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1. Introduction 
 

The basic ideas underlying latent class analysis have been developed by Paul 

Lazarsfeld in the fifties of the previous century (Lazarsfeld 1950, 1959; Lazarsfeld 

and Henry 1968). The methods proposed by him and his coworkers for estimating the 

parameters of the latent class model were, although leading to BAN estimates, rather 

arbitrary and often resulted in very capricious or even impossible estimates. Despite 

the fact that in that period also the maximum likelihood equations for the latent class 

model were developed (see Lazarsfeld and Henry 1968), no practicable algorithms 

were available to obtain these maximum likelihood estimates on the desk calculators 

and low-speed computers then available. That situation improved spectacularly in the 

nineteen seventies thanks to the important, original contributions by Goodman and 

Haberman (Goodman 1974a,b; Haberman 1977, 1979, 1988). They were the first to 

develop feasible algorithms for obtaining maximum likelihood estimates for the basic 

latent class model and for a large number of important variants of the basic model. 

They truly converted Lazarsfeld’s much promising latent structure model into a very 

flexible tool that could actually be used in practical research. 

Building upon the work of Goodman and Haberman, many other people have since 

then made important contributions by enlarging the scope of the standard latent class 

model in some important statistical way and by showing how the latent class approach 

can be used to solve important substantive problems (for an applied methodological 

overview, see Hagenaars and McCutcheon 2002). Exemplary among those ‘many 

other people’ is certainly Dayton, who, often in collaboration with Macready, wrote 

numerous inventive and important applications of latent class analysis, several 

introductory articles and books on the topic and enlarged the latent class model 

significantly by showing how to incorporate continuous covariates into the model to 

explain the scores on the latent variable (e.g., Dayton 1991, 1998; Dayton and 

Macready 1983, 1988; Macready and Dayton 1992). In all this work, he always kept a 

keen eye on what substantive researchers needed. It is in this Daytonean spirit that we 

have tried to write this chapter: enlarging the basic latent class model in a manner that 

will be useful for substantive researchers.  



First, in the next Section, a simple latent class model with two latent variables will be 

introduced. It will be shown how particular obvious and natural parameterizations and 

interpretations of the relationships in this model may result in a latent class model that 

can no longer be estimated by the standard methods developed by Goodman and 

Haberman implemented in most relevant statistical software. Alternative methods are 

required and are available. 

In the last Section, a similar story will be told, but now using a somewhat more 

complicated latent class model, that is, a. Structural Equation Model (SEM) for 

categorical data emphasizing difficulties and possibilities somewhat different from the 

previous example. 

 

 

 

2. Latent Class Models 
 

By way of example, Lazarsfeld’s 1940 classical data set on Party and Candidate 

Preference in Erie County, Ohio will be used (Lazarsfeld 1972, p. 392). This data set 

is presented in Table 1. In this table, Party Preference is a dichotomous variable: 

1.Democrats 2. Republicans, as is Candidate Preference: 1. Against Willkie (further 

indicated as Democrats) 2. For Willkie (further denoted as Republicans), where it 

must be remembered that Willkie was the (defeated) 1940 Republican Presidential 

Candidate running against Roosevelt. Hagenaars (1993) fitted several latent class 

models to the data in Table 1, among them the model that is presented in Figure 1.



Table 1 Party Preference (PP) and Presidential Candidate Preference (CP); Erie 

County Ohio, 1940; t1 – August, t2 – October 

 

         C. CP-t1          1. Dem.  1. Dem.     2. Rep.  2. Rep. 

A. PP-t1   B.PP-t2   D. CP-t2 1. Dem.  2. Rep.      1.Dem.  2. Rep. 

         

1.Dem      2.Rep.                68           2                11          12 

1. Dem.    2.Rep.                    1           1                  0            1 

2.Rep.      1.Dem                            1           0                  2            1 

2. Rep.     2.Rep.                         23         11                  3         129 

 

 

Source: Lazarsfeld 1972, p. 392 

 

 

 

 

Figure 1 
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In the model in Figure 1, variable Y represents a dichotomous latent variable, 

indicating the (stable) underlying, ‘true’ Party Preference (1. Democrats 2. 

Republicans). Dichotomous latent variable Z is the (stable) latent Presidential 

Candidate Preference (1. Democrats 2. Republicans). Manifest variables A through D 

are the observed variables as denoted in Table 1. The model in Figure 1 can be written 

in terms of the following basic latent class (LCA) equation, where 
YZ

yz  represents the 

joint probability of scoring (y,z) on YZ, 
YA

ya

| the conditional probability of scoring 

A=a, given Y=y, and the other symbols have obvious analogous meanings. 
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The first part of Eq. (1) (
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|  ) is a tautology and by definition true, 

as follows from basic rules of probability calculus. However, the joint conditional 

probability 
YZABCD

yzdcba

|  can be written in a more simple way as the product of the 

marginal conditional probabilities in the last part of Eq. (1) (
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if the conditional independence restrictions implied by the model in Figure 1 are true. 

Central among these independence restrictions are the basic LCA assumption of 

conditional (local) independence among the indicators, given the scores on the latent 

variables. 

Using the customary short hand notation to indicate hierarchical loglinear models, the 

model in Figure 1 can equivalently be represented as loglinear model 

{YZ,YA,YB,ZC,ZD, written out in full as 
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This two latent variable latent class model fits the data in Table 1 well with 

(maximum likelihood-)G
2
 = 7.32, df = 4 (p = .120, Pearson-X

2
 = 11.53). The ML 

estimates of the parameters in Eq. (1) are given in Table 2.



Table 2 Estimates of Parameters in Eq. (1), applied to the data in Table 1 

 

Y=y   Z=z 
YZ

yz̂        
YA

y

|ˆ
1  

YA
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|ˆ
2     
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|ˆ
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ZD
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|ˆ
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ZD

z

|ˆ
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1        1 .315   .965  .035 .991  .009     .853  .147     .986  .014 

1        2 .051   .965  .035 .991  .009     .081  .919     .000 1.000 

2        1 .101   .013  .987 .004  .996     .853  .147     .986  .014 

2        2 .534   .013  .987 .004  .996     .081  .919     .000 1.000 



Latent class outcomes always contain a lot of detailed and interesting information. It 

is seen for instance in Table 2 that the true Republicans (Y=2 or Z=2) always answer 

just a bit more ‘truthfully’, i.e., have a somewhat larger probability of giving manifest 

Republican answers than the true Democrats who have a bit smaller chance of giving 

the ‘correct’ Democratic answer. Further the probability of giving the correct answer 

in agreement with the true position is always a bit smaller for the first wave in 

October than for the second wave in November. As Goodman has shown the 

statistical significance of these (small) differences can be investigated by testing the 

hypotheses that pertinent conditional response probabilities are equal to each other 

(Goodman 1974a,b). 

Most attention will be paid here to the ‘factor loadings’, representing the associations 

between the latent variables and their indicators and thus expressing the ‘reliability’ of 

the measurements, assuming there is a one-to-one correspondence between the 

meanings of the categories of the latent variables and their indicators (Hagenaars 

1990, 2002, 2005, 2010). Below, these ‘factor loadings’ or associations between the 

latent variables and their indicators will often be denoted in a general sense as 

‘reliabilities’ without reference to the more restricted meaning of the term that is 

common for continuous variables, e.g., in classical error theory. The strength and 

direction of these associations or reliabilities can be expressed by means of the two-

variable loglinear parameters in Eq (2), essentially by means of the the (log)odds 

ratios, that can be estimated on the basis of  the conditional response probabilities in 

Table 2: 

 

967.4ˆ,046.1ˆ,567.2ˆ,916.1ˆ
11111111  ZDZCYBYA   

 

In general, the positive associations between the latent and the manifest variables and 

therefore the ‘reliabilities’ of the measurements are very high. According to these 

loglinear association coefficients, manifest variable D is the most reliable indicator, 

followed by B, A, and C. Note that the size of the effect of Z on D must just be 

regarded as ‘very large’. Table ZD contains an almost empty cell making the odds 

ratio very sensitive to rounding errors. For example, using a few more digits after the 

decimal point in the calculations of the estimated conditional response probabilities 

and the loglinear parameter, the resulting estimate was 8981811 .ˆ ZD . And to further 

illustrate the instability of the large effect: the above estimate 967.4ˆ
11 ZD  has an 

estimated standard error of 143.651.  

The association between the underlying true Party Preference and the true Candidate 

Preference is found in table YZ with entries 
YZ

yz̂  (Table 2). This association between 

the latent variables  87411 .ˆ YZ  corrects the corresponding observed relationships for 

misclassifications or measurement errors. (The observed relationships are for 

observed marginal table AC: 61211 .ˆ AC  and for table BD: 84011 .ˆ BD .) The 

estimated loglinear association 87411 .ˆ YZ  corresponds with an odds ratio of 33.036  

and shows that the two latent variables are strongly positively related to each other. 

The odds of preferring the Democratic presidential candidate rather than the 

Republican one are 33 times higher for the Democratic Party supporters than for those 

who prefer the Republican Party. 

However, expressing the directions and strength of the relationships among the 

variables in terms of the loglinear parameters (i.e., in terms of odds and odds ratios) is 



in a way arbitrary. Other association measures as functions of the (conditional 

response) probabilities can be and have been used. For example, many researchers 

would prefer to describe the relationships between the latent variables and their 

indicators in terms of the differences ε between particular conditional response 

probabilities rather than in terms of ratios.  For example, the effect of Y on A can also 

be estimated as follows, using the estimated conditional response probabilities in 

Table 2: 952013965211111 ...ˆˆˆ |||  YAYAYA  . In terms of ε, the effects of the 

latent variables on the indicators, i.e., the reliabilities of all indicators are: 

 

986772987952 11111111 .ˆ,.ˆ,.ˆ,.ˆ ||||  ZDZCYBYA   

 

Indicator C would now again be characterized as the most unreliable indicator, but the 

other indicators show more or less the same degree of reliability. 

Also the relationship between the latent variables can be expressed in terms of ε using 

the estimated entries of table YZ (see Table 2) and arbitrarily treating Y as the 

independent variable. A rather strong relationship is found: 

...../../.ˆ | 70315986263410136631511 YZ  The probability that someone 

prefers the Democratic presidential candidate is .70 higher for the Democratic Party 

than for the Republican Party supporters. 

Although the above conclusions drawn from the odds ratios overlap to a large extent 

with the conclusions on the basis of the ε’s, they are not exactly identical. The 

question then is what parameterization or association coefficient has to be preferred to 

express the relationships in the two latent variable latent class model: odds ratios, ε’s 

or still other measures of association? Regardless of the specific model (but see 

below), a general textbook answer might be: choose that parameterization that suits 

your substantive theories best. However, most if not all social science theories lack 

this kind of precision, which is required to really guide the choice of the association 

coefficient. In general, the choice of a particular parameterization is much more a 

matter of taste and tradition and will be based on some general considerations of the 

properties of the coefficients. Many people find working with differences between 

conditional probabilities or percentages easier or more natural than applying odds 

(ratios); odds ratios have the nice property of being (variation) independent of the 

marginal distributions but are very sensitive to almost empty cells; epsilons, 

equivalent to unstandardized regression coefficients are much less sensitive to such an 

almost empty cell, but often cannot reach their theoretical maximum value given the 

marginal distributions, etc. etc. 

But also, and most importantly in this chapter, the characteristics of a particular latent 

class model may restrict the range of association coefficients or parameterizations to 

choose from. The model in Figure 1 and Eq (1) is a graphical model (Whittaker 1990, 

Cox and Wermuth 1996), more precisely a DAG, a directed acyclical graph that is 

completely defined by the (conditional) independence relationships it implies among 

the variables. As long as the chosen parameterization of the latent class model has a 

one-to-one correspondence with these independence restrictions, it yields identical 

estimates and is admissible in this sense. If one chooses to define the basic latent class 

model in Eq (1) as a multiplicative (or loglinear) model (as in Eq (2)) and estimates 

the direction, strength, but also the absence of a direct relationship in terms of the 

presence or absence of particular (conditional) odds ratios, then the estimated 

probabilities for the entries of the complete table (here: table YZABCD) will be 

exactly the same as for the graphical model in Eq (1). This is true because statistical 



independence implies that the pertinent log odds ratio equals zero (is ‘absent’), but 

also a (n ‘absent’) log odds ratio of zero implies statistical independence between the 

pertinent variables. The same is true if one would write the basic latent class model in 

Eq (1) as an additive model and uses ε’s to indicate the strength, direction but also the 

absence of a direct relationship among the variables, again because statistical 

independence implies ε = 0 and ε = 0 implies statistical independence. 

However, as well known, all this does not apply to all association coefficients. For 

example, for larger than 2x2 tables (and nonnormal distributions), coefficients like 

Goodman and Kruskal’s gamma (γ) or the product-moment correlation coefficient r 

are zero when there is statistical independence, but in general a value of zero of these 

coefficients does not imply statistical independence. Estimating a model such as the 

LCA model in Figure 1 under the restriction that, wherever an arrow is absent, a 

particular (conditional) γ or r is set to zero will therefore yield estimated probabilities 

for the complete table that will be different from the ones obtained when the model in 

Eq (1) is estimated. 

Sometimes, researchers estimate a model such as the one in Eq (1) on the basis of the 

implied (conditional) independence relationships and then to use a coefficient such as 

(conditional) γ or r to describe the nature of the remaining relationships. Of course, 

technically it can be done, but we feel that it is at least strange and hard to defend 

from a theoretical, substantive point of view to define the absence of a relationship by 

means of a parameterization that is different from defining its strength and direction 

within the same model. 

The explicit choice of an appropriate parameterization becomes more urgent and even 

necessary if (additional) restrictions are imposed on the LCA model that cannot be 

represented in the form of conditional independence relationships. For example, it is 

an obvious and natural research question to ask whether or not the reliabilities of the 

indicators in the above example are all the same in the population. But then it does 

matter for the test outcomes and the estimates how the reliabilities are expressed. In 

general, if the (log) odds ratios for two tables are the same, the ε’s will be necessarily 

different and vice versa (confining ourselves from here on to these two coefficients). 

Therefore, estimating the probabilities for the complete table under the usual 

independence restrictions plus the extra restriction of equal reliabilities will yield 

different outcomes when the pertinent odds ratios (two-variable loglinear parameters) 

have been set equal to each other or the pertinent ε’s. 

Setting the reliabilities equal to each other in terms of equality restrictions on the odds 

ratios or loglinear parameters poses no special problems in the sense that such 

restrictions can easily be tested and the restricted reliabilities estimated using 

Haberman’s and Goodman’s procedures as implemented in widely used software such 

as LEM, MPLUS or Latent Gold (Muthen and Muthen 2006; Vermunt 1997b; 

Vermunt and Magidson 2005). (And as a side remark: because equalities of particular 

conditional response probabilities can be formulated in terms of restrictions on one- 

and two-variable loglinear parameters, also such ‘reliability restrictions’ pose no 

special problems (Goodman 1974a,b; Hagenaars 1990; Heinen 1996)). 

However, for estimating latent class models with equal reliabilities in terms of ε’s 

these standard estimation procedures cannot be used. Such a restriction of the 

reliabilities in terms of ε’s brings the latent class model outside the exponential family 

because of which the standard (Goodman/Haberman) routines can no longer be used. 

However, an appropriate ML estimation procedure is provided by the marginal 

modeling approach. Becker and Yang  were the first to extend marginal modeling to 

include latent variables and Bergsma advanced their procedure (Becker and Yang 



1998; Bergsma 1997; Bergsma and Croon 2005; Bergsma and Rudas 2002a,b; 

Bergsma, Croon, Hagenaars 2009). Their algorithms are extensions of a very general 

method by Aitchinson and Silvey for finding MLE’s for a very broad class of 

restrictions, further developed by Lang and Agresti (Aitchinson and Silvey 1958; 

Lang 1996; Lang and Agresti 1994; Lang, McDonald, Smith 1999). An extensive 

description of the marginal modeling approach with numerous real world applications 

including latent variabl emodels can be found in Bergsma, Croon, and Hagenaars 

(2009). Bergsma and Van der Ark wrote the program CMM (Categorical marginal 

Modeling), a flexible set of R (and Mathematica) routines for general marginal 

modeling, to be found at the webpage www.cmm.st. (Bergsma and Van der Ark 

2009).  

Bergsma, Croon, and Hagenaars (2009, Chapter 6) applied these marginal modeling 

procedures to the latent class model in Figure 1 for the data in Table 1, investigating 

several extra restrictions regarding the reliabilities of the indicators in terms of both 

odds ratios and ε’s (and also in terms of Cohen’s κ). The most restrictive hypothesis 

that all reliabilities in the two-latent variable model are the same has to be rejected 

both for the pertinent odds ratios (G
2
 = 25.16, df = 7, p = .001) as for the ε’s (G

2
 = 

32.98, df = 7, p = .000). The test result for the baseline two latent variable model 

without extra reliability restrictions discussed before was G
2
 = 7.32, df = 4, p=.120. 

The ‘all reliabilities equal’ models can be conditionally tested against this baseline 

model, leading clearly to the same conclusions as the unconditional tests: they have to 

be rejected. 

An interesting hypothesis that fits the data for the reliabilities in terms of odds ratios 

(G
2
 = 7.64, df = 5, p=.177) but not in terms of  ε’s (G

2
 =15.14 df = 5, p = .005) is the 

restriction that in the two-latent variable model, the reliabilities increase from wave 

one to wave two, but with the same amount for party and candidate preference: 
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In terms of ε as reliability measure, a model in which the reliabilities of party 

preference were supposed not to change: 
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but change was allowed in the reliability of candidate preference fitted the data nicely: 

G
2
 = 8.45, df = 5, p = .133. The reliabilities were estimated as 
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Different conclusions can and sometimes will/must be reached when different 

parameterizations are applied. For many models and for many research questions, 

researchers may have good reasons to express their hypotheses about the reliabilities 

of the indicators not in terms of odds and odds ratios but to use other effect measures 

such as percentage differences. The application of marginal modeling procedures 

makes it possible, given further development of the software to routinely apply such 

http://www.cmm.st/


nonloglinear parametrizations in latent class models. Other instances where this might 

be useful will be discussed in the next section in the context of Structural Equation 

Models for categorical data. 

 

 

 

3. Structural Equation Models 
 

 

The principles of  SEMs - Structural Equation Models for categorical data have been 

outlined a long time ago (Goodman 1973a,b). Since then, Goodman’s models have 

been extended to include categorical latent variables (Hagenaars 1990, 1993, 1998, 

2002; Hagenaars, Heinen, Hamers 1980; Vermunt 1997a),  they  have been integrated 

into the general framework of graphical modeling (Pearl 2000; Cox and  Wermuth 

1996) and user friendly software has been developed to routinely estimate these 

models (LEM, Latent Gold); Vermunt 1997b; Vermunt and Magidson 2005). In this 

section,  further useful extensions will be discussed using marginal modeling 

procedures (see also Croon, Bergsma, Hagenaars 2000; Bergsma, Croon, Hagenaars 

2009, Chapters 5,6). The data that will be used are presented in Table 3. They are very 

much like the data set in the previous section, in the sense that the observed variables 

represent Party and Candidate Preference in two waves. But these data are from the 

Dutch population (and much later) and are trichotomies: 1.Christian Democrats 2. 

Left wing 3. Other (mainly Right wing). For the interpretation of the results, it must 

be remembered that in the Dutch political system, ‘candidate’ refers the candidate for 

Prime-Minister, who is not elected by the voters, unlike the president in the USA.



Table 3 Party and Candidate Preference (Source Hagenaars 1990) 

 

  C 1 1 1 2 2 2 3 3 3  

  D 1 2 3 1 2 3 1 2 3 Total 

A B            

1 1  84 9 23 6 13 7 24 8 68 242 

1 2  0 1 0 0 8 1 2 2 3 17 

1 3  3 1 2 0 2 3 2 3 9 25 

2 1  1 1 0 1 2 2 1 0 1 9 

2 2  2 4 0 1 293 6 1 22 21 350 

2 3  1 0 0 1 8 7 0 0 9 26 

3 1  6 1 1 4 5 0 9 1 16 43 

3 2  0 1 1 0 31 0 2 9 7 51 

3 3  14 1 15 3 48 23 12 21 200 337 

Total   111 19 42 16 410 49 53 66 334 1100 

 

A - Party Preference t1     1. Christian Democrat 

B - Party preference t2    2. Left Wing 

C - Candidate Preference t1    3. Other 

D - Candidate Preference t2 

 

 

 

Figure 2 
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The same model as before, that is, the model in Figure 1 equivalently represented in 

the shorthand loglinear notation as model {YZ,YA,YB,ZC,ZD} can be fitted to the 

data in Table 3, treating the latent variables also as trichotomous variables. However, 

the model does not fit the data (G
2
 = 84,74, df = 48, p = .00 (Pearson X

2
  = 94.33)) 

(although better than some competing latent class models; Hagenaars 1990, 2010; 

Bergsma, Croon, Hagenaars 2009). A possible reason might be that people did not 

have a clear idea in the first wave about the possible candidates for Prime Minister 

and were influenced in their answer to C-Candidate Preference at time 1 not only by 

their true Candidate Preference but also by their previous answer within the same 

interview regarding their Party Preference (Variable A). This is a kind of test-retest or 

consistency effect which violates the local independence assumption of the basic 

latent class model and results in a local dependence model (Hagenaars 1988, 1990, 

2010;  Bassi, Croon, Hagenaars, Vermunt 2000). A possible model along these lines 

is is depicted in Figure 2. 

The model in Figure 2 model can no longer be represented by one particular loglinear 

model, e.g., model (YZ, YA,YB,ZC,ZD,AC}. In a particular loglinear model (as in a 

multiple regression model), all effects are partial effects controlling for the other 

variables in the model. For example, the direct relationship between Y and Z (
YZ

yz  in 

model (YZ,YA,YB,ZC,ZD,AC}) is the relationship between the latent variables, 

controlling for C (and other variables). But according to the ‘causal’ diagram in 

Figure 2, C is a consequence of Z and ‘causally later’ than Y and Z and can therefore 

not influence Y or Z or their relationship. Given the causal order, the relation between 

Y and Z must be investigated in marginal table YZ, collapsing over the other 

variables. (In a way this is also true regarding the model in Figure 1, but there the 

collapsibility theorem guarantees that the results for Y-Z are the same whether or not 

controlling for the other variables; this is no longer true here because of the direct 

effect of A on C. In graphical terms, it amounts to whether or not a directed graph 

implies the same independence restrictions as the corresponding undirected graph 

(Bishop, Fienberg, Holland 1975; Whittaker 1990; Lauritzen 1996). As Goodman 

showed and as follows from the rules of directed graphical modeling, if the model in 

Figure 2 is true, including the (causal) order among the variables and including the 

implied (conditional) independence restrictions, the joint probability 
YZABCD

yzabcd  can be 

written as follows 
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In order to obtain the estimates for the right hand side elements of Eq (3) and the 

appropriate effect parameters, a loglinear submodel has to be defined for each of these 

elements. In agreement with the model in Figure 2, a saturated loglinear submodel 

will be applied to marginal table YZ with entries 
YZ

zy , a saturated logit submodel to 

marginal table YA (with A as the dependent variable), a saturated logit submodel to 

marginal table YB, and a saturated logit submodel to marginal table ZD. To marginal 

table ZAC, a nonsaturated logit submodel must be applied, because it is assumed here 

that A and Z do not interact regarding their influence on C. In terms of loglinear 

models, submodel {AZ,AC,ZC} must be fitted to marginal table ZAC. These 

submodels provide the correct parameter estimates for the relationships among the 

variables, correct in the sense of taking the causal order of the variables into account. 

Compared to ordinary SEMs for continuous data where the SEM consists of a set of 



multiple regression equations, here a ‘corresponding’ set of loglinear or logit 

equations is used. 

The submodels also provide the estimates for the right hand side elements in Eq (3) 

and from them the left hand side probability can be calculated. The estimates 
YZABCD

dcbazy̂  

are the estimated entries for the complete table, given that all (conditional) 

independence restrictions implied by the model in Figure 2 and all additional 

assumptions implied by the loglinear submodels for the right hand side elements are 

true. A test that the whole causal model with all its implications and restrictions is true 

can be obtained by summing 
YZABCD

dcbazy̂  over the latent variables and comparing the 

resulting probabilities in the usual way with the observed frequencies in table ABCD 

(Table 3). The model in Figure 2 turns out to fit the data in Table 3 very well: : G
2
 = 

45.97, df = 44, p = .39 (Pearson X
2
  = 44.04). 

So far, this categorical SEM approach is fairly standard by now and can be routinely 

applied by a program such as LEM. However, again, there might be a number of 

additional interesting research questions that cannot be answered by this standard 

approach. The first one may have to do (again) with the particular parameterization 

chosen. Above it was assumed that A and Z did not interact regarding their influence 

on C. Therefore loglinear model  {AZ,AC,ZC} was fitted to marginal table ZAC. This 

model parameterizes the no-three-variable-interactions in loglinear terms. It is 

assumed that corresponding conditional odds ratios for the effect of A an C are the 

same in all three categories of Z (or equivalently the odds ratios for Z-C are the same 

for all three categories of A). But, as above,  a researcher might be more interested in 

an additive parameterization rather than a multiplicative (or loglinear) one and may 

want to use ε as effect measure. Imposing the restrictions of no-three-variable-

interaction in terms of ε’s will yield results that are different from using odds ratios 

(and cannot be carried out by the standard Goodman procedure). Although many 

details of defining a SEM such  as the one in Figure 2 as an additive model (additive 

in the frequencies rather than the log frequencies) have still to be worked out, the 

marginal modeling procedures referred to above provide an excellent starting point 

for estimating such additive SEMs for categorical data. 

Another research question that must be answered by means of marginal modeling 

concerns a marginal homogeneity hypothesis at the latent level (see also Hagenaars 

1986). For many theoretical and practical reasons it might be interesting to know 

whether or not the true party preferences of the respondents differ from their true 

candidate preferences. The estimated marginals of  table YZ for the model in Figure 2 

are as follows, with subscript i = 1. Christian Democrats i = 2. Left Wing i = 3. Other: 

 

Party Preference:         351..374.275.:ˆ 3.2.1.YZ

i  

Candidate Preference: 379..428.193.:ˆ 3.2.1.YZ

i  

 

Especially the Christian Democratic party is more popular than the (newly 

designated) Christian Democratic Candidate and just the opposite is true for Left 

wing. To investigate whether or not these differences are significant,  the model in 

Figure 2 will be estimated but now under the extra marginal homogeneity restriction 
YZ

i

YZ

i    ; this again brings the model outside the exponential family and marginal 

modeling procedures must be used.  The test outcomes for the whole (but MH 

restricted) model in Figure 2 are on the borderline of significance: G
2 

= 62.33, df=46 

(p=. 011, X
2
 =57.10). However, the more powerful conditional test, testing the model 



with against the model without the extra restriction provides a clear result: G
2
 = 

62.33-45.97 = 16.36, df = 48-46 = 2, p = .000. The hypothesis that the distributions of 

the true Party Preference and the true Candidate Preference are homogenous in the 

population has to be rejected and our best guess is that the differences are as described 

above. 

 

Many more examples might be given  to show the usefulness of enriching latent class 

modeling  using marginal modeling procedures (and are given by Bergsma, Croon, 

Hagenaars 2009). Most importantly, this is not an enrichment just for the sake of  

enlarging the scope statistical modeling but it does provide researchers with even 

more powerful tools to answer important and often occurring research questions. 

C. Mitchell Dayton might approve! 
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