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Abstract

A common statistical problem is the testing of independence of two
(response) variables conditionally on a third (control) variable. In the
first part of this paper, we extend Hoeffding’s concept of estimability
of degree r to testability of degree r, and show that independence is
testable of degree two, while conditional independence is not testable
of any degree if the control variable is continuous. Hence, in a well-
defined sense, conditional independence is much harder to test than
independence. In the second part of the paper, a new method is in-
troduced for the nonparametric testing of conditional independence of
continuous responses given an arbitrary, not necessarily continuous,
control variable. The method allows the automatic conversion of any
test of independence to a test of conditional independence. Hence, ro-
bust tests and tests with power against broad ranges of alternatives
can be used, which are favorable properties not shared by the most
commonly used test, namely the one based on the partial correlation
coefficient. The method is based on a new concept, the partial copula,
which is an average of the conditional copulas. The feasibility of the
approach is demonstrated by an example with medical data.
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1 Introduction

For a given triple of random variables (X, Y, Z) we consider the problem of
the nonparametric testing of the hypothesis of conditional independence of Y
and Z controlling for X based on n independent and identically distributed
(iid) data points (X1, Y1, Z1), . . . , (Xn, Yn, Zn). Following Dawid (1979), this
hypothesis is denoted as Y⊥⊥Z|X.

For the testing of unconditional independence between two random vari-
ables a wide array of tests is available, with the best known ones based
on the Pearson correlation, Spearman’s rank correlation, or Kendall’s tau.
Tests of unconditional independence which have asymptotic power against
all alternatives were proposed by Hoeffding (1948b) and Schweizer and Wolff
(1981).

In contrast, for the (nonparametric) testing of conditional independence
there appears to be only one commonly used method, namely the test based
on the partial correlation coefficient. With g(x) = E(Y |X = x) and h(x) =
E(Z|X = x), it is defined as

ρ(Y, Z|X) =
ρ(g(X), h(X))− ρ(X, g(X))ρ(X,h(X))√

(1− ρ(X, g(X))2)(1− ρ(X, h(X))2)
(1)

In fact, ρ(Y, Z|X) equals the correlation between the errors in the regressions
y = g(x)+ε1 and z = h(x)+ε2. Evaluation of the test requires the estimation
of the regression curves g and h. An alternative method, which does not
appear to be used often, was proposed by Goodman (1959) and is based
on a partial version of Kendall’s tau, using the number of local concordant
and discordant pairs of observations. This test was further discussed in
Goodman and Grunfeld (1961) and Gripenberg (1992). Some well-known
other tests are based on the linear partial correlation coefficient, which is (1)
with g and h replaced by the identity function, or on Kendall’s partial tau
(Kendall, 1942). However, it is well-known that these coefficients are not
necessarily zero under conditional independence unless certain restrictive
conditions are met, severely limiting their applicability (Korn, 1984).

Note that the above remark regarding the limited number of tests of
conditional independence applies only if the control variable X is continuous.
If X is categorical, with sufficiently many observations per category, it is not
difficult to devise a test of conditional independence: for each category, a
test of independence can be done, and these tests can be combined in various
ways. If all three variables are categorical, log-linear techniques can be used
(cf. Lauritzen, 1996).
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Summarizing, a flexible array of tests of conditional independence with a
continuous control variable appears to be unavailable in the literature, and
this paper aims to fill that gap. First, in Section 2, the theoretical difficulties
with the testing of conditional independence are investigated and it is shown
that with a continuous control variable, the problem is in a well-defined sense
harder than the testing of unconditional independence. Then in Section 3 a
new testing methodology is presented, using which any test of unconditional
independence can be used to construct a test of conditional independence.
Evaluation of the test requires the estimation of certain conditional marginal
quantiles of Y given X and of Z given X. Although this is about the same
amount of work as the estimation of the regression curves in (1), it leads to
a much more flexible class of test statistics. In Section 4, the feasibility of
the approach is demonstrated by an example with medical data.

2 Degree of testability of (conditional) indepen-
dence

In this section we first introduce the concept of testability of degree r, which
is an extension of Hoeffding’s concept of estimability of degree r, and then
apply it to the hypotheses of independence and conditional independence.
It is shown that independence is testable of degree 2, while conditional
independence is not testable of degree r for any r. Finally, it is shown that
if the (conditional) marginal distributions are known, both hypotheses are
testable of degree 1.

2.1 Testability of degree r

Hoeffding (1948a) defined the concept of estimability of degree r, which we
restate as follows:

Definition 1 For a set of probability measures P, a parameter θ : P → R
is called estimable of degree r if r is the smallest number for which there is
a function h : Rr → R such that, for all P ∈ P,

θ(P ) = Eh(X1, . . . , Xr)

if the Xi are iid according to P .

Related to Hoeffding’s concept, we introduce the concept of testability of
degree r:
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Definition 2 Let P be a set of probability measures and (P1,P2) a partition
of P. Then P1 is called testable of degree r against the alternative P2 if r
is the smallest number for which there is an estimable parameter θ of degree
r such that

T1: For all P ∈ P1, θ(P ) = 0.

T2: There exists a P ∈ P2 such that θ(P ) 6= 0.

In the two subsections below we shall see how the testability concept applies
to the independence and conditional independence hypotheses, with and
without assumptions on the marginal distributions.

2.2 Testability of (conditional) independence without assump-
tions

Let Ω1, Ω2 and Ω3 be given sets, each containing at least two elements.
Suppose X has a distribution on Ω1 and, for all x ∈ Ω1, the pair of random
variables (Y, Z) has a joint distribution on Ω2×Ω3 given X = x. Note that
it is implied that (Y, Z) has a marginal distribution on Ω2 × Ω3.

The random variables Y and Z are independent, denoted Y⊥⊥Z, if

Pr(Y ∈ A,Z ∈ B) = Pr(Y ∈ A) Pr(Z ∈ B)

for all measurable A ⊆ Ω2 and B ⊆ Ω3. If independence does not hold, this
is denoted as Y 6⊥⊥Z.

For ease of exposition we shall, in the sequel, sometimes say “the hy-
pothesis Y⊥⊥Z” to refer to the set of probability measures on Ω2 × Ω3 for
which independence holds.

Concerning independence, we have the following theorem:

Theorem 1 The independence hypothesis Y⊥⊥Z is testable of degree 2 against
the alternative Y 6⊥⊥Z.

The next example illustrates the theorem, and is part of its proof, by giving
an estimable parameter of degree 2 which is zero under independence but
nonzero for certain alternatives.

Example 1 Let (A1, A2) be a partition of Ω2 and let (B1, B2) be a partition
of Ω3. Now consider the function

h[(y1, z1), (y2, z2)] = I(y1 ∈ A1, z1 ∈ B1)I(y2 ∈ A2, z2 ∈ B2)
−I(y1 ∈ A1, z1 ∈ B2)I(y2 ∈ A2, z2 ∈ B1)
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where I is the indicator function, equalling 1 if its argument is true and 0
otherwise. Then if Y⊥⊥Z and if (Y1, Z1) and (Y2, Z2) are iid and distributed
as (Y, Z), it is straightforward to verify that

Eh[(Y1, Z1), (Y2, Z2)] = 0

Furthermore, if (Y ′, Z ′) are such that

Pr(Y ′ ∈ A1, Z
′ ∈ B1) = Pr(Y ′ ∈ A2, Z

′ ∈ B2) =
1
2

then for iid (Y ′
i , Z ′i) distributed as (Y ′, Z ′),

Eh[(Y ′
1 , Z

′
1), (Y

′
2 , Z

′
2)] =

1
4
6= 0

Hence, the estimable parameter θ of degree 2 based on the function h satisfies
the conditions T1 and T2.

Proof of Theorem 1: Let P be the set of probability measures on
Ω2 × Ω3. Further, let P1 ⊆ P be the set of probability measures satisfying
the independence hypothesis and let P2 be its complement in P. Suppose
θ is an estimable parameter of degree 1 which satisfies condition T1 and
which is based on a certain function h. Let P ∈ P be degenerate satisfying
P (a, b) = 1 for certain a ∈ Ω2 and b ∈ Ω3. Then it immediately follows that
P ∈ P1. Therefore, by condition T1, θ(P ) = 0, implying h(a, b) = 0. Since
a and b were arbitrary, h is zero on its domain and hence θ(P ) = 0 for all
P ∈ P. Therefore condition T2 does not hold, and so, since θ was chosen
arbitrarily, the independence hypothesis is not testable of degree 1. That it
is testable of degree 2 follows from Example 1. 2

The random variables Y and Z are conditionally independent given X,
denoted Y⊥⊥Z|X, if

Pr(Y ∈ A,Z ∈ B|X = x) = Pr(Y ∈ A|X = x) Pr(Z ∈ B|X = x)

for all x ∈ Ω1 and measurable A ⊆ Ω2 and B ⊆ Ω3. If conditional indepen-
dence does not hold, this is denoted as Y 6⊥⊥Z|X.

The random variable X is called continuous if P (X = x) = 0 for all
x in the domain of X. Theorem 2 shows that, with a continuous control
variable, testing conditional independence is, in a well-defined sense, much
harder than testing independence.
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Theorem 2 Under the restriction that X is continuous, there is no r such
that the conditional independence hypothesis Y⊥⊥Z|X is testable of degree r
against the alternative Y 6⊥⊥Z|X.

Proof of Theorem 2: Let P be the set of probability measures on Ω =
Ω1 × Ω2 × Ω3 with continuous marginal distribution on Ω1, i.e.,

P ({x} × Ω2 × Ω3) = 0

for all P ∈ P and x ∈ Ω1. It is assumed that for all x ∈ Ω1 the conditional
measures on {x} × Ω2 × Ω3 are also defined. Let P1 be the set of proba-
bility measures in P satisfying conditional independence and let P2 be its
complement in P.

Suppose, for certain r, θ is an estimable parameter of degree r which
satisfies condition T1 and which is based on a certain function h. For arbi-
trary (x1, y1, z1), . . . , (xr, yr, zr) in Ω with xi 6= xj if i 6= j let P ∈ P be the
degenerate distribution satisfying

P [(x1, y1, z1), . . . , (xr, yr, zr)] = 1

Then it immediately follows that P ∈ P1. Therefore, by condition T1,
θ(P ) = 0, implying

h[(x1, y1, z1), . . . , (xr, yr, zr)] = 0

Since the (xi, yi, zi) were arbitrary, h is zero on its domain except possibly
on a set with measure zero (where xi = xj for some i 6= j). Hence θ(P ) = 0
for all P ∈ P, so condition T2 does not hold for θ. Therefore, since θ was
chosen arbitrarily, P1 is not testable of degree r against P2. Since r was
arbitrary, the theorem is proven. 2

An intuition for Theorem 2 is as follows. If X is continuous, then an iid
sample {(Xi, Yi, Zi)} has, with probability one, at most one observed (Y, Z)
pair for any value of X. Theorem 1 indicates that at least two pairs would
be needed in order to have any ‘information’ on the conditional dependence
for the corresponding value of X.

Summarizing, Theorems 1 and 2 indicate a fundamental difference be-
tween the testing of independence and of conditional independence with a
continuous control variable.

6



2.3 Testability of (conditional) independence with assump-
tions

In this section we show that given assumptions about the (conditional)
marginal distributions, (conditional) independence hypotheses are testable
of degree 1. This result is especially useful for the conditional independence
hypothesis with a continuous control variable, since, by Theorem 2, it is not
testable of any degree. However, it also indicates a fundamental difficulty:
assumptions must be made in order to be able to obtain a test. For the
testing of independence this is, of course, not necessary.

A distribution is called degenerate if all its probability mass is concen-
trated on one point. The next theorem shows the effect of incorporating
assumptions about the marginal distributions of Y and Z on the testability
of Y⊥⊥Z.

Theorem 3 Suppose Y and Z have given non-degenerate marginal distri-
butions. Then the hypothesis Y⊥⊥Z is testable of degree 1 against the alter-
native Y 6⊥⊥Z.

To prove the theorem, it suffices to give an example of an estimable param-
eter of degree 1 satisfying the conditions T1 and T2, as is done next.

Example 2 If Y and Z have given non-degenerate marginal distributions,
there is an A ⊂ Ω2 such that

0 < Pr(Y ∈ A) < 1

and a B ⊂ Ω3 such that

0 < Pr(Z ∈ B) < 1

Using the shorthand p = Pr(Y ∈ A) and q = Pr(Z ∈ B), consider the
function

h(y, z) = I(y ∈ A, z ∈ B)− pq

Then

θ = Eh(Y, Z) = Pr(Y ∈ A,Z ∈ B)− pq

is zero if Y⊥⊥Z and nonzero if, for example,

Pr(Y ∈ A,Z ∈ B) = min(p, q)

Hence, the estimable parameter θ of degree 1 based on the function h satisfies
the conditions T1 and T2.
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Theorem 2 suggests the hypothesis Y⊥⊥Z|X is ‘untestable.’ However,
as indicated by Theorem 4, appropriate assumptions about the conditional
distributions of Y and Z given X render the hypothesis testable.

Theorem 4 Suppose for all x ∈ Ω1, both the marginal distributions of Y
and Z given X = x are known and non-degenerate. Then the hypothesis
Y⊥⊥Z|X is testable of degree 1 against the alternative Y 6⊥⊥Z|X .

The following example illustrates and proves the theorem for arbitrary Ω1, Ω2

and Ω3.

Example 3 Suppose, for all x, Y and Z have given non-degenerate marginal
distributions given X = x. Then for any x there is an A(x) ⊂ Ω2 such that

0 < Pr[Y ∈ A(x)|X = x] < 1

and a B(x) ⊂ Ω3 such that

0 < Pr[Z ∈ B(x)|X = x] < 1

Using the shorthand p(x) = Pr[Y ∈ A(x)|X = x] and q(x) = Pr[Z ∈
B(x)|X = x], consider the function

h(x, y, z) = I[y ∈ A(x), z ∈ B(x)]− p(x)q(x)

Then, for all x,

Eh(x, Y, Z) = Pr[Y ∈ A(x), Z ∈ B(x)]− p(x)q(x)

is zero if Y⊥⊥Z|X and nonzero if, for example,

Pr(Y ∈ A(x), Z ∈ B(x)|X = x) = min(p(x), q(x)) (2)

for all x. Hence,

θ = Eh(X,Y, Z) =
∫

Eh(x, Y, Z)dP1(x)

is zero if Y⊥⊥Z|X and nonzero if (2) holds. Therefore, the estimable pa-
rameter θ of degree 1 based on the function h satisfies the conditions T1 and
T2.
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3 The partial copula

In this section an automatic conversion procedure is presented by which
any test of unconditional independence can be used to obtain a test of con-
ditional independence. For this purpose, the partial copula is introduced,
which has the salient feature that independence holds for the partial cop-
ula if conditional independence holds for the responses given the control.
A kernel estimation method for the partial copula is introduced, which in-
volves estimating conditional marginal distributions of the responses given
the control.

3.1 Definition and basic properties

Suppose Y and Z are real-valued random variables with conditional distri-
bution functions

F2|1(y|x) = Pr(Y ≤ y|X = x)
F3|1(z|x) = Pr(Z ≤ z|X = x)

A basic property of

U = F2|1(Y |X)

and

V = F3|1(Z|X)

is given in the following lemma.

Lemma 1 Suppose, for all x, F2|1(y|x) is continuous in y and F3|1(z|x) is
continuous in z. Then U and V have uniform marginal distributions.

Proof of Lemma 1: By continuity of F2|1(y|x) in y, and with F1 the
marginal distribution function of X,

Pr(U ≤ u) = Pr(F2|1(Y |X) ≤ u)

=
∫

Pr(F2|1(Y |x) ≤ u)dF1(x)

=
∫

udF1(x)
= u

i.e., the marginal distribution of U is uniform. The uniformity of the distri-
bution of V is shown analogously. 2
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The importance of the introduction of U and V lies in the following
theorem.

Theorem 5 Suppose, for all x, F2|1(y|x) is continuous in y and F3|1(z|x)
is continuous in z. Then Y⊥⊥Z|X implies U⊥⊥V .

Proof of Theorem 5: By Lemma 1, U and V are uniformly distributed.
Hence if Y⊥⊥Z|X the joint distribution function of U and V simplifies as
follows:

Pr(U ≤ u, V ≤ v) = Pr(F2|1(Y |X) ≤ u, F3|1(Z|X) ≤ v)

=
∫

Pr(F2|1(Y |x) ≤ u, F3|1(Z|X) ≤ v)dF1(x)

=
∫

Pr(F2|1(Y |x) ≤ u) Pr(F3|1(Z|X) ≤ v)dF1(x)

=
∫

uvdF1(x)
= uv

= Pr(U ≤ u) Pr(V ≤ v)

This completes the proof. 2

For continuous random variables Y and Z with marginal distribution
functions F and G, the copula of their joint distribution is defined as the
joint distribution of F (Y ) and G(Z). The copula is said to contain the grade
(or rank) association between Y and Z (for an overview, see Nelsen, 1998).
For example, Kendall’s tau and Spearman’s rho are functions of the copula.
The following definition gives an extension of the copula concept.

Definition 3 The joint distribution of U and V is called the partial copula
of the distribution of Y and Z given X.

Note that the conditional copula, denoted C23|1, is given as

C23|1(u, v|x) = Pr(F2|1(Y |X = x) ≤ u, F3|1(Z|X = x) ≤ v)

and that the partial copula, say G23, is the average conditional copula, given
by the formula

G23(u, v) = EC23|1(u, v|X) =
∫

C23|1(u, v|x)dF1(x) (3)

Theorem 5 implies that a test of (marginal) independence of U and V is
a test of conditional independence of Y and Z given X. It should be noted
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that since U⊥⊥V does not imply Y⊥⊥Z|X, a test of the hypothesis U⊥⊥V
cannot have power against all alternatives of the hypothesis Y⊥⊥Z|X. In
particular, this is so for alternatives with interaction, that is, where the
association between Y and Z depends on the value of X. We should expect
most power against alternatives with a constant conditional copula, i.e.,
alternatives for which the joint distribution of (F2|1(Y |x), F3|1(Z|x)) does
not depend on x. A test of independence of U and V can be done by any
standard procedure.

An example of the derivation of U and V in a parametric setting is given
next.

Example 4 Suppose the distribution of Y given X = x is exponential with
scale parameter λ(x), and the distribution of Z given X = x is exponential
with scale parameter µ(x), i.e.,

F2|1(y|x) = 1− e−λ(x)y

F3|1(z|x) = 1− e−µ(x)z

Then by Theorem 5,

U = 1− e−λ(X)Y

and

V = 1− e−µ(X)Z

are independent if Y⊥⊥Z|X.

The next subsection discusses the nonparametric estimation of the partial
copula.

3.2 Kernel estimation

In practice, the conditional marginal distribution functions F2|1 and F3|1 are
often unknown. Simple kernel estimators are:

F̂2|1(y|x) =
∑n

i=1 K2[(x−Xi)/h2]J(Yi, y)∑n
i=1 K2[(x−Xi)/h2]

(4)

and

F̂3|1(y|x) =
∑n

i=1 K3[(x−Xi)/h3]J(Yi, y)∑n
i=1 K3[(x−Xi)/h3]

(5)
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where h > 0 is the bandwidth, usually dependent on n, and K the kernel
function, which can be a density symmetric around zero and

J(x, y) =





0 x < y
1
2

x = y
1 x > y

A suitable choice for K is often the standard normal distribution.
Consider the new observations (Ui, Vi), given as

Ui = F̂2|1(Yi|Xi) (6)

Vi = F̂3|1(Zi|Xi) (7)

Now a test of independence of U and V based on the (Ui, Vi) is a test of
conditional independence of Y and Z given X based on the (Xi, Yi, Zi).
An example is given in the next section. A heuristic argument that the
(Ui, Vi) may be treated as iid observations for sufficiently large n is as follows.
Standard results can be used to show that, if h2n and h3n go to zero at a
sufficiently fast rate, and under suitable (light) regularity conditions, both

(√
n(F̂2|1(y|x)− F2|1(y|x)),

√
n(F̂2|1(y′|x′)− F2|1(y′|x′)

)

and
(√

n(F̂3|1(z|x)− F3|1(z|x)),
√

n(F̂3|1(z′|x′)− F3|1(z′|x′)
)

have an asymptotic bivariate normal distribution with correlation equal to
zero for all (x, y, z) 6= (x′, y′, z′).

4 Example

Table 1 shows data on 35 consecutive patients under treatment for heart
failure with the drug digoxin. The data are from Halkin, Sheiner, Peck,
and Melmon (1975). Of medical interest is the hypothesis that digoxin
clearance is independent of urine flow controlling for creatinine clearance,
i.e., Y⊥⊥Z|X. Edwards (2000) based his analyses on the partial correlation
coefficient (1) assuming linear regression functions g and h. Then (1) reduces
to

ρY Z|X =
ρY Z − ρXY ρXZ√

(1− ρ2
XY )(1− ρ2

XZ)
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X Y Z X Y Z
19.5 17.5 0.74 66.8 37.5 0.50
24.7 34.8 0.43 72.4 50.1 0.97
26.5 11.4 0.11 80.9 50.2 1.02
31.1 29.3 1.48 82.0 50.0 0.95
31.3 13.9 0.97 82.7 31.8 0.76
31.8 31.6 1.12 87.9 55.4 1.06
34.1 20.7 1.77 101.5 110.6 1.38
36.6 34.1 0.70 105.0 114.4 1.85
42.4 25.0 0.93 110.5 69.3 2.25
42.8 47.4 2.50 114.2 84.8 1.76
44.2 31.8 0.89 117.8 63.9 1.60
49.7 36.1 0.52 122.6 76.1 0.88
51.3 22.7 0.33 127.9 112.8 1.70
55.0 30.7 0.80 135.6 82.2 0.98
55.9 42.5 1.02 136.0 46.8 0.94
61.2 42.4 0.56 153.5 137.7 1.76
63.1 61.1 0.93 201.1 76.1 0.87
63.7 38.2 0.44

Table 1: Digoxin clearance data. Clearances are given in ml/min/1.73m2,
urine flow in ml/min. Source: Halkin et al. (1975).
Note: X= Creatinine clearance, Y = digoxin clearance, Z= urine flow.
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Figure 1: Scatterplots of the (Yi, Xi) and the (Zi, Xi)

50 100 150 200
Y

0.2

0.4

0.6

0.8

U

50 100 150 200
Y

0.2

0.4

0.6

0.8

V

Figure 2: Scatterplots of the (Xi, Ui) and (Xi, Vi)

A visual inspection of the marginal scatter plots, shown in Figure 1, indicates
that the linearity assumption appears to be reasonable. However, if the
linear model is wrong, a biased estimate of the partial correlation may result,
resulting in a biased test for conditional independence. One alternative
approach is to perform a nonparametric regression and correlate the errors.
Potential disadvantages of this procedure are its sensitivity to outliers, and
its sensitivity to only a limited number of alternatives.

Testing conditional independence using the estimated partial copula po-
tentially overcomes these disadvantages. We estimated the partial copula
using formulas (4) and (5) with a standard normal kernel and bandwidth
10. This means that 95% of the weight is formed by approximately 7 of the
35 observations. (A justification of this bandwidth is given later.) The new
observations (Ui, Vi) are given by Formulas (6) and (7). In Figure 2 scat-
ter plots are given of the pairs (Xi, Ui) and (Xi, Vi), respectively. A visual
inspection of both pictures seems to confirm that the effect of X has been
removed, that is, independence seems to hold.
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Figure 3: Scatterplots of the (Ui, Vi) and the (Φ−1(Ui), Φ−1(Vi))

A scatterplot of the estimated partial copula is given in Figure 3 on the
left hand side. Since uniform marginals are arbitrary, we have transformed
the marginals to standard normals in the picture on the right hand side. In
both pictures there appears to be some dependence present in the data. We
shall test independence by testing the significance of four statistics, which
are described next. First, we estimate the correlation for the partial copula
as

rUV =
12
n

n∑

i=1

(Ui − 1/2)(Vi − 1/2)

The 12 appears because 1/12 is the variance of both U and V , which are
uniformly distributed. Note that rUV also estimates the Spearman rank cor-
relation, since U and V have uniform marginals. The “normal correlation,”
that is, the correlation based on transforming the marginals to a normal
distribution, is estimated as

r∗UV =
1
n

n∑

i=1

(Φ−1(Ui)− 1/2)(Φ−1(Vi)− 1/2)

where Φ is the distribution function of the standard normal distribution.
The estimated values and p-values are given in Table 2. The p-values were
calculated using a bootstrap approximation of the permutation test.

An important potential advantage of using r and r∗ compared to a non-
parametric estimate of the partial correlation (1) is the robustness of r and
r∗, that is, their insensitivity to outliers.

Let G23 be the distribution function of the partial copula, i.e., the joint
distribution function of U and V as given by (3), and let G2 and G3 be
the corresponding marginal distribution functions. A variant of Hoeffding’s
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coefficient (Hoeffding, 1948b) measuring the dependence between U and V
is

HUV =
∫

[G23(y, z)−G2(y)G3(z)]2 dydz

To obtain Hoeffding’s coefficient, dydz has to be replaced by dG23(y, z).
Both Hoeffding’s coefficient and HUV share the property that they are non-
negative and equal to zero if and only if U and V are independent. A con-
venient way to estimate HUV is by using a formula developed by (Bergsma,
2004), given as

HUV = E
(|U ′

1 − U ′
2| − |U ′

1 − U ′
3|

) (|V ′
1 − V ′

2 | − |V ′
2 − V ′

4 |
)

where (U ′
1, V

′
1), . . . , (U

′
4, V

′
4) are iid and distributed as (U, V ). Hence, the

unbiased U-statistic estimator of HUV is given as

ĤUV =

(
n
4

)−1 ∑
(|Ui − Uj | − |Ui − Uk|) (|Vi − Vj | − |Vj − Vl|)

where the sum is taken over all i, j, k, l unequal. Like the correlation, HUV

is also evaluated for both the partial copula with uniform and with normal
marginals, the latter denoted as H∗

UV . In Table 2, estimated values of H
and H∗ are given, together with p-values for the hypothesis that they are
zero. The p-values were calculated by a bootstrap approximation of the
permutation test.

The reason we have chosen HUV rather than Hoeffding’s coefficient is to
avoid unnecessary discretization. Hoeffding’s test is based on the ranks of
the observations (like Kendall’s tau and Spearman’s rho). One of the reasons
to use a rank test is to deal with outliers and to control the marginals by
making them uniform. In the present case, the (theoretical) distribution
of U and V is already uniform, thereby making a further ranking of the
(Ui, Vi) unnecessary, and this would only cause unnecessary discretization
of the data. For the same reason, we have not considered Kendall’s tau and
Spearman’s rho.

An important potential advantage of using H and H∗ to test for inde-
pendence between U and V is that they yield asymptotic power against all
alternatives with dependence. This is something that cannot be achieved
with the partial correlation coefficient (1).

A justification of the choice of bandwidth has not been given. As the
bandwidth approaches zero, the (Ui, Vi) converge to ( 1

2
, 1

2
). Thus, all of the

estimators above converge to zero. The bandwidth should be chosen large
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Coefficient Estimated value p-value
ρUV .372 .0062
ρ∗UV .314 .0031
HUV .656 .0032
H∗

UV .651 .0077

Table 2: Estimated values of some coefficients and their bootstrap p-values.
Based on the data of Table 1

enough that at least one point in the neighborhood has sufficient weight. For
crossvalidation purposes, the estimated parameters are plotted as a function
of the bandwidth h in Figure 4. For all coefficients, the method appears to
break down when the bandwidth h < 6, and the value h = 10 appears to be
reasonable. Note that a crossvalidation should always be performed.

5 Summary

In Section 2, the concept of testability of degree r, which is related to
Hoeffding’s concept of estimability of degree r, was defined. It was shown
that independence is testable of degree 2 while, for a continuous control
variable, conditional independence is not testable of any degree. Then it
was shown that, if the conditional marginal distributions of responses given
control are known, the conditional independence hypothesis is testable of
degree 1. Hence, the testing of conditional independence is more difficult
than the testing of unconditional independence, in the sense that the former
requires assessment of the conditional marginal distributions.

In Section 3, the results of Section 2 were used to derive a practical
testing procedure, which makes it possible to convert an arbitrary test of
independence to a test of conditional independence. This was done by in-
troducing the partial copula which is a function of the original trivariate
distribution. Like the copula, the partial copula is a bivariate distribution
with uniform marginals. Additionally, it has the property of satisfying in-
dependence if conditional independence holds for the original distribution.
Hence, any test of independence applied to the partial copula is a test of con-
ditional independence applied to the original distribution. Estimation of the
partial copula requires the conditional marginal distributions of responses
given control which are usually unknown in practice, and a kernel estimator
was proposed. Thus, a wide range of tests is obtained whose evaluation is
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Figure 4: Estimated values of several coefficients in the estimated partial
copula as a function of the bandwidth h for crossvalidation

18



no more difficult than nonparametric estimation of the partial correlation
coefficient.

The method was illustrated by an example in Section 4. Two tests related
to the rank correlation were described. These directly compete with the
partial correlation, but have the advantage of robustness. Two other tests
related to a test of Hoeffding (1948b) were also described, and these have
the advantage of asymptotic power against a broad range of alternatives.
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