζ(1)
ij and global odds ratios ζ(2)

ij are defined
as

ζ
(1)
ij =

πi,j πi+1,j+1

πi,j+1 πi+1,j
ζ

(2)
ij =

(∑
k≤i

∑
l≤j πkl

) (∑
k>i

∑
l>j πkl

)
(∑

k≤i
∑
l>j πkl

) (∑
k>i

∑
l≤j πkl

) , (4.14)

for 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1. Local odds ratios describe
the relative magnitudes of “local” association in the table. For a 2 ×
2 table, there is only one local odds ratio which is a measure for the
overall association. Global odds ratios are designed for use with ordinal
variables. They describe associations that are “global” in both variables.
For more information on local, global, and other types of odds ratios, see
Agresti (1984, p. 15–23).

Representing local and global odds ratios in the “exp-log” notation
can be done as follows. Let ζ(1)(π) be the vector of local odds ratios and
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ζ(2)(π) be the vector of global odds ratios. To write these vectors in the
“exp-log” notation, define the following weights,

q
(1)
kl (i, j) =

{
1 k = i, l = j
0 other cases

q
(2)
kl (i, j) =

{
1 k ≤ i, l ≤ j
0 other cases

r
(1)
kl (i, j) =

{
1 k = i, l = j + 1
0 other cases

r
(2)
kl (i, j) =

{
1 k ≤ i, l > j
0 other cases

s
(1)
kl (i, j) =

{
1 k = i+ 1, l = j
0 other cases

s
(2)
kl (i, j) =

{
1 k > i, l ≤ j
0 other cases

t
(1)
kl (i, j) =

{
1 k = i+ 1, l = j + 1
0 other cases

t
(2)
kl (i, j) =

{
1 k > i, l > j
0 other cases

,

for all i, j, k, and l such that 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ I,
and 1 ≤ l ≤ J . Let Q(h)(i, j) (h = 1, 2, i = 1, . . . , I and j = 1, . . . , J)
be the I × J matrix with (k, l)th element q(h)

kl (i, j), and define R(h)(i, j),
S(h)(i, j), and T(h)(i, j) analogously. To illustrate for a 2× 3 table, as in
Section 4.3.3, we get

Q(1)(1, 1) =

(
1 0 0
0 0 0

)
Q(2)(1, 1) =

(
1 0 0
0 0 0

)

Q(1)(1, 2) =

(
0 1 0
0 0 0

)
Q(2)(1, 2) =

(
1 1 0
0 0 0

)

R(1)(1, 1) =

(
0 1 0
0 0 0

)
R(2)(1, 1) =

(
0 1 1
0 0 0

)

R(1)(1, 2) =

(
0 0 1
0 0 0

)
R(2)(1, 2) =

(
0 0 1
0 0 0

)

S(1)(1, 1) =

(
0 0 0
1 0 0

)
S(2)(1, 1) =

(
0 0 0
1 0 0

)

S(1)(1, 2) =

(
0 0 0
0 1 0

)
S(2)(1, 2) =

(
0 0 0
1 1 0

)

T(1)(1, 1) =

(
0 0 0
0 1 0

)
T(2)(1, 1) =

(
0 0 0
0 1 1

)

T(1)(1, 2) =

(
0 0 0
0 0 1

)
T(2)(1, 2) =

(
0 0 0
0 0 1

)
.
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Let q(h)
ij , h ∈ {1, 2}, be the IJ × 1 vector with elements q(h)

kl (i, j), ordered
with l changing faster than k, and let Q(h) be the IJ × (I − 1)(J − 1)
matrix with rows q(h)

ij , ordered with j changing faster than i. Define R(h),
S(h), and T(h) analogously. For a 2× 3 table,

Q(1)′ =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
Q(2)′ =

(
1 0 0 0 0 0
1 1 0 0 0 0

)

R(1)′ =

(
0 1 0 0 0 0
0 0 1 0 0 0

)
R(2)′ =

(
0 1 1 0 0 0
0 0 1 0 0 0

)

S(1)′ =

(
0 0 0 1 0 0
0 0 0 0 1 0

)
S(2)′ =

(
0 0 0 1 0 0
0 0 0 1 1 0

)

T(1) =

(
0 0 0 0 1 0
0 0 0 0 0 1

)
T(2)′ =

(
0 0 0 0 1 1
0 0 0 0 0 1

)
.

For an I ×J table, ζ(h)(π) (h = 1, 2) can be represented in the “exp-log”
notation as

ζ(h)(π) = exp


(

Iv −Iv −Iv Iv
)

log


Q(h)′

R(h)′

S(h)′

T(h)′

π
 , (4.15)

where v = (I − 1)(J − 1) and Iv is the v × v identity matrix.
For a 2× 3 table, we find

Q(1)′π =

(
π11

π12

)
Q(2)′π =

(
π11

π11 + π12

)

R(1)′π =

(
π12

π13

)
R(2)′π =

(
π12 + π13

π13

)

S(1)′π =

(
π21

π22

)
S(2)′π =

(
π21

π21 + π22

)

T(1)′π =

(
π22

π23

)
T(2)′π =

(
π22 + π23

π23

)
.
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With v = (2− 1)(3− 1) = 2, Iv =

(
1 0
0 1

)
, and h = 1, (4.15) becomes

ζ(1)(π) = exp


(

1 0
0 1

−1 0
0 −1

1 0
0 1

−1 0
0 −1

)
log


Q(1)′

R(1)′

S(1)′

T(1)′

π


= exp

[
log π11 − log π12 − log π21 + log(π22)
log π12 − log π13 − log π22 + log(π23)

]

=

 π11π22
π12π21

π12π23
π13π22

 .
With h = 2, (4.15) becomes

ζ(2)(π) = exp


(

1 0
0 1

−1 0
0 −1

1 0
0 1

−1 0
0 −1

)
log


Q(2)′

R(2)′

S(2)′

T(2)′

π


= exp

[
log π11 − log(π12 + π13)− log π21 + log(π22 + π23)
log(π11 + π12)− log π13 − log(π21 + π22) + log π23

]

=

 π11(π22+π23)
π21(π12+π13)

π23(π11+π12)
π13(π21+π22)

 ,
which are the odds ratios in the collapsed tables(

π11 π12 π13

π21 π22 π23

) (
π11 π12 π13

π21 π22 π23

)
.

Probabilities of concordance and discordance

For ordinal variables, many summary measures of association are based
on the probabilities of a pair of observations being concordant or discor-
dant. Suppose observations have been collected on a group of subjects
on variables A and B. A pair of observations is concordant if the mem-
ber that ranks higher on A also ranks higher on B, and discordant if the
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member that ranks higher on A ranks lower on B. Not all pairs of obser-
vations are concordant or discordant. A tie occurs when two observations
rank equally on at least one of the variables.

If the total number of observations is n++, then the total number of
pairs of observations is n++(n++ − 1)/2. Let C and D be the number of
concordant and discordant pairs respectively, and TA, TB, and TAB be the
numbers of pairs that are tied on A, B, and both A and B, respectively.
Then

1
2
n++(n++ − 1) = C +D + TA + TB − TAB.

In this formula, TAB is subtracted because pairs tied on both A and B
have been counted twice, once in TA and once in TB.

The probabilities of concordance and discordance Πc and Πd, that is,
the probability that a pair of observations is concordant or discordant
respectively, can be shown to be

Πc = 2
I−1∑
i=1

J−1∑
j=1

πij

∑
k>i

∑
l>j

πkl


Πd = 2

I−1∑
i=1

J−1∑
j=1

πi,j+1

∑
k>i

∑
l≤j

πkl

 .
The factor 2 occurs in these formulas because the first observation could
be in cell (i, j) and the second in cell (k, l), or vice versa. We can see
that Πc and Πd are sums of products of sums of probabilities, and can be
written using the “exp-log” notation. The probabilities of a tie on A, B,
and both A and B are

Πt,A =
∑
i

(πi+)2 Πt,B =
∑
j

(π+j)2 Πt,AB =
∑
i,j

π2
ij .

How can the probabilities be written using the “exp-log” notation?
Using the definitions of the Q, R, S, and T matrices as in Section 4.3.5,
the probabilities of concordance and discordance can be expressed as(

Πc

Πd

)
=

(
2 1′v exp(log Q(1)′π + log T(2)′π)
2 1′v exp(log R(1)′π + log S(2)′π)

)
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= 2(1′v ⊕ 1′v) exp


(

Iv Iv
)
⊕
(

Iv Iv
)

log


Q(1)′

T(2)′

R(1)′

S(2)′

π
 ,(4.16)

where v = (I − 1)(J − 1) and “⊕” represents the direct sum of matrices:

E1 ⊕E2 =

(
E1 0
0 E2

)
.

For a 2× 3 table, (4.16) reduces to

(
Πc

Πd

)
= 2

(
1 1 0 0
0 0 1 1

)
exp




1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

log



π11

π12

π22+π23

π23

π12

π13

π21

π21+π22





= 2

(
1 1 0 0
0 0 1 1

)
exp


log π11 + log(π22 + π23)
log π12 + log π23

log π12 + log π21

log π13 + log(π21 + π22)


= 2

(
π11(π22 + π23) + π12π23

π12π21 + π13(π21 + π22)

)
.

With Mr and Mc as defined in Section 4.3.3, the probabilities of a tie
are written as Πt,A

Πt,B

Πt,AB

 =

 1′I exp (2II log M′
rπ)

1′J exp (2IJ log M′
cπ)

1′IJ exp (2IIJ logπ)


= (1′I ⊕ 1′J ⊕ 1′IJ) exp

2 II+J+IJ log

 M′
r

M′
c

IIJ

π
 .
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Gamma

The association measure gamma is given by the formula

γ =
Πc −Πd

Πc + Πd
.

The range of values of gamma is −1 ≤ γ ≤ 1, with γ = −1 if Πc = 0
and γ = 1 if Πd = 0. If there is independence, gamma is zero, but the
converse is not true. If gamma is zero, the probabilities of concordance
and discordance are equal. An important aspect of gamma is that ties
are not counted. For a 2× 2 table, gamma simplifies to

γ =
π11π22 − π12π21

π11π22 + π12π21
,

which is also referred to as Yule’s Q.
Gamma can be written using the “exp-log” notation as

γ =
Πc −Πd

Πc + Πd
=

Πc

Πc + Πd
− Πd

Πc + Πd

= exp(log Πc − log(Πc + Πd))− exp(log Πd − log(Πc + Πd))

=
(

1 −1
)

exp

( 1 0 −1
0 1 −1

)
log

 1 0
0 1
1 1

( Πc

Πd

) .(4.17)

Since Πc and Πd can be written in “exp-log” notation, so can gamma,
using the recursive definition (4.11) and (4.12). Gamma can be written
in the form of (4.13) with e′ = (1,−1).

If a marginal model of the form (4.3) is defined using gamma, it is
recommended that the log-hyperbolic link function (4.4) be used because
gamma has the same form as (4.5). If this link is used, a logit model
is obtained for the ratio Πc/Πd, and out-of-range values cannot follow.
In this way, the models described by Schollenberger, Agresti, and Wack-
erly (1979) can be generalized. Interestingly, for a 2 × 2 table, the log-
hyperbolic link transforms gamma (or Yule’s Q) to the log odds ratio.

Somers’ d

A measure similar to gamma, but for which the pairs untied on A serve
as the base rather than pairs untied on both A and B, was proposed by
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Somers (1962). The population value of Somers’ d is

∆BA =
Πc −Πd

1−Πt,A
.

This expression is the difference between the proportions of concordant
and discordant pairs out of the pairs that are untied on A. This is an
asymmetric measure intended for use when B is a response variable.

Analogous to (4.17), ∆BA can be written using the “exp-log” notation
in the following way:

∆BA =
(

1 −1
)

exp


(

1 0 −1
0 1 −1

)
log

 1 0 0 0
0 1 0 0
0 0 1 −1




Πc

Πd

1′π
Πt,A


 ,

where 1′π =
∑
i πi = 1 (this is done so that a function of π is obtained:

“1” is not a function of π). Like gamma, Somers’ d can be written in the
form of (4.13) with e′ = (1,−1).

Kendall’s tau and tau-b

Another variant of gamma was proposed by Kendall (1945). Its popula-
tion version is

τb =
Πc −Πd√

(1−Πt,A)(1−Πt,B)

and is referred to as Kendall’s tau-b.
If there are no ties the common value of gamma, Somers’ d, and

Kendall’s tau-b is

τ = Πc −Πd.

This measure is referred to as Kendall’s tau, and was originally introduced
for continuous variables.

Analogous to (4.17), Kendall’s tau-b can be written in “exp-log” no-
tation as

τb =
(

1 −1
)
·
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exp


(

1 0 − 1
2
− 1

2

0 1 − 1
2
− 1

2

)
log


1 0 0 0 0
0 1 0 0 0
0 0 1 −1 0
0 0 1 0 −1




Πc

Πd

1′π
Πt,A

Πt,B



 .

Pearson’s correlation coefficient

For two random variables A and B, Pearson’s correlation coefficient rho
is defined as

ρ(A,B) =
cov(A,B)
σ(A)σ(B)

=
E(AB)− E(A)E(B)

σ(A)σ(B)
.

Rho can be a useful measure of association for two interval level variables
when these variables are linearly related.

In the “exp-log” notation, rho is written as

ρ(A,B) =
(

1 −1
)

exp


(

0 0 1 − 1
2
− 1

2

1 1 0 − 1
2
− 1

2

)
log


E(A)
E(B)
E(AB)
σ2(A)
σ2(B)



 .

The variances of A and B can be written as(
σ2(A)
σ2(B)

)
=

(
E(A2)−E(A)2

E(B2)−E(B)2

)

=

(
−1 1 0 0

0 0 −1 1

)
exp




2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 log


E(A)
E(A2)
E(B)
E(B2)


 .

Suppose A has I categories with scores ai and B has J categories
with scores bj , and let πij be the probability of an observation falling in
the (i, j)th cell of table AB. Then, for example, E(A) =

∑
i aiπi+. Let

Mr and Mc be such that M′
rπ and M′

cπ produce the row and column
totals respectively. Let a and a2 be the vectors with elements ai and a2

i

respectively, define b and b2 analogously, and let Dab′ be the diagonal
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matrix with elements aibj on the main diagonal (with j changing fastest).
Then the expected values that are used are:

E(A)
E(A2)
E(B)
E(B2)
E(AB)

 =



∑
aiπi+∑
a2
iπi+∑
bjπ+j∑
b2jπ+j∑
aibjπij

 =


a′M′

r

a2′M′
r

b′M′
c

b2′M′
c

1′Dab′

π.

Thus, rho is a “sum of products of sums of products of sums” of proba-
bilities, and can be written using the “exp-log” notation.

4.3.6 Measures of agreement

Suppose that both classifications in an I × I table have the same cate-
gories, listed in the same order. To assess the degree to which observations
cluster on the main diagonal of the table, one can compare the probability
Πo =

∑
i πii that an observation falls on the diagonal to the corresponding

probability Πe =
∑
i πi+π+i that would be expected if the variables were

independent. Cohen (1960) introduced the measure of agreement kappa,
defined as

κ =
Πo −Πe

1−Πe
=
∑
πii −

∑
πi+π+i

1−
∑
πi+π+i

.

Kappa equals one when there is complete agreement and zero when there
is independence.

A weighted version of kappa, introduced by Spitzer et al. (1967), can
utilize the distance of cells from the main diagonal and is more useful
for ordinal variables. With weights satisfying 0 ≤ wij ≤ 1, the weighted
agreement is Πo(w) =

∑
i,j wijπij and weighted kappa is defined as

κw =
Πo(w)−Πe(w)

1−Πe(w)
=
∑
i,j wijπij −

∑
i,j wijπi+π+j

1−
∑
i,j wijπi+π+j

.

Kappa is equal to weighted kappa with weights wij = 0 if i 6= j and
wii = 1 for all i. For weights wij = 1 − (i − j)2/(I − 1)2, suggested by
Fleiss and Cohen (1973), agreement is greater if more mass is in cells near
the main diagonal.
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How is kappa written for an I × I table in matrix notation? Let Mr

and Mc be defined as in Section 4.3.3. Additionally, let w be the I2 × 1
vector with elements wij . Then

Πo(w) =
∑
i,j

wijπij = w′π

Πe(w) =
∑
i,j

wijπi+π+j =
∑
i,j

wij exp(log πi+ + log π+j)

= w′ exp
(

Mr Mc

)
log

(
M′

r

M′
c

)
π.

To produce kappa from these probabilities, we can use

κ =
(

1 −1
)

exp

(
1 0 −1
0 1 −1

)
log

 0 1 0
0 0 1
1 0 −1


 1

Πo(w)
Πe(w)

 .
4.4 Example: modelling political survey data

Consider the data in Table 4.1. They are obtained from a national sample
of the Dutch electorate and pertain to the turnover in vote intention and
preference for prime minister between February 1977 and March 1977.
The observations in the two tables are dependent, as they involve the
same people. The full cross-classification of observations, turnover table
ABCD, is given in Table 4.2. Variables A and B represent vote intention
in February and March, respectively, and variables C and D represent
Preference for Prime Minister in February and March, respectively. Note
that the cell frequencies in Table 4.1 are formed by the marginal frequen-
cies of Table 4.2. Both variables Party Preference and Preference for
Prime Minister are classified into three categories. The Christian Demo-
cratic Party is considered to be the political center, while observations
on the category “other” consist mostly of voters for right-wing parties.
Thus, the variables may be considered as ordinal.

Below, we examine in what respects turnover in party preference is
similar to turnover in preference for prime minister. That is, the distri-
butions of tables AB and CD are compared. When testing homogeneity
hypotheses about AB and CD, it should be noted that the tables are
dependent. Hagenaars (1990) considered which characteristic is most
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(a) Vote Intention: February 1977 - March 1977
B. March
Left Chr. Dem. Other Total

A. February
1. Left Wing 350 9 26 385
2. Christ. Dem. 17 242 25 284
3. Other 51 43 337 431
Total 418 294 388 1100

(b) Preference for Prime Minister: February 1977 - March 1977
D. March
Left Chr. Dem. Other Total

C. February
1. Left Wing (Den Uyl) 410 16 49 475
2. Christ. Dem. (Van Agt) 19 111 42 172
3. Other 66 53 334 453
Total 495 180 425 1100

Table 4.1: Turnover in Political Preference in The Netherlands: February
1977 - March 1977 (source: Hagenaars, 1990)
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C 1 1 1 2 2 2 3 3 3
D 1 2 3 1 2 3 1 2 3 Total

A B
1 1 293 1 6 4 2 0 22 1 21 350
1 2 2 1 2 1 1 0 0 1 1 9
1 3 8 1 7 0 1 0 0 0 9 26

2 1 8 0 1 1 0 0 2 2 3 17
2 2 13 6 7 9 84 23 8 24 68 242
2 3 2 0 3 1 3 2 3 2 9 25

3 1 31 0 0 1 0 1 9 2 7 51
3 2 5 4 0 1 6 1 1 9 16 43
3 3 48 3 23 1 14 15 21 12 200 337
Total 410 16 49 19 111 42 66 53 334 1100
Note: The symbols A, B, C, and D have the same meaning as in
Table 4.1

Table 4.2: Vote Intention and Preference Prime Minister in The Nether-
lands (source: Hagenaars, 1990)
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Measure df G2 X2 p-value using G2

frequencies 8 132.29 111.98 0.00
local odds ratios 4 30.86 30.75 0.00
global odds ratios 4 71.01 63.77 0.00
gamma 1 1.73 1.72 0.19
Πc and Πd 2 82.79 73.24 0.00

Table 4.3: Results of testing whether various measures are identical in
tables AB and CD.

changeable, Party Preference or Preference for Prime Minister. Duncan
(1979, 1981) suggested conditional testing procedures to test various hy-
potheses asserting a similarity between tables AB and CD. Hagenaars
(1990, p. 169–176) applied these tests to various hypotheses about ta-
bles AB and CD. The conditional tests proposed by Duncan generalize
the conditional test for marginal homogeneity described in Section 3.4.2.
As mentioned there, one disadvantage of a conditional test is that the
hypothesis conditioned on must be approximately true. Additionally, a
conditional test does not yield expected cell frequencies. For these rea-
sons, the maximum likelihood fitting and testing methods described in the
next chapter, which are much more flexible than conditional testing pro-
cedures, are used below. It should be noted that a few models discussed
below can be represented by constraints which are linear in the expected
frequencies and that, therefore, the methods presented in Chapter 3 can
also be used to test such models.

To start comparing tables AB and CD, the most restrictive hypoth-
esis, that they are identically distributed, is tested. It can be seen in
Table 4.3, that this model yields a bad fit. A conspicuous difference be-
tween tables AB and CD is that the marginal distributions are different:
the marginal distribution of A differs from C, and B differs from D. Both
in February and March, the number of people who preferred the socialist
candidate Den Uyl is larger than the number of people who preferred a
left-wing party, whereas the opposite is true for the Christian Democratic
candidate Van Agt and the Christian Democratic Party. This reflects the
“empirical regularity” that, in general, a Prime Minister in office, Den
Uyl at that time, is more popular than his or her party, often even among
those who do not support the Prime Minister’s politics (Hagenaars, 1990,
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p. 172). However, the dissimilarity between the marginal distributions A
and C and B and D, respectively is not the only reason that the model
asserting equality of AB and CD yields a bad fit. The adjusted residuals
(see Section 5.4.3) presented in Table 4.4 indicate that a large portion
of the dissimilarity of tables AB and CD is caused by the large differ-
ence of the observed values in the cells of AB and CD with index (2, 2).
(The adjusted residuals, which have a standard normal distribution if the
model is correct, are 8.93 and −9.83, respectively.)

To investigate the similarity in turnover between AB and CD, the
differences in popularity of political parties and their respective leaders
can be disregarded. A weaker hypothesis than complete equality of the
distributions of AB and CD is that the association in tables AB and
CD is similar. Parsimonious models that can be used for testing this
hypothesis are those which assert equality of odds ratios. The following
two types of odds ratios can be used: local odds ratios and global odds
ratios (see Section 4.3.5). The test results presented in Table 4.3 indicate
strong lack of fit. A weaker model asserting homogeneity of association
can be tested using the model specifying that gamma is identical in the
two tables. This model fits well, though it is not very parsimonious with
df=1. The stronger hypothesis that both the probabilities of concordance
and discordance are equal in AB and CD was also tested, but does not
fit well at all. The adjusted residuals indicate that this lack of fit should
be ascribed to the large difference in the observed values of Πc. Inter-
estingly, homogeneity of gamma or homogeneity of Πd both fit well, but
the simultaneous model, which asserts that both Πc and Πd are equal in
tables AB and CD does not fit well at all. This demonstrates that very
different results can be obtained when fitting models simultaneously or
separately.

A different type of question relates to differences in the one-dimen-
sional marginal distributions A, B, C, and D. It is possible to test
whether there has been no net change in vote intention, preference for
prime minister, or both. It can be seen in Table 4.5, that the difference in
the marginal distribution of A and B is significant, while the difference in
the marginal distribution of C and D is not. There is no evidence for a net
change in preference for prime minister. Another question is whether net
changes in Party Preference are identical to net changes in vote intention.
This question may be answered by testing whether the differences A−B
and C−D are identical. It is reasonable to measure the differences using
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Table AB Table CD
index observed estimated adj. res. observed estimated adj. res.
Marginal frequencies
(1,1) 350 387.43 -5.41 410 387.43 3.26
(1,2) 9 12.48 -1.45 16 12.48 1.46
(1,3) 26 39.25 -3.29 49 39.25 2.42
(2,1) 17 16.17 0.30 19 16.17 1.02
(2,2) 242 179.66 8.93 111 179.66 -9.83
(2,3) 25 31.35 -1.65 42 31.35 2.77
(3,1) 51 55.95 -1.02 66 55.95 2.07
(3,2) 43 47.44 -1.01 53 47.44 1.26
(3,3) 337 330.27 0.83 334 330.27 0.46
Local log odds ratios
(1,1) 6.32 5.67 2.76 5.01 5.67 -2.32
(1,2) -3.33 -2.77 -2.16 -2.09 -2.77 2.45
(2,1) -2.83 -2.45 -1.98 -1.98 -2.45 1.90
(2,2) 4.33 3.60 4.91 2.81 3.60 -4.03
Global log odds ratios
(1,1) 4.56 4.12 3.27 3.69 4.12 -3.35
(1,2) 2.65 2.71 -0.37 2.57 2.71 -1.15
(2,1) 2.20 2.42 -1.77 2.45 2.42 -0.23
(2,2) 3.77 3.33 3.81 2.84 3.33 -4.13
Gamma

0.86 0.84 1.30 0.83 0.84 -1.34
Probabilities of concordance and discordance
Πc 0.263 0.244 5.24 0.225 0.244 -5.76
Πd 0.020 0.021 -0.82 0.021 0.021 0.05

Table 4.4: MLEs and adjusted residuals of various measures given homo-
geneity
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Model df G2 X2 p-val.(G2)
1. A = B 2 14.60 14.27 0.00
2. C = D 2 4.00 3.98 0.14
3. (1) ∩ (2) 4 16.36 15.92 0.00
4. A−B = C −D 3 1.82 1.81 0.61
5. (2) ∩ (a)∗ 3 5.83 6.01 0.12
6. (4) ∩ (a)∗ 4 4.29 4.22 0.37
7. (5) against (a)∗ 2 4.04 4.03 0.13
8. (6) against (a)∗ 3 2.59 2.57 0.30

Table 4.5: Test result for various models for tables AB and CD.
(*): (a) is the model asserting that gamma is identical in AB and CD
(see Table 4.3).

odds (i.e., to test whether P (A = i)/P (B = i) = P (C = i)/P (D = i),
i = 1, 2, 3). According to Table 4.5, there is no reason to reject this
hypothesis.

Apparently, the data do not allow a choice between the models as-
serting that there is no net change in preference for Prime Minister
(C = D) and that the net changes in both turnover tables are identical
(A−B = C−D), since both fit well but cannot simultaneously be true in
the population because there is a significant change in Party Preference
(A 6= B). The model specifying that gamma in table AB equals gamma
in table CD simultaneously fitted with C = D and A − B = C − D,
respectively, yields a good fit. Thus, still no choice between the latter
two models can be made. Finally, the conditional tests described in Sec-
tion 2.5.3 can be used to test the models against the alternative that
gamma is identical in the two tables. The test results presented in Ta-
ble 4.5 shows that neither conditional test yields a significant result.

To conclude, the stability of vote intention and preference for prime
minister do not differ significantly when measured in terms of gamma.
Both the local and global odds ratios do differ significantly, however.
Since the absolute values of the observed local log odds ratios in table
AB are all greater than the corresponding local log odds ratios in table
CD (see Table 4.4), there is evidence that vote intention is more stable
than preference for prime minister.
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Chapter 5

Fitting and testing marginal
models

In this chapter, methods for fitting and testing the goodness-of-fit of
the marginal models described in the previous chapter are presented. In
Section 5.1, a computationally simple and efficient maximum likelihood
fitting method is described. In Section 5.2, a regularity condition is given
for loglinear models for sums of frequencies. Regularity of a model is suffi-
cient to ensure that there is a unique vector of frequencies maximizing the
likelihood subject to the model constraints. The weighted least squares
method and generalized estimating equations approach are briefly pre-
sented in Section 5.3. Testing goodness-of-fit is considered in Section 5.4.
Finally, asymptotic behaviour of MLEs is described in Section 5.5.

5.1 Maximum likelihood estimation

A standard approach to maximum likelihood fitting of models for cate-
gorical data involves solving the score equations using iterative methods
such as Newton-Raphson or Fisher scoring. Such methods are very suit-
able for the loglinear models described in Chapter 2 (see Section 2.4), or
for the models linear in the expected joint frequencies described in Chap-
ter 3 (see Section 3.2.3). Several authors have proposed generalizations
of this approach to classes of marginal models (Dale, 1986; McCullagh
& Nelder, 1989, p. 216; Lipsitz et al., 1990; Becker & Balagtas, 1991;
Molenberghs & Lesaffre, 1994; Glonek & McCullagh, 1995). A Fisher

89
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scoring method can be used by reparameterization of the expected cell
frequencies in terms of “marginal” model parameters. However, a seri-
ous drawback of this approach is that this reparameterization is typically
computationally awkward and expensive. Additionally, it seems difficult
to generalize the approach to the complete class of marginal models as
defined in Section 4.1.

An alternative method, which has been discussed by Aitchison and Sil-
vey (1958, 1960), utilizes the Lagrange multiplier method for constrained
optimization. The model is viewed as inducing constraints on the ex-
pected cell frequencies, and the likelihood is maximized subject to these
constraints. Haber (1985), Lang and Agresti (1994), and Lang (1996a)
have shown how this approach can be applied to models for categorical
data. In particular, these authors considered loglinear models for sums of
frequencies, as defined by equation (4.10). A modified version of Aitchi-
son and Silvey’s method is given in Appendix A.2 . Below, this method
is applied to marginal models.

With n an r×1 vector of observations and m an unknown r×1 vector
of expected cell frequencies, which are all assumed to be strictly positive,
the kernel of the log likelihood function is

L(m) = n′ log m− 1′m. (5.1)

For the sampling distributions considered in Section 2.1, the vector of
expected frequencies m is either unconstrained, in the case of Poisson
sampling, or subject to the sampling constraint

W′m = W′n. (5.2)

The marginal model specification, presented in Section 4.1, is

g(ζ(µ)) = Xβ, (5.3)

where β is an unknown parameter vector, and µ = M′m is a vector
of marginal frequencies. It should be noted that the methods described
below also apply when µ is an arbitrary linear combination of frequencies,
provided ζ(µ) is properly defined. A precise description of the model
equation is given in the previous chapter. A maximum likelihood estimate
(MLE) m̂ is sought which maximizes L as a function of m subject to the
marginal model constraint (5.3) and, additionally, if the sampling scheme
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is not Poisson, subject to the sampling constraint (5.2). ML estimation
for Poisson sampling is simplest since there are no sampling constraints,
and is therefore discussed first.

5.1.1 Estimation given Poisson sampling

Following Lang (1996a), optimization is done by reparameterizing the
likelihood in terms of θ = log m (all mi being assumed to be positive).
The advantage of this choice for θ is that out-of-range iterate estimates
are avoided.

Before the Lagrange multiplier technique is used, the model equa-
tion (5.3) is rewritten as a constraint equation for θ = log m, i.e., the
vector of freedom parameters β is eliminated. Let U be the orthogonal
complement of X. Then (5.3) is equivalent to

h(θ) = U′g(ζ(µ)) = 0. (5.4)

It is assumed that h is differentiable. In the sequel, the derivative matrix
of h is needed. Define

H =
∂h′

∂θ
G =

∂g(ζ)′

∂ζ
Z =

∂ζ(µ)′

∂µ
. (5.5)

Note that G is a diagonal matrix with elements ∂gi(ζi)/∂ζi on the main
diagonal. Using the chain rule for matrix derivatives, matrix H is given
by the equation

H = DmMZGU.

Consider the Lagrangian log likelihood function

L(θ,λ) = n′ log m− 1′m + λ′h(θ)
= n′θ − 1′ exp(θ) + λ′h(θ).

Differentiating L with respect to θ and equating the result to zero yields

l(θ,λ) = n−m + Hλ = 0. (5.6)

Let θ̂ be a local maximum of L (see (5.1)) subject to the constraint
h(θ) = 0. A classical result (Bertsekas, 1982) is that if H(θ̂) is of full
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column rank, there is a unique λ̂ such that l(θ̂, λ̂) = 0. In the sequel, it
is assumed that the MLE θ̂ is a solution to the equations (5.4) and (5.6).

We propose using the updating function (A.14) for finding the MLE
θ̂. With

k =
∂L
∂θ

= n−m B = E

(
− ∂2L
∂θ∂θ′

)
= Dm,

equation (A.14) reduces to

v(θ, step) = θ + step D−1
m (n−m + Hλ(θ)),

where

λ(θ) = −(H′D−1
m H)−1(H′D−1

m (n−m) + h).

With appropriate starting values, for instance, θ(0) = log(n), the algo-
rithm is

θ(k+1) = v(θ(k), step(k)) k = 0, 1, . . . , (5.7)

with appropriate values of step(k). Choosing the right step size is a dif-
ficult problem. For the algorithm described in Section 2.4.3 for finding
MLEs for loglinear models, the step size could be chosen such that new it-
erate estimates would yield a higher value of the log likelihood. However,
this approach cannot be used here since a saddle point of the Lagrangian
log likelihood is sought.

Before proposing a method for choosing a step size, a termination
criterion for the algorithm is presented. In order to be able to monitor
convergence, an appropriate measure e(θ) for the distance of θ from a
solution θ̂ to the likelihood equations may be chosen. The iterations can
be stopped at iteration k when e(θ(k)) < ε, a sufficiently small constant
chosen a priori (say ε = 10−10). As a measure for the distance e(θ) of θ
from θ̂, the quadratic form

e(θ) = (v(θ, 1)− θ)′Dm(v(θ, 1)− θ) (5.8)

can be used. Any solution θ̂ to the equations (5.4) and (5.6) yields a
global minimum of e(θ) such that e(θ̂) = 0.

Since θ̂ is a minimum of the “error function” e(θ), one can use e(θ) to
choose a step size. If possible, the step size step(k) at iteration k is chosen
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such that there is a decrease in the error function. One can start with
step(k) = 1, and keep halving its value while e(v(θ(k), step(k)) > e(θ(k)).
However, it is not always possible to obtain a decrease in the error because
the iterative scheme (5.7) does not utilize the gradient of e(θ), while,
additionally, e(θ) may be nonconvex. Thus, the error function can only
give a rough indication over several iterations of whether we are on the
right “track” to convergence. Choosing the right step size is often a
question of trial and error.

If the MLE θ̂ has been found, the MLE of the vector of model param-
eters can be calculated using the formula β̂ = (X′X)−1X′g(ζ(µ̂)), with
µ̂ = M′m̂ = M′ exp(θ̂).

5.1.2 Estimation given sampling constraints

The above estimation method is designed to find Poisson estimates. Next,
ML estimation when the expected cell frequencies are subject to the sam-
pling constraint (5.2) is discussed. This sampling constraint can be in-
cluded in the model constraint h(m) = 0, though this is not necessary.
Assume for the moment that full multinomial sampling is used, i.e., the
sampling constraint is 1′m = 1′n. It was shown in Section 4.3.2 how
h(m) can be written as a homogeneous function of m, i.e., such that
h(m) = h(π), with π the vector of cell probabilities. Using Result 5 in
Appendix D, it follows that

H′1 =
∂h
∂θ′

1 =
∂h
∂m′

Dm1 =
∂h
∂m′

m = 0.

Thus, premultiplying (5.6) by 1′ yields

1′(n−m) + 1′Hλ = 1′(n−m) = 0.

The sample size 1′n is automatically reproduced. Therefore, no separate
fitting procedure is needed for multinomial sampling provided that h(m)
is written as a homogeneous function. Similarly, it can be shown that the
same result holds for any sampling restriction of the form (5.2), provided
h(m) is written as a homogeneous function of the appropriate parameters.

5.1.3 Remarks on maximum likelihood estimation

The algorithm defined by (5.7) is a modified version of the algorithm
provided by Aitchison and Silvey (1958, 1960, see Appendix A.1) because
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the Lagrange multiplier vector λ has been “eliminated” from the iterative
scheme that there is no need to keep track of its value during the iterative
process. Lang (1996a) demonstrated how to apply Aitchison and Silvey’s
method to categorical data problems. The algorithm defined by (5.7) can
also be viewed as a modification and generalization of Lang’s algorithm. It
should be noted that if the step size is equal to one for all iterations, then,
with the same starting estimates, both Aitchison and Silvey’s algorithm
and the iterative scheme defined by (5.7) yield the same iterate estimates.

The question when to terminate the algorithm and how to choose
a step size were not addressed by either Aitchison and Silvey or Lang.
Above, a reasonable termination criterion was given, plus an indication of
how to choose a step size. Choosing a step size remains troublesome for
certain problems. For many problems, the iterative scheme (5.7) leads to
convergence in relatively few iterations, even for large and highly sparse
tables, and the number of iterations does not increase rapidly with the
number of cells in the table. All estimates presented in the example in
Section 4.4 were found in less than 100 iterations. In Appendix E, a
listing is given of a Mathematica program for calculating the MLE m̂.

However, for certain problems, it may appear impossible to obtain
convergence using iterative scheme (5.7). Bertsekas (1982) described var-
ious “Lagrangian methods” that can be used instead. A method with
guaranteed convergence for a large class of loglinear models for marginal
frequencies, described in Section 5.2, is suggested in Appendix B.3.

It may be noted that Haber (1985) described a different method than
the one used here. He used a Newton-Raphson scheme for fitting loglinear
models for sums of frequencies. A problem with this method is that
the Hessian matrix to be inverted may become ill-conditioned during the
iterative process. Aitchison and Silvey proposed instead that the expected
value of the Hessian matrix be used, thereby avoiding the problems with
ill-conditioning. This approach was also used by Lang; we use it as well.

Interestingly, if a marginal model is loglinear, the algorithm defined
by (5.7) yields identical iterate estimates as the Newton-Raphson algo-
rithm for loglinear models presented in Section 2.4. This is not the case
for Aitchison and Silvey’s method, unless a step size of one is used for all
iterations. It should be further noted that if the marginal model to be
fitted implies a certain loglinear model, then the sufficient statistics for
the loglinear model are also sufficient statistics for the marginal model.
In Chapter 2 it was shown that the sufficient statistics for loglinear mod-
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els are reproduced. This is generally not the case for marginal models,
unless the marginal model is equivalent to a loglinear model.

It seems that few results on the existence of MLEs for marginal models
have been provided in the literature. Aitchison and Silvey gave regular-
ity conditions for the log likelihood function and the constraint function
which, if satisfied, guarantee that the MLEs are a solution to the La-
grangian likelihood equations with probability going to one as the sample
size goes to infinity. The regularity conditions are satisfied in most prac-
tical cases. Lang (1996a) showed that the regularity conditions for the
log likelihood and for the constraints induced by a class of loglinear mod-
els for sums of frequencies (see equation 4.10) are satisfied. The general
small sample case remains unresolved however.

As a final remark, it is noted that the matrix which has to be inverted
during the iterative process has a number of rows and columns equal to
the number of degrees of freedom for that model. For large tables, if a
very parsimonious model is specified, the matrix inversion may be a com-
putational bottleneck. This can happen when a parsimonious loglinear
model is specified. For instance, for ten dichotomous dependent variables,
the loglinear model of no three or higher-order interaction has 946 degrees
of freedom, so that a 946 × 946 matrix must be inverted. In such cases,
computations are eased by optimizing in terms of the loglinear parame-
ters, which are relatively few, rather than the log expected frequencies.
(That is, the iterative method implied by (A.14) should be used with θ
equal to the parameters for the loglinear model.)

5.2 Uniqueness of MLEs for marginal models

In the previous section, an algorithm was presented for finding MLEs
for marginal models. The problem with that algorithm (or any other
algorithm) is that, upon convergence, it is difficult to determine whether
a global maximum of the likelihood or a non-global local maximum has
been reached. Below, a class of regular models is defined for which it is
shown in Appendix B that models in this class have a unique solution m̂
maximizing the likelihood subject to the model constraints, provided all
observed frequencies are constrained to be greater than zero. Regularity is
only defined for loglinear models for sums of frequencies, and is a sufficient
but not necessary condition for uniqueness of MLEs to be guaranteed for
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all data. Below, examples are given of regular models as well as non-
regular models with multiple solutions to the likelihood equations.

Various authors have shown that there is a unique solution m̂ maxi-
mizing the likelihood subject to the model constraints for different types
of models for categorical data. Examples are loglinear models and mod-
els linear in expected frequencies, as demonstrated in Chapters 2 and 3.
For cumulative logit models, uniqueness follows from results by Burridge
(1981) and Pratt (1981). Haber and Brown (1986, Theorem 1) claim that
models involving both linear and loglinear constraints have unique MLEs,
but their proof is incorrect. In Section 5.2.2, a counterexample is given,
and the mistake in their proof is pointed out.

5.2.1 Definition of regular models

With m an r× 1 vector of variables which are constrained to be positive,
consider a z × 1 vector of measures ζ(m) with kth element

ζk =
∏
j

(∑
i

aijmi

)cjk
,

with aij ≥ 0 and arbitrary cjk. It is assumed that for all j, there is an i
such that aij > 0. Let A and C be the matrices with elements aij and
cjk, respectively. Assuming mi > 0 for all i, the vector ζ(m) with kth
element ζk(m) can be written in matrix notation as

ζ(m) = exp(C′ log A′m). (5.9)

First, regularity of a vector is defined, then this definition is used to define
regularity of models. The vector ζ(m) is said to be regular if, for all λk
and µj > 0, with tj =

∑
k cjkλk,∑

j

aij
µj
tj < 1 ∀i ⇒

∑
j

aij
µj

max(0, tj) < 1 ∀i. (5.10)

It can be verified that a subvector of a regular vector of measures is regu-
lar, but when two regular vectors of measures are concatenated, regularity
may be destroyed.

A loglinear model of the form

log ζ(m) = Xβ (5.11)
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is said to be regular if ζ(m) is defined by (5.9) and regular. In Ap-
pendix B, it is proven that regular models of the form (5.11) have a unique
solution maximizing the likelihood subject to the model constraints.

It seems difficult to give an intuitive interpretation of the regularity
condition. In some of the examples of non-regular models given below,
the model constraints can be factored in the positive domain (that is,
the domain where all expected frequencies mi > 0), in the sense that
the model can be written as the union of two or more distinct models.
For instance, a constraint of the form m2

1 − 3m1m2 + 2m2
2 = 0 can be

factored in the positive domain as (m1 − m2)(m1 − 2m2) = 0, so that
either m1 = m2 or m1 = 2m2. Clearly, if the constraints defining a model
can be factored, one would expect a solution maximizing the likelihood
for each of the component models. Therefore, such models cannot be
regular.

5.2.2 Examples of regular models

The following lemma will be used in the examples.

Lemma 1 Suppose certain constants ti (i = 1, . . . , I) are such that t+ =
0. Then, for all i and µi > 0, and a certain i∗,

max(0, ti)
µi

≤ ti∗

µi∗
.

Proof Since t+ = 0, there must be some k such that tk ≥ 0. Therefore,
for a certain i∗,

max(0, ti)
µi

≤ max
i

(
ti
µi

)
=
ti∗

µi∗
.

2

Loglinear models

Loglinear models are regular models; this can be shown as follows. Sup-
pose a certain loglinear model is defined by the equation log ζ(m) =
C′ log m = Xβ, with C′ a contrast matrix. Thus, the model is of the
form (5.11), with A the identity matrix (i.e., aii = 1 for all i, and aij = 0
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if i 6= j). It is sufficient to show that (5.10) holds for ζ(m), i.e., that ζ(m)
is regular. For a certain λ, let t = Cλ. Since C′ is a contrast matrix,
t+ = 1′t = 1′Cλ = 0, so there is a k such that tk ≥ 0. Assume that for
arbitrary µi > 0 ∑

j

aij
µj
tj =

ti
µi
< 1 ∀i

(note that aii = 1 and aij = 0 for i 6= j). It follows that, using Lemma 1,
and for certain i∗,∑

j

aij
µj

max(0, tj) =
max(0, ti)

µi
≤ ti∗

µi∗
< 1 ∀i.

Thus, (5.10) holds so ζ(m) = exp(C′ log m) is regular, and, by definition,
the loglinear model defined by log ζ(m) = Xβ is also regular.

Models for one-dimensional marginal frequencies

Consider an I × J table with expected frequencies mij . A vector ζ(m)
with any of the odds mi+/mk+ and m+j/m+l as elements is regular. It
follows that loglinear models for these odds are regular. The result is
generalizable to higher-way tables.

More generally, for I×J tables, let A1 be such that A′1m has elements
mi+ and let A2 be such that A′2m has elements m+j . Consider a vector
of measures of the form

ζ(m) = exp

[(
C′1 0
0 C′2

)
log

(
A′1
A′2

)
m

]
, (5.12)

where C′1 and C′2 are contrast matrices. For instance, in a 2 × 2 table,
the marginal odds m1+/m2+ and m+1/m+2 can be represented in the
form (5.12) as

exp


(

1 −1 0 0
0 0 1 −1

)
log


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



m11

m12

m21

m22


 .

Vector ζ(m) is regular, which can be demonstrated as follows. For a
certain arbitrary λ, let

u = C1λ v = C2λ.
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Since C′1 and C′2 are contrast matrices, it follows that u+ = v+ = 0.
Using different indices i and j than in (5.10), the left hand side of the
equation reduces to

ui
µ1i

+
vj
µ2j

< 1 ∀i, j. (5.13)

Assuming that (5.13) is true and using Lemma 1, it follows that, for
certain i∗ and j∗,

max(0, ui)
µ1i

+
max(0, vj)

µ2j
≤

(
ui∗

µ1i∗

)
+

(
vj∗

µ2j∗

)
< 1 ∀i, j.

Thus, (5.10) is satisfied, and it follows that a model defined as log ζ(m) =
Xβ, with ζ(m) defined by (5.12), is regular. The argument can be gen-
eralized to models for one-dimensional marginals of higher-way tables.

Models for two-dimensional marginal frequencies

Consider an I×J×K table with expected frequenciesmijk. A vector ζ(m)
containing any of the odds mi1j+/mi2j+ or m+jk1/m+jk2 as elements is
regular. It follows that loglinear models for these odds are regular.

More generally, for an I × J ×K table, let A1 be such that A′1m is a
vector with elements mij+ (in any order) and let A2 be such that A′2m
has elements m+jk (also in any order). Consider a vector of measures of
the form

ζ(m) = exp

[(
C′1 0
0 C′2

)
log

(
A′1
A′2

)
m

]
, (5.14)

where C′1 and C′2 are contrast matrices. Then ζ(m) is regular, as shown
below.

For a certain arbitrary λ, let u = C1λ and v = C2λ. Note that for
all j, u+j = vj+ = 0. Using different indices i, j, and k than in (5.10),
the left hand side of (5.10) reduces to

uij
µ1ij

+
vjk
µ2jk

< 1 ∀i, j, k. (5.15)
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Assuming that (5.15) is true and using Lemma 1, it follows that, for
certain i∗j and k∗j ,

max(0, uij)
µ1ij

+
max(0, vjk)

µ2jk
≤ max

i

max(0, uij)
µ1ij

+ max
k

max(0, vjk)
µ2jk

≤
max(0, ui∗j j)

µ1i∗j j
+

max(0, vjk∗j )

µ2jk∗j

=
ui∗j j

µ1i∗j j
+

vjk∗j
µ2jk∗j

< 1 ∀i, j, k.

Thus, (5.10) is satisfied, and it follows that a model defined as log ζ(m) =
Xβ, with ζ(m) defined by (5.14), is regular.

The argument can be generalized to models for two-dimensional mar-
ginals of higher-way tables, though with caution. If odds for the marginals
mi+k are added to ζ(m), regularity is destroyed. In a four-way table
ABCD, one might wish to model odds in the marginal tables AB, BC,
and CD, with expected frequencies mij++, m+jk+, and m++kl, respec-
tively. In such a case, using a similar derivation, ζ(m) can be shown to
be regular when it has elements odds and odds ratios of the form

mi1j++

mi2j++

m+j1k1+

m+j1k2+
× m+j2k2+

m+j2k1+

m++kl1

m++kl2

.

Note that, for the marginal table BC odds ratios must be taken, instead
of odds as for the tables AB and CD. Again, if odds from any other two-
dimensional marginal table (such as AD) are added to ζ(m), regularity
is destroyed.

Models involving conditional probabilities

In many cases, it may be unclear whether a certain model of the form
(5.11) is regular or not. Sometimes, however, it is possible to rewrite
the model constraints in such a way that a loglinear model for a regular
vector of measures is obtained.

As an example, consider a four-way table ABCD with cell probabil-
ities πijkl; the conditional probability distribution of A given B is given
by

P (A = i|B = j) =
πij++

π+j++
.
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Suppose we wish to test whether the probability of A given B is identical
to the probability of C given D. The model implied by the constraints

πij++

π+j++
=

π++ij

π+++j
∀i, j. (5.16)

may be used. Both one- and two-dimensional marginals are involved in
the constraints, so the results of the previous two sections cannot be
used. However, it is possible to rewrite the constraints. One can verify
that (5.16) is equivalent to

πi1j++

πi2j++
=
π++i1j

π++i2j
∀i1, i2, j.

This equation is loglinear in odds in the marginal tables AB and CD, so
the corresponding model is regular, as was shown above.

5.2.3 Examples of non-regular models with multiple local
maxima

In certain cases, the methods described above cannot be used to decide
whether a model of the form (5.11) is regular. It may be helpful to see
some examples of non-regular models that have multiple local maxima.
In the first two examples presented below, there are almost always two
local maxima, whatever the data. Only in certain special cases do these
maxima “overlap”. The first two examples are easy to solve analytically;
the last is not.

Example 1. Consider a 2 × 2 table AB, with expected probabilities
πij > 0. Suppose one wishes to model independence simultaneously with
the probability of agreement

∑
i πii being equal to the probability of dis-

agreement
∑
i6=j πij , i.e.,

π11π22

π12π21
= 1 ∧ π11 + π22 = π12 + π21 (5.17)

(assuming all πij > 0). From straightforward calculations, it follows that
these equations are equivalent to

π11π22

π12π21
= 1 ∧ (π11 − π12)(π11 − π21) = 0.
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The equation on the right is factored, yielding two solutions

π11 = π12 ∨ π11 = π21.

In a 2×2 contingency table, the two solutions to (5.17) can be represented
as

π π π 1
2
− π

1
2
− π 1

2
− π π 1

2
− π

for an unknown π ∈ 〈0, 1
2
〉. Each of the two possible solution sets yields

a loglinear model. One has

log πij = λ+ λAi ∨ log πij = λ+ λBj ,

i.e., the simultaneous model reduces to the union of two loglinear models.
Each loglinear model has a unique MLE, so the union of the models has
two solutions to the likelihood equations.

Closed form expressions exist for the MLEs. The local maxima of the
likelihood function are

π̂11 = π̂12 = 1
2
(p11 + p12) π̂21 = π̂22 = 1

2
(p21 + p22)

and

π̂11 = π̂21 = 1
2
(p11 + p21) π̂12 = π̂22 = 1

2
(p12 + p22).

This is, in fact, a counterexample to Theorem 1 of Haber and Brown’s
(1986) article, which stated that the likelihood equations have a unique
solution when the expected frequencies are simultaneously subject to both
linear and loglinear constraints. (On page 478 of the article, a vector r
was defined and it was implicitly assumed, in the last three lines of the
proof of Theorem 1 that the estimate r̂ has only strictly positive elements.
That assumption is, in general, incorrect.)

Example 2. Suppose one wishes to model equality of variance of the
marginal distributions A and B of a 2× 2 table AB with expected prob-
abilities πij . The hypothesis of equality of variance may be expressed by
the constraint equation

π1+π2+ = π+1π+2. (5.18)
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Straightforward calculations show that the constraint (5.18) reduces to

(π12 − π21)(π11 − π22) = 0,

i.e., either π12 = π21, or π11 = π22. One local maximum of the likelihood
occurs at the MLE π̂11 = p11, π̂12 = π̂21 = 1

2
(p12 + p21), and π̂22 = p22,

the other local maximum at the MLE π̂11 = π̂22 = 1
2
(p11 +p22), π̂12 = p12,

and π̂21 = p21.

Example 3. Consider a three-way table ABC. It was shown above that
a loglinear model specified for marginal odds ratios of the two-dimensional
marginal tables AB and BC is regular. However, if, a loglinear model is
also specified for odds ratios in the marginal table AC, local maxima may
occur. For instance, consider a 2× 2× 2 table with expected frequencies
mijk. The model defined by the constraints

m11+m22+

m12+m21+
=
m+11m+22

m+12m+21
= 4

m1+1m2+2

m1+2m2+1
= 1

4
(5.19)

was found to yield two local maxima (Tamas Rudas, personal communica-
tion). Local maxima of the likelihood for two sets of observed frequencies
are presented in Table 5.1. The (observed) frequencies in the table are
arranged as

n111 n112 n211 n212

n121 n122 n221 n222
.

For the frequencies on the left in Table 5.1, both local maxima yield
G2 = 5.71, i.e., the MLE cannot be identified. The frequencies on the
right yield G2 = 39.15 for the first local maximum, and G2 = 26.24 for the
second local maximum, i.e., the second maximum is the global maximum
of the log likelihood. In Tables 5.2 and 5.3, the observed and estimated
marginal frequencies corresponding to the frequencies of Table 5.1 are
presented.

5.3 Alternatives to maximum likelihood

Two alternatives to maximum likelihood which have received consider-
able attention in the literature are discussed below. The weighted least
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Observed frequencies: Observed frequencies:
1 1 1 1 1 2 7 11
1 1 1 1 3 5 13 17

Local maximum 1: Local maximum 1:
0.52 1.98 0.14 0.52 0.62 5.43 0.90 6.60
1.98 0.37 0.52 1.98 6.50 1.13 8.78 29.04

Local maximum 2: Local maximum 2:
1.98 0.52 0.37 1.98 3.75 0.98 2.55 16.42
0.52 0.14 1.98 0.52 1.32 0.75 19.56 13.66

Table 5.1: Observed frequencies and local maxima of the log likelihood
subject to (5.19)

Observed two-way marginals:
2 2 2 2 2 2
2 2 2 2 2 2

Local maximum 1:
2.49 2.35 0.66 2.49 2.49 2.35
0.66 2.49 2.49 2.35 0.66 2.49

Local maximum 2:
2.49 0.66 2.35 2.49 2.49 0.66
2.35 2.49 2.49 0.66 2.35 2.49

Table 5.2: Observed marginals and local maxima of the log likelihood
subject to (5.19) corresponding to the frequencies on the left-hand side
of Table 5.1
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Observed two-way marginals:
3 8 8 13 4 7

18 30 16 22 20 28

Local maximum 1:
6.05 7.62 1.52 12.03 7.12 6.55
7.50 37.82 15.28 30.16 9.68 35.64

Local maximum 2:
4.73 2.07 6.31 17.40 5.08 1.73

18.98 33.22 20.88 14.40 22.11 30.08

Table 5.3: Observed marginals and local maxima of the log likelihood
subject to (5.19) corresponding to the frequencies on the right-hand side
of Table 5.1

squares (WLS) method was popularized for categorical data analysis by
Grizzle, Starmer, and Koch (1969). WLS is a non-iterative method yield-
ing optimal estimates of the β parameters in the marginal model (5.3),
and therefore the necessary computations can be done much faster than
the ML computations. However, as the sample size increases, conver-
gence of WLS estimates to the true parameter values is much slower than
with ML. A more recent approach is the generalized estimating equations
(GEE) method (Liang et al., 1992). This approach was developed in part
because ML methods were considered infeasible (Liang et al., 1992, p. 9)
for many problems. However, it appears that ML is preferred by many
statisticians (see, for instance, the discussion of the paper by Liang, Zeger
& Qakish).

5.3.1 Weighted least squares

The weighted least squares (WLS) approach can be used to estimate
model parameters β for any of the marginal models described in Sec-
tion (4.1). With this approach, the fact is employed that, under appro-
priate regularity conditions, a differentiable measure has an asymptotic
normal distribution. Since the approach was popularized in a paper by
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Grizzle, Starmer & Koch (1969) it is also called the GSK method in their
honour.

Suppose the vector of expected marginal frequencies µ = M′m has
observed value y. Let η(µ) = g(ζ(µ)), so that the marginal model (5.3)
can be written as η(µ) = Xβ. Let Σ(η(y)) be the asymptotic covariance
matrix of η(y), which is given by the formula

Σ(η(y)) = G′Z′Σ(y)ZG,

where G and Z are defined in (5.5) and where the covariance matrix of
the observed marginals y is

Σ(y) = M′DmM. (5.20)

Assuming that Σ̄(η(y)), the sample value of Σ(η(y)), is invertible, the
WLS estimate β̃ of the true parameter value minimizes the quadratic
form

W 2 = (η(y)−Xβ)′Σ̄(η(y))−1(η(y)−Xβ), (5.21)

The weight matrix in the quadratic form is Σ̄(η(y)). The WLS estimate
β̃ is

β̃ = (X′Σ̄(η(y))−1X)−1X′Σ̄(η(y))−1η(y),

The statistic (5.21) with β̃ substituted for β is the Wald statistic and has
an asymptotic chi-squared distribution, with degrees of freedom equal to
the number of linearly independent elements of η(y) minus the number
of linearly independent β parameters.

An advantage of using WLS to estimate model parameters is that com-
putational costs are low compared to ML, especially when many variables
are used. ML methods require evaluation of all expected cell frequencies
in the contingency table. Since this number increases exponentially with
the number of variables, the complexity of ML also increases exponen-
tially with the number of variables. WLS does not require evaluation of
all cells, and its complexity increases much more slowly than ML with
the number of cells.

However, there are some potentially serious disadvantages of WLS
compared to ML. First, WLS is very sensitive to sparse data. In fact, for
many models, almost all observed marginals should exceed about 5-10
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(Agresti, Lipsitz, & Lang, 1992) to get reasonable estimates and a good
approximation to the chi-squared distribution of W 2. Second, WLS does
not usually yield estimated expected frequencies, but only estimates of
the β parameters.

5.3.2 Generalized estimating equations

Consider a model η(µ) = Xβ for a vector of expected frequencies µ
(µ = M′m), which has observed value y. It is assumed that the elements
of µ are linearly independent. Suppose that η is (at least implicitly)
invertible, so that µ = η−1(Xβ), and assume differentiability of µ with
respect to β. The generalized estimating equation (GEE) for estimating
β is a multivariate analogue of the quasi-score function introduced by
Wedderburn (1974) and has the form(

∂µ′

∂β

)
Σ(y)−1(y − µ) = 0 (5.22)

(Liang & Zeger, 1986; Diggle et al., 1994, p. 149). For a loglinear model
for marginal frequencies, specified as logµ = Xβ, ∂µ′/∂β = X′D−1

µ , and
equation (5.22) reduces to

X′D−1
µ Σ(y)−1(y − µ) = 0.

If the covariance matrix of the marginal frequencies Σ(y) is known,
equation (5.22) is solvable for β. In practice, Σ(y) is usually unknown,
and several methods have been proposed to estimate it (Liang et al.,
1992; Diggle et al., 1994). In most cases, however, this approach does not
yield a true statistical model based on a probability distribution (Lindsey,
1993, Section 2.9). When the covariances are misspecified, efficiency is
usually lost.

The simplest method of estimating the covariances, apparently not
considered by Diggle, Liang, and Zeger, is to use the observed value of
Σ(y), i.e., to use

Σ̄(y) = M′DnM.

This choice gives optimal estimates of β. When η(µ) = µ, i.e., for models
linear in the expected frequencies, WLS estimates are obtained for β. If
the MLE Σ̂(y) of Σ(y) is used, the estimated parameter value is the MLE
β̂ (Fitzmaurice et al., 1993). However, to find the Σ̂(y), the complete
maximum likelihood estimation procedure has to be performed.
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5.4 Assessing model goodness-of-fit

5.4.1 Chi-squared tests

The chi-squared statistics described in Section 2.5 can be used to test
goodness-of-fit. An alternative chi-squared statistic was proposed by
Aitchison and Silvey (1958, 1960) and Silvey (1959). This is the Lagrange
multiplier statistic L2, defined as

L2 = λ̂
′
Σ(λ̂)−1λ̂.

It can be shown that the Pearson chi-squared and Lagrange multiplier
statistics are numerically equal when they are evaluated at the maximum
likelihood estimates. From the likelihood equation (5.6), n− m̂ = −Ĥλ̂,
and since Σ(λ̂) = (Ĥ′D−1

m̂ Ĥ)−1 (see (A.4)), we obtain

X2 = (n− m̂)′D−1
m̂ (n− m̂) = λ̂Ĥ′D−1

m̂ Ĥλ̂ = L2.

The number of degrees of freedom for a marginal model is equal to the
number of functionally independent constraints, which is equal to the col-
umn rank of H, say h. In a set of constraints, a constraint which is implied
by others is said to be redundant. Molenberghs and Lesaffre (1994) and
Glonek and McCullagh (1995) provided (different) reparameterizations of
the expected cell frequencies in terms of “marginal” model parameters,
which they showed to be functionally independent, by demonstrating that
the derivative matrix of these parameters with respect to the expected
cell frequencies is of full column rank. Say these parameters are θ, then a
model g(θ) = Xβ specified for these parameters does not contain redun-
dant parameters β when X is of full column rank, or, equivalently, with
U the orthogonal complement of X, the constraints U′g(θ) = 0 are func-
tionally independent when U is of full column rank. Lang and Agresti
(1994) also gave a characterization of some models having functionally
independent constraints.

A complication in determining the number of degrees of freedom, df,
is that the number of independent constraints may depend on m. By way
of illustration, consider the model defined by the simultaneous constraints

(m1 +m4)(m1 +m2) = 2m1(m2 +m4)
(m1 +m4)(m1 +m3) = 2m1(m3 +m4).
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(No application for this model is known.) Straightforward algebra shows
that the constraints are equivalent to

(m1 −m4)(m1 −m2) = 0
(m1 −m4)(m1 −m3) = 0,

i.e.,

m1 = m4 ∨ m1 = m2 = m3.

The model is defined by a disjunction of two sets of constraints rather
than a more common conjunction of constraints. As a consequence, the
number of degrees of freedom becomes a random variable, leading to
statistical complications.

5.4.2 Partitioning chi-squared statistics

Aitchison (1962) introduced the concept of asymptotic separability for
hypotheses for which the asymptotic chi-squared goodness-of-fit statis-
tics can be asymptotically partitioned. If the parameter vectors φ and
ψ are orthogonal (which implies that the respective MLEs are asymp-
totically independent), it is shown in Appendix A.3 that model [ω1 ∩ ω2]
is asymptotically separable when [ω1] constrains φ but not ψ, and [ω2]
constrains ψ but not φ. In that case, the Wald statistic partitions exactly
as

W 2(ω1 ∩ ω2) = W 2(ω1) +W 2(ω2). (5.23)

It follows that goodness-of-fit statistics which are asymptotically equiva-
lent to W 2, such as G2 and X2, can be asymptotically partitioned. (Note
that (5.23) concerns nonnested models, whereas the exact partitioning of
G2, given in (2.24), concerns nested models.)

It is of particular interest for the sampling distributions described in
Section 2.1 that certain products of frequencies are orthogonal to certain
sums of frequencies. For instance, in a two-way table, the local odds ra-
tios are orthogonal to the marginal frequencies. This fact can be used in
the following example. Suppose we wish to test whether the linear by lin-
ear association model holds simultaneously with marginal homogeneity.
MH can be tested using, for instance, Stuart’s test, the linear by linear
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model using G2, and the simultaneous model by adding the values to-
gether. However, in practice there is often quite a big difference between
G2 for the simultaneous model and G2 for the separate models added
together. It is therefore recommended that models be fit simultaneously
using the ML methods described in Section 5.1 and that goodness-of-fit be
tested subsequently, rather than adding separate goodness-of-fit statistics
together.

In general, a sum φ and product ψ defined as

φ =
∑
i

aimi ψ =
∏
i

mci
i

are orthogonal, according to definition (A.17), if
∑
i aici = 0. It follows

that the respective MLEs of φ and ψ are independent. Analogously, a
vector of sums φ = A′m and a vector of products ψ = exp(C′ log m) are
orthogonal when C′A = 0. Thus, when C′A = 0, a model [ω1] constrain-
ing φ and a model [ω2] constraining ψ are asymptotically separable. This
generalizes a result proven by Lang (1996c) to a broader class of models.

The above result can be applied when simultaneously modelling log-
linear and marginal models. If the marginal frequencies µ constrained
by the marginal model are a linear combination of the sufficient statis-
tics of the loglinear model, then the marginal and loglinear model are
asymptotically separable. For instance, for a three-way table ABC, a
marginal model for marginal tables AB and BC and the loglinear model
of no-three-factor interaction are asymptotically separable, while the same
marginal model and the loglinear model of independence are not separa-
ble. In a two-way table, quasi-symmetry and marginal homogeneity are
asymptotically separable, justifying the conditional test of MH given in
Section 3.4.2.

5.4.3 Adjusted residuals

Following Lang and Agresti (1994), the definition of the adjusted residu-
als described in Section 2.5.4 can be generalized to adjusted residuals for
marginal frequencies µi (which are sums of joint frequencies). Generaliz-
ing once more, adjusted residuals for measures ζi = ζi(µ) are also defined
below. With yi the observed value of µi, and zi the observed value of ζi,
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adjusted residuals are defined as

ri(µi) =
yi − µ̂i

σ(yi − µ̂i)
ri(ζi) =

zi − ζ̂i
σ(zi − ζ̂i)

.

Consider two nested marginal models [ω1] and [ω2] such that [ω2] implies
[ω1], with fitted marginals µ̂1i and µ̂2i, respectively, and with fitted mea-
sures ζ̂1i and ζ̂2i, respectively. Conditional adjusted residuals (which were
not given by Lang and Agresti) can be defined as

ri(µi;ω2|ω1) =
µ̂1i − µ̂2i

σ(µ̂1i − µ̂2i)
ri(ζi;ω2|ω1) =

ζ̂1i − ζ̂2i

σ(ζ̂1i − ζ̂2i)
. (5.24)

Formulas for the standard errors are derived in the next section.

5.5 Asymptotic behaviour of MLEs

Using the methods employed by Aitchison and Silvey (1958) described
in Appendix A.1 and the delta method, the asymptotic distributions of
MLEs of some relevant parameters are derived given one of the sampling
schemes described in Section 2.1 and the model constraint h(m) = 0. For
a class of loglinear models for sums of frequencies, a formal derivation of
the asymptotic distribution of various estimators was presented by Lang
(1996a).

With θ = log m, and the log likelihood L defined by (5.1), let

B = E

(
− ∂2L
∂θ∂θ′

)
= Dm

be the information matrix. Suppose m̂s is the MLE of the true value of m
given one of the sampling distributions described in Section 2.1, i.e., either
Poisson sampling or Poisson sampling with sampling constraint W′m =
W′n. In Section 2.6.2, it was shown that the asymptotic covariance
matrix of log m̂s is

Σ(log m̂s) = D−1
m −Λ(S),

with Λ(S) defined by (2.28). Let h(m) = U′g(ζ(µ)) be the marginal
model constraint function (cf. 5.4) and let H = ∂h′/∂θ. Suppose θ̂h =
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log m̂h is the MLE of the true value of θ given Poisson sampling given
that h(m) = 0. Using (A.5), the asymptotic covariance matrix of log m̂h

is

Σ(log m̂h) = B−1 −B−1H(H′B−1H)−1H′B−1

= D−1
m −D−1

m H(H′D−1
m H)−1HD−1

m .

Consider full multinomial sampling, i.e., the sampling constraint is
1′m = 1′n. Assuming that h(m) is a homogeneous function of the ex-
pected frequencies (see Section 4.3.2 and Appendix D), i.e., that h(m) =
h(π), it follows that

∂h
∂θ′
·B−1 · ∂m′1

∂θ
=
∂h′

∂m
Dm ·D−1

m ·m =
∂h′

∂m
m = 0.

Thus, by definition (A.17) of orthogonality of parameters, h(m) is orthog-
onal to 1′m. More generally, with sampling constraints W′m = W′n, it
can be shown that W′m is orthogonal to h(m) when h(m) is a homoge-
neous function with respect to the parameters of each sample. Therefore,
the partitioning (A.18) can be used to calculate the asymptotic covari-
ance matrix of log m̂s+h, the MLE of m given both sampling scheme
S and h(m) = 0. With Σ(log m̂p) = D−1

m the covariance matrix of
log m̂ given Poisson sampling without further restrictions, the partition-
ing (A.18) yields

Σ(log m̂s+h) = Σ(log m̂s) + Σ(log m̂h)−Σ(log m̂p)
= D−1

m −D−1
m H(H′D−1

m H)−1H′D−1
m −Λ(S),

where Λ(S) is defined by (2.28). This generalizes a result by Lang (1996b)
to broader classes of sampling schemes and models.

Using the delta method described in Section (2.6.1), it is possible to
derive the asymptotic covariance matrices of some relevant parameters
which are functions of log m. Omitting the subscript s+ h, we obtain

Σ(m̂) = DmΣ(log m̂)Dm

Σ(µ̂) = M′Σ(m̂)M
Σ(ζ̂) = Z′Σ(µ̂)Z
Σ(β̂) = (X′X)−1X′G′Σ(ζ̂)GX(X′X)−1,
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where G and Z are defined by (5.5). For the adjusted residuals (5.24),
the standard errors of the differences m̂1i − m̂2i are needed. Since both
estimators depend on the observed frequencies n, the delta method can
be used to obtain the asymptotic covariance matrix, yielding

Σ(m̂1 − m̂2) = H2(H′2D
−1
m H2)−1H′2 −H1(H′1D

−1
m H1)−1H′1 (5.25)

Σ(µ̂1 − µ̂2) = M′Σ(m̂1 − m̂2)M (5.26)
Σ(ζ̂1 − ζ̂2) = Z′Σ(µ̂1 − µ̂2)Z. (5.27)

The standard error of, for instance, σ(m̂1i−m̂2i) is the square root of the
(i, i)th diagonal element of (5.25). Note that the values of the adjusted
residuals (5.24) do not depend on which one of the sampling distributions
S described in Section (2.1) is used.

Finally, it is noted that the result on the average precision of estimated
log expected cell frequencies derived in Section 2.6.3 can be generalized
to marginal models. The average precision of log m̂ is defined as

σ̄2(log m̂) =
∑
i

πiσ
2(log m̂i).

As was done in Section 2.6.3, this formula can be reduced to

σ̄2(log m̂) =
f

n
,

with f the number of free parameters of the loglinear model, and n the
sample size. That is, f is equal to the number of cells minus the num-
ber of degrees of freedom for the model, minus the number of sampling
constraints.

5.6 Conclusion

A simple and computationally efficient maximum likelihood estimation
algorithm for fitting marginal models was presented in this chapter. This
is a modification of Aitchison and Silvey’s (1958) method and a general-
ization and modification of Haber (1985) and Lang’s (1996a) techniques.
A method for monitoring convergence was also presented, which was not
done by the above authors. Our method can be used for large contin-
gency tables with millions of cells. Major advantages of the algorithm
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are that it is simple to program (see Appendix E) and can be used for a
very large class of models. A drawback is that it requires evaluation of
MLEs of all expected frequencies (which is the case with most algorithms
for maximum likelihood estimation). Since the number of cell frequen-
cies increases exponentially with the number of variables, only a limited
number of variables can be handled.

A class of loglinear models for marginal frequencies was described for
which the likelihood function is uniquely maximized subject to the model
constraints. This greatly eases the maximum likelihood estimation, since,
if a local maximum has been found, it is for certain the global maximum.

A brief description was given of the weighted least squares and the
generalized estimating equation approaches. Though maximum likeli-
hood is preferred by many statisticians to these methods, they can be of
use when a contingency tables is too large to be fitted using maximum
likelihood.

Standard chi-squared statistics can be used for testing goodness-of-fit
of marginal models. Lang’s (1996c) results on asymptotic partitioning of
goodness-of-fit statistics were generalized. Additionally, a generalization
of adjusted residuals (Haberman, 1973; Lang, 1996a) was presented. In
particular, it was shown how conditional adjusted residuals and adjusted
residuals for various measures can be calculated. Finally, the asymptotic
behaviour of MLEs of various parameters given various sampling distri-
butions was derived.



Chapter 6

Future research

A general class of models for analyzing categorical data has been pre-
sented in this book, together with maximum likelihood fitting and test-
ing methods. Marginal models are especially useful for testing whether
specific aspects of various marginal distributions are similar in certain
respects. A summary of some of the most important limitations of the
models and methods discussed in this book are described below, delin-
eating areas where future work has to be done.

First of all, several types of questions concerning homogeneity of
marginal distributions still cannot be answered using marginal models.
The models described here are “linear” in the model parameters in the
sense that a linear predictor is used in the marginal model equation (4.3).
An example of a model that does not fit into this equation is Goodman’s
(1979) row and column effects model because it is logmultiplicative in
the model parameters. A marginal model involving the row and column
effects model arises when one wishes to test whether the association pa-
rameters in several bivariate marginal tables are equal. To accommodate
for logmultiplicative and various other “nonlinear” models, the marginal
model equation (4.3) might be generalized by replacing the linear predic-
tor Xβ with an arbitrary function u(β). The greater generality brings
with it possible additional estimation and testing problems, however.

Another type that does not fit easily into the marginal model equa-
tion of this book is the latent class model. In a panel study, it may be
hypothesized that certain manifest variables are the realization of an un-
derlying latent variable. It may be interesting to test whether there are
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certain changes in the latent variable, instead of in the manifest variables
(Hagenaars, 1992). It appears that the EM algorithm (Dempster, Laird,
& Rubin, 1977) can be used in combination with those described in this
book.

Another area where more research is needed is the extension of meth-
ods presented in this book so that inequality constraints on parameters
can be handled. A simple question leading to inequality constraints on
parameters is: Does association between two variables increase over time?
If there are two points in time, the question may be answered by testing
whether all the odds ratios at time point 2 are greater than the corre-
sponding odds ratios at time point 1. Instead of odds ratios, gamma may
also be used to measure the association. Standard chi-squared tests can-
not generally be used for such hypotheses (Robertson, Wright, & Dykstra,
1988).

A difficult problem which haunts categorical data analysis in general
and therefore also the models of this book is the testing of models when
only sparse data are available. When there are many observed zeroes
in the marginal distributions of interest, large sample methods, such as
asymptotic chi-squared statistics, cannot be used to test marginal models.
A promising approach to this problem is the use of posterior predictive
checks or various other Bayesian methods (Gelman, Carlin, Stern, & Ru-
bin, 1995; Carlin & Louis, 1996). Problems with such methods are the
heavy computations which are often required. Alternatively, bootstrap-
ping methods may be used.

Finally, a fundamental, purely technical problem with current maxi-
mum likelihood methods for categorical data is that the computational
complexity increases explosively with the number of variables. Only for
limited classes of models, such as various Markov chain models and mod-
ified path models, can the estimation process be simplified so that ex-
tremely large tables can be handled (Vermunt, 1997). For most models,
however, current maximum likelihood methods require evaluation of ev-
ery cell frequency in the full cross-classification of variables. This means
that only a limited number of variables can be handled. This is not a lim-
itation of maximum likelihood itself, however, but rather of the methods
used to calculate estimates. It is very important that other techniques
for maximum likelihood estimation, which do not require the evaluation
of every cell frequency, be developed.



Appendix A

Maximum likelihood theory

A.1 Aitchison and Silvey’s method

Consider a y × 1 vector y of observations with log likelihood function
L(θ; y), where θ is a b × 1 vector of unknown parameters. The essence
of many statistical problems is to test whether or not θ satisfies certain
constraints. In this section, some of Aitchison and Silvey’s (1958, 1960)
results on maximum likelihood (ML) estimation and deriving the asymp-
totic distribution of the maximum likelihood estimate (MLE) θ̂ of θ are
presented. Not all of the regularity conditions will be addressed explicitly.

It is assumed that the maximum likelihood estimates θ̂, which maxi-
mize L(θ; y) with respect to θ, are a solution to the score equation

∂L
∂θ

= 0. (A.1)

In many cases, some iterative method is needed to solve equation (A.1).
The Fisher information matrix is defined as

B = E

(
− ∂2L
∂θ∂θ′

)
.

Assuming that B is nonsingular and that the population value of θ lies
in the interior of the parameter space, θ̂ has an asymptotic normal dis-
tribution, with expected value the population value, and with covariance
matrix

Σ(θ̂) = B−1.
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For many statistical problems, one would like to test whether or not
the parameter θ satisfies the constraints

h(θ) = 0, (A.2)

where h(θ) is an h×1 vector with elements hi(θ). A traditional approach
to find the MLE θ̂ is to try to eliminate the constraint equations h(θ) = 0,
by finding a function g such that

h(θ) = 0 ⇔ θ = g(ψ)

for a (b−h)× 1 vector of parameters ψ. Then, L(θ; y) = L(g(ψ); y) is a
function of ψ, and standard methods can be used to find a maximum of
L in terms of ψ. However, in many cases it is awkward or impossible to
find such a function g. For this reason, Aitchison and Silvey developed
an alternative method for finding MLEs using Lagrange’s method of un-
determined multipliers. Under appropriate conditions, with λ an h × 1
vector of unknown Lagrange multipliers, the MLE θ̂ is found at a saddle
point of the Lagrangian log likelihood

L(θ,λ; y) = L(θ; y) + λ′h(θ).

It is important to note that the problem of finding MLEs is now the
problem of finding a saddle point of L, rather than a maximum. Let

k =
∂L
∂θ

H =
∂h′

∂θ
.

Differentiating L with respect to θ and equating the result to zero yields

l(θ,λ; y) =
∂L

∂θ
= k + Hλ = 0. (A.3)

Aitchison and Silvey gave regularity conditions, which, if satisfied, guar-
antee that the MLEs θ̂ and λ̂ are a solution to equations (A.2) and (A.3)
with probability going to one as the sample size approaches infinity. If
the regularity conditions are satisfied and if the MLEs are a solution to
equations (A.2) and (A.3), they have an asymptotic multivariate normal
distribution, with mean equal to the population value of θ and 0, respec-
tively. Furthermore, θ̂ and λ̂ are asymptotically independent. Assuming
that H is of full column rank h, the covariance matrices are

Σ(λ̂) = (H′B−1H)−1 (A.4)
Σ(θ̂) = B−1 −B−1H(H′B−1H)−1H′B−1, (A.5)
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where θ̂ is substituted for θ in B and H on the right-hand sides of these
formulas. It must be noted that Σ(θ̂) is singular, with rank b−h. To test
goodness-of-fit, Aitchison and Silvey proposed the Lagrange multiplier
statistic, defined as

L2 = λ̂
′
Σ(λ̂)−1λ̂.

Provided that the necessary regularity conditions given by Aitchison and
Silvey are satisfied, L2 has an asymptotic chi-squared distribution with
df = h.

A.2 Estimation of parameters

A solution (θ̂, λ̂) is sought to the equations

l(θ,λ; y) = 0 h(θ) = 0

which are defined by (A.3) and (A.2). In the sequel, l and h are short for
l(θ,λ; y) and h(θ), respectively. Let

ξ =

(
θ
λ

)
f(ξ) =

(
l
h

)
F(ξ) = E

(
−∂f ′

∂ξ

)
. (A.6)

Then F(ξ) evaluates to

F(ξ) =

(
B −H
−H′ 0

)
. (A.7)

In order to solve f(ξ) = 0 for ξ, Aitchison and Silvey proposed the itera-
tive scheme

ξ(k+1) = u(ξ(k)) (A.8)

using the “updating” function

u(ξ) = ξ + F(ξ)−1f(ξ). (A.9)

Since F(ξ) is the expected value of the matrix of second derivatives of the
Lagrangian likelihood function, the iterative scheme is a type of Fisher
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scoring. Appropriate initial estimates ξ(0) = vec(θ(0),λ(0)) should be cho-
sen. The initial parameter vector θ(0) should be in the parameter space
and preferably close to the MLE θ̂. For the initial Lagrange parameter
vector a suitable choice is λ(0) = 0. The inversion of F can be simplified
by using result 4 for the inverse of a partitioned matrix. To further sim-
plify calculations, Aitchison and Silvey proposed using the initial matrix
F(ξ(0)) for all iterations, which has the advantage that only one matrix
inversion is necessary for the iterative process. A drawback is that, if the
initial value θ(0) is far from the MLE θ̂, many iterations may be needed
before convergence is reached.

The proposed algorithm (A.8) does not always converge when starting
estimates are not close enough to the MLEs, in which case it is necessary
to introduce a step size into the updating equation (A.14). This issue
was not addressed by the Aitchison and Silvey. The standard approach
to choosing a step size in optimization problems is to use a value for
which the objective function to be maximized increases. However, since
a saddle point of the Lagrangian likelihood L is sought, this standard
approach cannot be used. A method for introducing a step size, which
involves rewriting the updating function (A.9) is proposed below.

Let z = F−1f , i.e., z is the solution to the equation Fz = f . Suppose
z is partitioned into the b× 1 and h× 1 vectors z1 and z2 such that z′ =
(z11, . . . , z1b, z21, . . . , z2h), z′1 = (z11, . . . , z1b), and z′2 = (z21, . . . , z2h). Us-
ing (A.6) and (A.7), the component vectors z1 and z2 of z are the solution
to the simultaneous linear equations

Bz1 −Hz2 = l (A.10)
−H′z1 = h. (A.11)

By substitution into (A.11), one can verify that the solution is

z1 = B−1(l + Hz2) (A.12)
z2 = −(H′B−1H)−1(H′B−1l + h). (A.13)

Now suppose that u′ = (v1, . . . , vb, w1, . . . , wh), v′ = (v1, . . . , vb), and
w′ = (w1, . . . , wh), i.e., u = vec(v,w). Then (A.9) is equivalent to

v(θ) = θ + z1 w(λ) = λ+ z2.

Substituting (A.12), (A.13), and l = k + Hλ into v(θ) and w(λ) yields

v(θ) = θ + B−1(l + Hz2) = θ + B−1(k + H(λ+ z2))
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= θ + B−1(k + Hw(λ))
w(λ) = λ− (H′B−1H)−1(H′B−1l + h)

= −(H′B−1H)−1(H′B−1k + h).

This rewrite is important, because λ does not appear on the right-hand
sides of the above equations. In particular, θ̂ is a fixed point of v(θ),
i.e., it is a solution to the equation v(θ) = θ. A step size step for which
0 < step ≤ 1 can now be introduced into v(θ) as follows:

v(θ, step) = θ + step B−1(k + Hw(λ)). (A.14)

Note that, because of the rewrite, a different function is obtained than
when a step size is introduced into (A.9). The iterative scheme that can
be used is

θ(k+1) = v(θ(k), step(k)).

Two questions must now be answered: 1) how do we choose the step
size and 2) how do we know when the algorithm is sufficiently close to
convergence? To answer both questions, an appropriate measure e(θ) for
the distance from convergence can be chosen. Then, if possible, the step
size at iteration k is chosen such that e(v(θ(k), step(k))) < e(θ(k)), and the
iterations can be stopped at iteration k when e(θ(k)) < ε, a sufficiently
small constant chosen a priori. As a measure for the distance e(θ) of θ
from satisfying v(θ) = θ, we propose the statistic:

e(θ) = (v(θ)− θ)′B(v(θ)− θ).

At iteration k, one can start with step(k) = 1, and keep halving step(k)

while e(v(θ(k), step(k))) ≥ e(θ(k)). However, it is not always possible to
obtain a decrease in the error function e(θ), partly because the iterative
scheme is not based on the gradient of the error function. In fact, e(θ) can
only give a very rough indication over several iterations of whether one
is on the right “track” to obtaining convergence. Choosing the right step
size remains an unsolved problem. As a rough practical guideline, it is
recommended that at most only a few, say 5 or 6, halvings be performed.

Finally, we note that the covariance matrix of θ is a by-product of the
iterative scheme. Let

S(θ) = B−1 −B−1H(H′B−1H)−1H′B−1.
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Then S(θ(k)) converges to Σ(θ̂) as k →∞. Writing out v(θ) yields

v(θ) = θ + [B−1 −B−1H(H′B−1H)−1H′B−1]k−B−1H(H′B−1H)−1h

= θ + S(θ)k−B−1H(H′B−1H)−1h.

A.3 Parameter orthogonality

Assume the log likelihood function L(θ) is a function of an unknown
parameter θ and suppose θ′ = (φ1, . . . , φq, ψ1, . . . , ψr) φ′ = (φ1, . . . , φq),
and ψ′ = (ψ1, . . . , ψr), i.e., θ is partitioned into φ and ψ. Cox and Reid
(1987) defined φ and ψ to be orthogonal when

E

(
− ∂2L
∂φ′∂ψ

)
= 0. (A.15)

An immediate result is that MLEs φ̂ and ψ̂ are asymptotically indepen-
dent. A disadvantage of definition (A.15) is that it cannot be used to
define orthogonality of parameter vectors φ and ψ when the log likeli-
hood is not a function of these parameters. This happens when φ = g1(θ)
and ψ = g2(θ) for non-invertible functions g1 and g2. For this reason,
the following broader definition is proposed. Assuming that g1 and g2

are differentiable, let their Jacobians be

G1 =
∂g′1
∂θ

G2 =
∂g′2
∂θ

. (A.16)

With B the information matrix of θ, φ and ψ are defined to be orthogonal
if

G′1B
−1G2 = 0. (A.17)

It can be verified that parameters which are orthogonal as defined by Cox
and Reid, are also orthogonal according to this definition.

Orthogonality of parameters has several interesting consequences. In
the remaining part of this section, the vectors φ = g1(θ) and ψ = g2(θ)
are assumed to be orthogonal, with Jacobians given by (A.16). An im-
portant result is that the MLEs φ̂ and ψ̂ are asymptotically indepen-
dent. This can be demonstrated as follows. Using the delta method, with
g = vec(φ,ψ) = vec(g1(θ),g2(θ)), and Jacobian G = (G1 G2), and
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B−1 the asymptotic covariance matrix of θ̂, the asymptotic covariance
matrix of ĝ is

Σ(ĝ) = G′B−1G =

(
G′1B

−1G1 G′1B
−1G2

G′2B
−1G1 G′2B

−1G2

)
=

(
G′1B

−1G1 0
0 G′2B

−1G2

)
.

It is seen that the covariances between φ̂ and ψ̂ are zero.
Next, consider the unrestricted model [ω0], the model [ω1] defined by

the constraint h1(φ) = 0, and the model [ω2] defined by the constraint
h2(ψ) = 0. Thus, [ω1] only constrains φ, and [ω2] only constrains ψ.
Let H1 = ∂h′1/∂θ and H2 = ∂h′2/∂θ be the derivative matrices of the
constraints. Let θ̂i be the MLE of θ under model [ωi], and let θ̂12 be the
MLE of θ under model [ω1 ∩ ω2]. (Note that θ̂1, θ̂2, and θ̂12 are of the
same dimensionality.) The following results can be proven.

1. Given that the model [ω1 ∩ ω2] is true, the asymptotic covariance
matrix of θ̂12 can be partitioned as

Σ(θ̂12) = Σ(θ̂1) + Σ(θ̂2)−Σ(θ̂0), (A.18)

where the covariance matrices are estimated using the estimates
θ̂12. This result is useful for deriving the standard errors of MLEs, if
formulas for the standard errors of MLEs under the separate models
are available. One can also see the contribution of the separate
models to the standard errors.

2. Given that the model [ω1 ∩ ω2] is true, the asymptotic distribution
of φ̂12 is identical to the asymptotic distribution of φ̂1, i.e.,

E(φ̂12) = E(φ̂1)
Σ(φ̂12) = Σ(φ̂1).

It follows that both estimators have the same efficiency. Of course,
the same result holds for the MLEs ψ̂2 and ψ̂12. This result is
important if, for example, we are interested in φ, while ψ is regarded
as a nuisance parameter. More details on this subject are given by
Cox and Reid (1987).

3. The Wald statistic for testing the simultaneous model [ω1 ∩ ω2]
partitions exactly as

W 2(ω1 ∩ ω2) = W 2(ω1) +W 2(ω2), (A.19)
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where W 2(ω) is the Wald statistic for testing whether the model [ω]
is true. It follows that other chi-squared statistics which are asymp-
totically identically distributed as W 2, e.g., G2, can be asymptoti-
cally partitioned. Aitchison (1962) called such models [ω1] and [ω2]
asymptotically separable.

The results can be verified by writing out formula (A.5).



Appendix B

Uniqueness of MLEs for
regular models

B.1 A theorem about uniqueness of MLEs

Consider an r×1 vector m of parameters with elements mi and parameter
space

Ω = Rr
+ = {m = (m1, . . . ,mr)′ : mi > 0 ∀i}.

(where R+ is the set of strictly positive reals). With n an r × 1 vector
of constants with elements ni > 0, consider the kernel of the multivariate
Poisson log likelihood function

L(m) = n′ log m− 1′m.

A maximum of L is sought subject to the constraint

h(m) = C′ log A′m = 0, (B.1)

where A is a known r × a matrix with elements aij ≥ 0, such that every
column of A contains at least one nonzero element, and C is a known a×c
matrix with elements cjk. Let µ = A′m. It follows from the restrictions
on the elements of A that µj > 0 for all j and m ∈ Ω. Therefore the
constraint function h(m) is differentiable for all m ∈ Ω.

In general, there may be multiple values of m maximizing L sub-
ject to (B.1). However, if the vector C′ log A′m is regular in the fol-
lowing sense, it is shown below that there is only one such m. The
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vector C′ log A′m is said to be regular if, for all λk and µj > 0, with
tj =

∑
k cjkλk,∑

j

aij
µj
tj < 1 ∀i ⇒

∑
j

aij
µj

max(0, tj) < 1 ∀i. (B.2)

It seems hard to give an intuitive interpretation of (B.2). It can be verified
that a subvector of a regular vector of measures is regular, but when two
regular vectors of measures are concatenated, regularity may be (and
often is) destroyed. Note that a vector of linear combinations of elements
of a vector of regular measures is regular.

Assuming that the solution set

S = {m ∈ Ω : h(m) = 0}

is nonempty, i.e., that the constraints are consistent, we have the following
central result.

Theorem 1 Assume that (B.2) holds and that ni > 0 for all i. Then
there is a unique m ∈ Ω maximizing L(m) subject to (B.1).

From Theorem 1 it follows that (B.2) ensures connectedness of the solu-
tion set S.

B.2 Proof of uniqueness of MLEs

This section is devoted to the proof of Theorem 1. To begin with, it is
shown that the constrained maximization problem, namely, maximizing
L(m) subject to (B.1), can be reformulated as the problem of solving two
sets of equations by making use of Lagrange multipliers.

With λ an h × 1 vector of Lagrange multipliers, consider the La-
grangian log likelihood function

L(m,λ) = n′ log m− 1′m + λ′C′ log A′m

= n′ log m− 1′m + t′ logµ, (B.3)

where t = Cλ and µ = A′m. Using scalar notation, we have

L(m,λ) =
∑
i

ni logmi −
∑
i

mi +
∑
j

tj logµj .
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The first derivative of L with respect to log m equated to zero is

∂L(m,λ)
∂ log m

= n−m + Hλ = 0, (B.4)

where H is the derivative matrix of h(m) with respect to log m, given by

H(m) = DmAD−1
µ C.

Thus, (B.4) reduces to

n−m + DmAD−1
µ t = 0. (B.5)

In scalar notation, we have

ni −mi +mi

∑
j

aij
µj
tj = 0.

The following lemma translates the constrained maximization prob-
lem to the problem of finding a stationary point of L(m,λ).

Lemma 2 Assume that m̂ maximizes L(m) subject to (B.1) and that
H(m̂) is of full column rank. Then there is a unique vector λ̂ such that
the pair (m̂, λ̂) satisfies (B.5).

Since L(m) and h(m) are differentiable on the whole parameter space, the
lemma follows directly from a classical result about Lagrange multipliers
(see, e.g., Bertsekas, 1982, p. 67).

It follows from Lemma 2 that the original constrained optimization
problem can be solved by finding solutions to equations (B.1) and (B.5).
To prove Theorem 1, it is sufficient to show that there is a unique pair
(m̂, λ̂) satisfying equations (B.1) and (B.5), such that m̂ maximizes L(m)
subject to (B.1). The proof consists of two parts: 1) it is proven that there
is at least one pair (m̂, λ̂) which satisfies the appropriate conditions, and
2) it is proven that there is at most one such pair. The first part is easiest
and is given by the following lemma.

Lemma 3 Given that all ni > 0, a solution (m̂, λ̂) to equations (B.1)
and (B.5) such that m̂ maximizes L(m) subject to (B.1) exists.
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Proof. Since h(m) is continuous and differentiable for all m with pos-
itive elements, the solution set S is closed in Ω. Since L(m) is strictly
concave, with terms ni logmi − mi going to minus infinity if mi ↓ 0 or
mi → ∞, and since S is assumed to be nonempty, there must be at
least one m̂ maximizing L subject to the constraint h(m) = 0. Thus,
by Lemma 2, there must be a corresponding λ̂ such that (m̂, λ̂) satis-
fies (B.5).

2

The second part of the proof, namely, that there is at most one solution
(m̂, λ̂) to equations (B.1) and (B.5) is the most difficult. An outline of
the proof is as follows. It is shown that equation (B.5), with λ fixed,
has a solution m(λ) if and only if λ is in a certain convex domain C,
independent of m. Additionally, this solution is proven to be unique.
Then it is shown that equation (B.1) with m substituted by m(λ) (i.e.,
h(m(λ)) = 0) has at most one solution λ̂. Thus, there is at most one pair
(m(λ̂), λ̂) which satisfies equations (B.1) and (B.5). This result combined
with Lemma 3 proves the existence and uniqueness of such a pair.

To investigate solutions to (B.5) for fixed λ, the behaviour of L(m,λ)
as a function of m is investigated. The matrix of second derivatives of
L(m,λ) with respect to log m is

Q(m,λ) =
∂2L(m,λ)

∂ log m∂ log m′

= −DmD[1−AD−1
µ t]−DmAD−2

µ DtA′Dm,

where D[·] is the diagonal matrix with the elements of the vector in square
brackets on the main diagonal. We have the following result.

Lemma 4 Assume that ni > 0 for all i and that (B.2) holds. Then ma-
trix Q(m,λ) is negative definite for all (m,λ) satisfying equation (B.5).

Proof. With tj =
∑
k cjkλk, (B.5) yields

ni −mi +mi

∑
j

aij
µj
tj = 0. ∀i

Dividing by mi, it follows that∑
j

aij
µj
tj = 1− ni

mi
< 1, ∀i
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since ni > 0 and mi > 0. Because of the regularity assumption (B.2), it
follows that ∑

j

aij
µj

max(0, tj) < 1 ∀i. (B.6)

It remains to be shown that, given (B.6), matrix Q(m,λ) is negative
definite. To simplify the notation, let

K(m) = −D−1
m Q(m,λ)D−1

m .

Then Q(m,λ) is negative definite if and only if K(m) is positive definite.
Using the definition, K is positive definite if and only if, for all x =
(x1, x2, . . .)′ 6= 0,

x′Kx > 0.

The latter inequality may be proven as follows. Let y = A′x. Writing
out x′Kx then yields

x′Kx =
∑
i

x2
i

mi

1−
∑
j

aij
tj
µj

+
∑
j

y2
j

tj
µ2
j

=
∑
i

x2
i

mi
−
∑
j

tj
µj

(∑
i

aij
x2
i

mi
−
y2
j

µj

)
. (B.7)

Using Cauchy’s inequality (Hardy, Littlewood, and Pólya 1967) it can be
shown that the term in brackets is nonnegative:∑

i

aij
x2
i

mi
−
y2
j

µj
=
∑
i

(aijxi)2

aijmi
− (

∑
i aijxi)

2∑
i aijmi

≥ 0.

Because of this inequality, substituting tj in (B.7) by max(0, tj) yields a
lower bound for (B.7). Hence,

x′Kx ≥
∑
i

x2
i

mi
−
∑
j

max(0, tj)
µj

(∑
i

aij
x2
i

mi
−
y2
j

µj

)

≥
∑
i

x2
i

mi
−
∑
j

max(0, tj)
µj

∑
i

aij
x2
i

mi

=
∑
i

x2
i

mi

1−
∑
j

aij
µj

max(0, tj)


> 0,
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with the last inequality because of (B.6). This proves that K is positive
definite, and therefore that Q is negative definite.

2

Lemma 4 implies that L(m,λ) as a function of m with λ fixed is
concave at all its stationary points. It follows that every stationary point
of L(m,λ) as a function of m with λ fixed is a strict maximum, implying
that there can be at most one stationary point, which, if it exists, is the
global maximum. Thus, (B.5) has, at most, one solution for all λ. A
solution does not exist for all λ, but, as stated in the next lemma, if and
only if λ is an element of a certain convex set.

Lemma 5 Assume that all ni > 0 and that (B.2) holds. Then there is
a convex set C ⊂ Rh (independent of m or λ) such that, for fixed λ: 1)
equation (B.5) has a unique solution m(λ) if λ ∈ C, and 2) if λ 6∈ C,
equation (B.5) does not have a solution.

Proof. Let

C =

λ
∣∣∣∣∣∣
 ∑
i:aij>0

ni + tj > 0 ∀j

 ∧
ni +

∑
j∈Ji

tj > 0 ∀i

 ,
where tj =

∑
k cjkλk and

Ji = {j : aij > 0, ahj = 0 (h 6= i)}.

Note that Ji is the index set consisting of those indices j for which µj =
aijmi. It can easily be verified that C is convex. It is shown below that
the lemma holds for this particular choice of C.

From (B.3) we have

L(m,λ) =
∑
i

ni logmi −
∑
i

mi +
∑
j

tj logµj ,

where µj =
∑
i aijmi and tj =

∑
k λkcjk. From Lemma 4, any stationary

point of L as a function of m is a strict maximum. Therefore, there can be
at most one stationary point, which, if it exists, is the global maximum.
To prove the lemma, we look at specific components of L(m,λ). Let

J ci = {j 6∈ Ji : ∃hahj > 0}
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be the set of indices j for which µj is the sum of aijmi and at least one
other term. Thus, Ji∪J ci consists of those indices j for which µj contains
aijmi. Then the sum of all terms of L(m,λ) containing a certain mi is

bi(mi) = ni logmi −mi +
∑

j∈Ji∪J ci

tj logµj .

Note that bi(mi) certainly contains mi, but not necessarily any other
elements of m. Let mj be the vector of those mi contributing to µj (i.e.,
the mi for which the index i is such that aij > 0), ordered by increasing
indices. The sum of all terms of L(m,λ) containing an element of mj is

dj(mj) =
∑

i:aij>0

ni logmi −
∑

i:aij>0

mi + tj logµj .

Note that dj(mj) contains all mi contributing to µj but not any other
elements of m. To prove the lemma, the behaviour of all the terms bi(mi)
and dj(mj) is investigated. It is sufficient to show that: (i) all bi(mi)
and dj(mj) attain a (usually different) maximum in the interior of their
parameter spaces if λ ∈ C, and (ii) there is some bi(mi) or dj(mj) which
does not have exactly one stationary point which is a maximum in the
interior of the parameter space if λ 6∈ C. If (i) holds, then L(m,λ) must
also attain a maximum in the interior of the parameter space if λ ∈ C. If
(ii) holds, then L(m,λ) has either zero stationary points, so there can be
no m(λ) we are seeking to find, or L(m,λ) cannot have only stationary
points which are maxima, thereby contradicting Lemma 4. It should be
remembered that the interior of the parameter space is the space where
all mi > 0. Thus, a maximum cannot be attained where some mi = 0
(i.e., a strictly decreasing function of mi does not attain a maximum in
the interior of the parameter space). Points (i) and (ii) are proven below.

(i) It is shown that if λ ∈ C, all bi(mi) and dj(mj) attain a maximum
in the interior of the parameter space, for any i and j.

First, bi(mi) is investigated. It is easily verified that bi(mi) goes to
−∞ as mi →∞. It remains to be seen what happens if mi ↓ 0. We have

bi(mi) = ni logmi −mi +
∑
j∈Ji

tj log aijmi +
∑
j∈J ci

tj logµj

= ni logmi −mi +
∑
j∈Ji

tj logmi +
∑
j∈Ji

tj log aij +
∑
j∈J ci

tj logµj
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=

ni +
∑
j∈Ji

tj

 logmi −mi +
∑
j∈Ji

tj log aij +
∑
j∈J ci

tj logµj .

The term in brackets is positive because λ ∈ C, so bi(mi) → −∞ as
mi ↓ 0. Thus, bi(mi) attains a maximum for all λ ∈ C.

Next, the behaviour of dj(mj) is investigated. We have

dj(mj) =

 ∑
i:aij>0

ni logmi + tj logµj

− ∑
i:aij>0

mi.

It is easily verified that as the elements of mj go to infinity (at possibly
different rates), that dj(mj)→ −∞, because the term on the right goes to
minus infinity faster than the term in brackets goes to plus infinity. Hence,
to show that dj(mj) has a maximum it is sufficient to demonstrate the
following two assertions. First, that the gradient of dj(mj) as a function
of mi (mi an element of mj) is positive if mi ∈ 〈0, δ〉, for some δ > 0.
Second, that as all elements of mj approach zero at the same rate in
a certain way, the gradient of dj(mj) is positive. Differentiating with
respect to logmi, the gradient of dj(mj) is

gij =
∂dj(mj)
∂ logmi

= ni +
aijmi

µj
tj −mi.

It must first be shown that, for any i, gij > 0 for small enough mi. If
tj is nonnegative, then gij ≥ ni−mi > 0 if mi is small enough since ni > 0
is fixed. If tj is negative and µj = aijmj , then gij = ni+ tj −mi = ε−mi

for some ε > 0 by the first inequality of C. If tj is negative and mj has
more than one element, then as mi ↓ 0 (mi in mj), gij → ni > 0.

The second assertion to be shown is that as all elements of mj ap-
proach zero at the same rate in a certain way, the gradient of dj(mj) is
positive. For all elements m∗i of m∗j let m∗i = niz. Then as z ↓ 0, all
elements of m∗j approach zero at the same rate in a specified way. Now
dj(m∗j ) can be differentiated with respect to log z. We obtain

∂dj(m∗j )
∂ log z

=
∂

∂ log z

 ∑
i:aij>0

ni log(niz)−
∑

i:aij>0

niz + tj log
∑

i:aij>0

aijniz


=

∑
i:aij>0

ni − z
∑

i:aij>0

ni + tj (B.8)
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= ε− z
∑

i:aij>0

ni

for some ε > 0 (using the first inequality of C). Thus, if z ∈ 〈0, δ〉, for
some δ > 0, then the gradient of dj(m∗j ) as a function of z is positive.

(ii) Next it is shown that, if λ 6∈ C, some bi(mi) or dj(mj) does not
have exactly one stationary point which is a maximum. Two cases are
distinguished below: a) the first inequality used in the definition of C is
violated, and b) the second inequality is violated:

a) First, suppose that for some j:∑
h:ahj>0

nh + tj ≤ 0. (B.9)

The first inequality in the definition of C is violated and therefore λ 6∈ C.
For all elements m∗i of m∗j suppose m∗i = niz. Then as z ↓ 0, all elements
of m∗j approach zero at the same rate in a specified way. The derivative
of dj(m∗j ) with respect to log z (see (B.8)) becomes

∂dj(m∗j )
∂ log z

=
∑

i:aij>0

ni − z
∑

i:aij>0

ni + tj

≤ −z
∑

i:aij>0

ni

Thus, dj(m∗j ) as a function of z is a strictly decreasing function, and
therefore dj(mj) as a function of mj cannot have exactly one stationary
point which is a maximum.

b) Second, suppose that

ni +
∑
j∈Ji

tj ≤ 0 (B.10)

for some i. The second inequality in the definition of C is violated and
therefore λ 6∈ C. It is shown that the gradient of bi(mi) with respect to
mi is negative if mi ∈ 〈0, δi] for some sufficiently small δi > 0. Note that,
for j ∈ J ci ,

aijmi

µj
tj =

aijmi

aijmi +
∑
h6=i ahjmh

tj .
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Thus we have, with kj =
∑
h 6=i ahjmh, and using (B.10),

∂bi(mi)
∂ logmi

= ni +
∑
j∈Ji

tj −mi +
∑
j∈J ci

aijmi

µj
tj

≤ −mi +
∑
j∈J ci

aijmi

µj
tj

= −mi +
∑
j∈J ci

aijmi

aijmi + kj
tj ,

which is negative if mi is sufficiently small and kj is sufficiently large.
Since the gradient of bi(mi) is negative when mi ↓ 0 (given certain values
of mh, h 6= i) and bi(mi) → −∞ when mi → ∞, bi(mi) cannot have
exactly one stationary point which is a maximum.

2

Since m(λ) is uniquely defined for all λ ∈ C, we can investigate the
implicit function h(m(λ)) for λ ∈ C.

Lemma 6 Assume that all ni > 0 and that H(m(λ)) is of full column
rank for all λ ∈ C. Then h(m(λ)) = 0 has at most one solution λ̂ ∈ C.

Proof. From Lemma 4 it follows that m(λ) is differentiable with respect
to λ. Differentiating h(m(λ)) with respect to λ yields

S =
∂h(m(λ))

∂λ
= −H′Q(m(λ),λ)−1H.

Since (m(λ),λ) is a solution to (B.5) for all λ ∈ C, Q(m(λ),λ) is negative
definite for all λ ∈ C by Lemma 4. Since, additionally, H is assumed to
be of full column rank, S is positive definite for all λ ∈ C. Thus, because
C is convex, there can be at most one λ̂ satisfying h(m(λ)) = 0.

2

Now Theorem 1 can be proven. From Lemma 6, it follows that there
is at most one λ̂ satisfying h(m(λ̂)) = 0. For any such λ̂, it follows from
Lemma 5 that there is a unique m̂ = m(λ̂) such that the pair (m̂, λ̂)
satisfies (B.5). Since Lemma 3 states that there is at least one such pair,
Theorem 1 is proven.
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B.3 A suggestion for an algorithm to find MLEs

From the proof given above it follows that the MLE λ̂ is the minimum of
L(m(λ),λ) as a function of λ, with m(λ) defined as the solution to (B.5).
The MLE m̂ of the expected frequencies equals m(λ̂). Since L(m(λ),λ)
is strictly convex on the convex domain C defined on page 130, it is
straightforward to use a minimization algorithm for finding the MLEs
(m̂, λ̂), similar to the algorithm used in Section 3.2.2. The difference
with the algorithm given in Section 3.2.2 is that here, m(λ) is an implicit
rather than explicit function of λ. Any gradient method, for example
Newton-Raphson can be used to search for λ̂. One can start with λ = 0
(or any other λ ∈ C). The procedure is not as efficient as the procedure
described in Section 5.1, however, because the implicit function m(λ)
must be calculated at every iteration. The advantage of the algorithm
described here is that convergence can easily be guaranteed.
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Appendix C

Results from matrix algebra

Result 1 For any non-square full column rank matrix Q with orthogonal
complement R, the following identity holds:

Q(Q′Q)−1Q′ = I−R(R′R)−1R′.

Proof. Let P1 = Q(Q′Q)−1Q′ and P2 = R(R′R)−1R′. Then P2
1 = P1

and P2
2 = P2. Additionally, P1P2 = 0 and P2P1 = 0 because Q′R = 0

and R′Q = 0 (where the “0” matrices have different dimensions). Now
P1 −P2 = P2

1 −P2
2 = (P1 −P2)(P1 + P2) so that

(P1 + P2 − I)(P1 −P2) = 0. (C.1)

Matrix (P1 − P2) is invertible since there is no non-zero vector v such
that (P1−P2)v = 0, because P1v = P2v is impossible (P1v orthogonal
to P2v). Thus, from (C.1), P1 = I − P2, which is the desired result.
(Proof courtesy to Michel Petitjean and Denis Constales, communicated
through Internet.)

2

Result 2 For any non-square full column rank matrix Q with orthogonal
complement R, and a nonsingular matrix L,

LQ(Q′LQ)−1Q′L = L−R(R′L−1R)−1R′.
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Proof. Let S = L
1
2 Q and T = L−

1
2 R. Then, using result 1,

LQ(Q′LQ)−1Q′L = L
1
2

(
S(S′S)−1S′

)
L

1
2

= L
1
2

(
I−T(T′T)−1T′

)
L

1
2

= L−R(R′L−1R)−1R′.

2

Result 3 For any non-square full column rank matrix Q with orthogonal
complement R, and a nonsingular matrix L, the matrix

L−R(R′L−1R)−1R′

is nonnegative definite.

Proof. The result follows immediately from result 2.

2

Result 4 For a nonsingular matrix A, and matrices B, C, and D such
that D − CA−1B is nonsingular, the following formula holds (Searle,
1982, p. 260)(

A B
C D

)−1

=

(
A−1 0

0 0

)
+

(
−A−1B

I

)
(D−CA−1B)−1

(
−CA−1 I

)
.
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Homogeneous functions

Definition. A function f(x1, . . . , xn) is homogeneous of degree r (r a
whole, possibly negative number) if for every c > 0:

f(cx1, . . . , cxn) = cr f(x1, . . . , xn).

As an example, f(x1, x2) = x1/x2 is homogeneous of degree zero. A
function f(x1, x2, x3) may be said to be homogeneous of degree r with
respect to x1 and x2 when

f(cx1, cx2, x3) = cr f(x1, x2, x3).

A key property of homogeneous functions is given by the following result.

Result 5 (Euler’s formula) Suppose that f(x1, . . . , xn) is homogeneous
of degree r and differentiable. Then

∑
i

∂f(x1, . . . , xn)
∂xi

xi = r f(x1, . . . , xn).

For a proof, see Mas-Colell, Whinston, and Green (1995). For a function
that is homogeneous of degree zero, Euler’s formula says that

∑
i

∂f(x1, . . . , xn)
∂xi

xi = 0.

This is, in fact, the result used in this book.
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Appendix E

A Mathematica program

A listing of Mathematica source code for maximum likelihood fitting of
all the models described in this book is presented. The procedure listed
below performs the iterative scheme described in Section 5.1. The input
which is required consists of a (Mathematica) list of observed frequencies
n, a starting estimate start, a link function g, a list of measures zeta,
the Jacobian of zeta Zt, a matrix Mt such that Mt.n produces the ob-
served marginals, and a design matrix X. A thorough description of the
Mathematica language is presented by Wolfram (1996).

The program is not guaranteed to work for all models, though, in
practice, few problems were encountered. All models described in the
example in Section 4.4 converged quickly. However, if no convergence is
obtained for a certain model, the constants defined at the beginning of
the program, which regulate the step size, the maximum “error” (which is
a measure for the distance from convergence), and the maximum number
of iterations may be modified.

The following method is used for choosing a step size. The program
starts with step = MaxStepSize, and keeps halving the value of step while
the new estimates yield no decrease of the error function error[m] defined
by (5.8). However, the halving is stopped when step < MinStepSize. In
that case, step = MaxStepSize is used instead. This is done because it
is assumed that, if MinStepSize is reached, that the error function does
not yield a good indication of convergence, so a “jump” is made using
MaxStepSize. If the method does not work, other values of MinStepSize
and MaxStepSize may be tried.
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The program listed below can be obtained by sending an e-mail mes-
sage to the address

fsw.mto@kub.nl

with the message “bergsma-1” in the header. The program will then
be sent to you automatically. A more user friendly program should be
available very soon, and can be obtained from the same e-mail address
by putting “bergsma-2” in the header.

MLE[n_,start_,g_,zeta_,Zt_,Mt_,X_] := Module[

{MaxStepSize = 1,
MinStepSize = .1,
MaxError = 10.^-10,
MaxIterations = 100,
v,m,step,error,iterate },

v[m_,step_] := v[m,step] = Module[
{Ut,mu,hm,Htm,Hm,lambda},
Ut = NullSpace[Transpose[X]];
mu = Mt.m;
hm = Ut.g[zeta[mu]];
Htm = (m*#)&/@ (Ut.(g’[zeta[mu]]*Zt[mu].Mt));
Hm = Transpose[Htm];
lambda = -Inverse[Htm.(1/m*Hm)].(Htm.(n/m-1)+hm);
Log[m] + step * 1/m * (n - m + Hm.lambda) ];

error[m_] := (v[m,1]-Log[m]).(m*(v[m,1]-Log[m]));

iterate[m_,step_:MaxStepSize] := Module[ {newm},
newm = Exp[v[m,step]];
Print[ N[step], " ", error[newm] ];
Which[

step < MinStepSize, Exp[v[m,MaxStepSize]],
error[newm] > error[m], iterate[m,step/2],
True, newm ] ];

Print["stepsize, error :"];
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FixedPoint[ iterate, start, MaxIterations,
SameTest -> (error[#]<MaxError&) ] ]

The t-functions used for evaluating measures that can be written in
“exp-log” notation described in Section 4.3.1 are implemented as follows:

t[pi_,{a_,c_,0}] := pi;
t[pi_,{a_,c_,i_}] :=

Exp[c[i-1].Log[a[i-1].t[pi,{a,c,i-1}]]];

T[pi_,{a_,c_,0}] := IdentityMatrix[Length[pi]];
T[pi_,{a_,c_,i_}] := t[pi,{a,c,i}] * c[i-1] .

(1/a[i-1].t[pi,{a,c,i-1}]*a[i-1].T[pi,{a,c,i-1}])

As an example, we demonstrate how, for a 3 × 3 table, the marginal
homogeneity model defined by the constraints

log
m1+

m2+
= β1 log

m2+

m3+
= β2

log
m+1

m+2
= β1 log

m+2

m+3
= β2

can be estimated (note that the constraints reduce to mi+ = m+i, i =
1, 2). The model matrices and the functions ζ and Z can be implemented
as

Mt = {{1,1,1, 0,0,0, 0,0,0},
{0,0,0, 1,1,1, 0,0,0},
{0,0,0, 0,0,0, 1,1,1},
{1,0,0, 1,0,0, 1,0,0},
{0,1,0, 0,1,0, 0,1,0},
{0,0,1, 0,0,1, 0,0,1} };

X = {{1,0},{0,1},{1,0},{0,1}};

at[0] = IdentityMatrix[6];
ct[0] = {{1,-1, 0, 0, 0, 0},

{0, 1,-1, 0, 0, 0},
{0, 0, 0, 1,-1, 0},
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{0, 0, 0, 0, 1,-1} };

zeta[mu_] := t[mu,{at,ct,1}];
Zt[mu_] := T[mu,{at,ct,1}];

After specifying the observed frequencies, the estimation process can be
started as follows:

n = N[{1,2,3,4,5,6,7,8,9}];
estimates = MLE[n,n,Log,zeta,Zt,Mt,X]

where the observed frequencies are taken as starting estimates, and the
log link is used. The result is

{1., 2.83808, 5.17758, 3.08809, 5., 6.85934, 4.92757,
7.10934, 9.}

As a second example, we demonstrate how the model asserting that
gamma is zero in a 2 × 3 table can be fitted. The matrices Ai, Ci, and
E defining gamma are programmed as follows.

at[0] = {
{1,0,0, 0,0,0},
{0,1,0, 0,0,0},
{0,0,0, 0,1,1},
{0,0,0, 0,0,1},
{0,1,0, 0,0,0},
{0,0,1, 0,0,0},
{0,0,0, 1,0,0},
{0,0,0, 1,1,0} };

ct[0] = {
{1,0,1,0, 0,0,0,0},
{0,1,0,1, 0,0,0,0},
{0,0,0,0, 1,0,1,0},
{0,0,0,0, 0,1,0,1} };

at[1] = 2 {{1,0},{0,1},{1,1}} . {{1,1,0,0},{0,0,1,1}};

ct[1] = {{1,0,-1},{0,1,-1}};
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et = {{1,-1}};

The functions ζ, Z′, and the log-hyperbolic link (see (4.4) can be imple-
mented as

zeta[n_] := et . t[n,{at,ct,2}];
Zt[n_] := et . T[n,{at,ct,2}];
loghyperbolic[z_] := Log[ (1+z)/(1-z) ];

The design matrix X is the 1×1 zero matrix, since it is tested that gamma
is zero. The marginals µ are the joint frequencies m, so M′ is the 6× 6
identity matrix:

X = {{0}};
Mt = IdentityMatrix[6];

At this point, only the observed vector n needs to be specified, and the
estimation process can begin:

n = N[{1,2,3,4,5,6}];
estimates = MLE[n,n,loghyperbolic,zeta,Zt,Mt,X]

The result is

{1.34087, 2.1377, 2.52143, 3.62284, 4.87149, 6.50566}

As we see in a symbolic programming language like Mathematica,
programs can be written in a very compact way. Similar programs can
also be written in Maple or S-plus. A lot of programming time can be
saved by programming in such a language, rather than, for instance,
languages such as Pascal, ‘C’, or Fortran.
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Samenvatting

De laatste dertig jaar hebben enorme ontwikkelingen op het gebied van
methoden voor de analyse van categorische data plaatsgevonden. Cate-
gorische data worden veelvuldig gebruikt in sociaal-wetenschappelijk en
biomedisch onderzoek. Het loglineaire model neemt in deze ontwikke-
lingen een centrale plaats in. Een beperking van het loglineaire model
is echter dat het niet geschikt is voor het toetsen van hypothesen be-
treffende de relatie tussen (afhankelijke) marginale verdelingen. Onder
de marginale verdeling van een of meer variabelen wordt verstaan de
kansverdeling van die variabele ongeacht de overige onderzoeksvariabe-
len. Een eenvoudig voorbeeld van een hypothese betreffende marginalen
levert het marginale-homogeniteitsmodel, dat bruikbaar is om te toetsen
of gecorreleerde categorische variabelen een identieke verdeling hebben.
Vanwege de afhankelijkheden tussen de waarnemingen kunnen standaard
chi-kwadraat toetsen niet gebruikt worden, en moet men andere metho-
den toepassen. In dit boek wordt een algemene methode gepresenteerd
voor het toetsen van een brede klasse van modellen betreffende marginale
verdelingen.

De indeling van dit boek is als volgt. Hoofdstukken 1 tot en met 3 vor-
men het inleidende deel. In hoofdstuk 1 wordt de probleemstelling uitvoe-
rig geschetst. Het loglineaire model wordt beschreven in hoofdstuk 2. Een
aantal basisconcepten die gebruikt worden in de rest van het boek wordt
hier gepresenteerd. Hoofdstuk 3 bevat een overzicht van de belangrijk-
ste literatuur die betrekking heeft op marginale-homogeniteitsmodellen.
Verschillende toetsings- en schattingsmethoden worden beschreven.

Hoofdstukken 4 en 5 vormen de kern van het boek. In hoofdstuk 4
wordt het marginale model gepresenteerd, een zeer algemeen model dat
bruikbaar is voor de analyse van marginale verdelingen. Het marginale
model generaliseert het loglineaire en marginale-homogeniteitsmodel van
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het tweede en derde hoofdstuk. Zo kan men met behulp van dit model hy-
pothesen over de verandering van associatie tussen twee variabelen toet-
sen, bijvoorbeeld: wordt de associatie tussen partijvoorkeur en voorkeur
voor minister president sterker naarmate de verkiezingen naderen? As-
sociatie kan op verschillende manieren gemeten worden. In de loglineaire
traditie worden odds-ratios gebruikt. Het marginale model kan ook ge-
bruikt worden voor andere associatiematen, zoals bijvoorbeeld gamma of
Kendall’s tau. Ook is een vergelijking van overeenstemmingsmaten, zoals
bijvoorbeeld kappa, mogelijk. Behalve aan een uitleg van het marginale
model, wordt in hoofdstuk 4 ook aandacht besteed aan de implementatie
op een computer.

In het laatste hoofdstuk wordt een eenvoudig en efficiënt algoritme be-
schreven voor het schatten van celfrequenties met behulp van de methode
van de meest aannemelijke schatters. Dit algoritme blijkt in de praktijk
zeer goed te werken, en kan gebruikt worden voor kruistabellen met enkele
miljoenen cellen. Een voordeel van het algoritme is ook dat het eenvoudig
te programmeren is (voor een programmabeschrijving zie Appendix E)
en dat het voor een zeer brede klasse van modellen gebruikt kan worden.
Verder wordt in dit hoofdstuk een klasse van loglineaire modellen voor
marginalen beschreven waarvoor de aannemelijkheidsfunctie een uniek
maximum heeft gegeven de modelrestricties. Dit simplificeert het schat-
ten van celfrequenties aanzienlijk omdat, indien een lokaal maximum is
gevonden, men er zeker van kan zijn dat dit maximum ook globaal is.

Verder wordt een korte beschrijving gegeven van de gewogen kleinste
kwadraten methode en van de zogeheten generalized estimating equations
benadering. Hoewel veel statistici de voorkeur geven aan de methode
van de meest aannemelijke schatters, kunnen deze alternatieve methoden
voordelen bieden bij de analyse van zeer grote kruistabellen, die ontstaan
als veel variabelen gebruikt worden.

Wanneer de schatters voor een marginaal model gevonden zijn, kun-
nen de hypotheses met behulp van standaard chi-kwadraat toetsen ge-
toetst worden. Resultaten van Lang (1996c) over het partitioneren van
toetsen worden gegeneraliseerd. Bovendien wordt een generalisatie van
de zogeheten adjusted residuals (Haberman, 1973; Lang, 1996a) gepresen-
teerd. Aangetoond wordt hoe conditionele adjusted residuals en adjusted
residuals voor verschillende maten berekend kunnen worden. Tot slot
worden de asymptotische verdelingen van de verschillende schatters in
dit hoofdstuk beschreven.


