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The most popular ways to test for independence of two ordinal random variables are by means of
Kendall’s tau and Spearman’s rho. However, such tests are not consistent, only having power for alter-
natives with ‘monotonic’ association. In this paper we introduce a natural extension of Kendall’s tau,
called τ∗, which is nonnegative and zero if and only if independence holds, thus leading to a consistent
independence test. Furthermore, normalization gives a rank correlation which can be used as a mea-
sure of dependence, taking values between zero and one. A comparison with alternative measures of
dependence for ordinal random variables is given, and it is shown that, in a well-defined sense, τ∗ is
the simplest, similarly to Kendall’s tau being the simplest of ordinal measures of monotone association.
Simulation studies show our test compares well with the alternatives in terms of average p-values.
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1. Introduction

A random variable X is called ordinal if its possible values have an ordering, but no distance
is assigned to pairs of outcomes. Ordinal variables may be continuous, categorical, or mixed
continuous/categorical. Ordinal data frequently arise in many fields, though especially often in
social and biomedical science (Kendall & Gibbons, 1990; Agresti, 2010). Ordinal data methods
are also often applied to real-valued (interval level) data in order to achieve robustness.

The two most popular measures of association for ordinal random variables X and Y are
Kendall’s tau (τ) (Kendall, 1938) and Spearman’s rho (ρS) (Spearman, 1904), which may be
defined as

τ = E sign[(X1 −X2)(Y1 − Y2)] ρS = 3E sign[(X1 −X2)(Y1 − Y3)]

where the (Xi, Yi) are independent replications of (X,Y ) (Kruskal, 1958). The factor 3 in the
expression for ρS occurs to obtain a measure whose range is [−1, 1]. From the definitions, prob-
abilistic interpretations of τ and ρS can be derived. Firstly,

τ = ΠC2 −ΠD2 (1)
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2 Bergsma and Dassios

(a) Concordant pair (b) Discordant pair

Figure 1. Concordant and discordant pairs of points associated with Kendall’s tau

(a) Concordant triples (b) Discordant triples

Figure 2. Concordant and discordant triples of points associated with Spearman’s rho

where ΠC2 is the probability that two observations are concordant and ΠD2 the probability that
they are discordant (see Figure 1). Secondly,

ρS = ΠC3 −ΠD3

where ΠC3
is the probability that three observations are concordant and ΠD3

the probability
that they are discordant (see Figure 2). It can be seen that τ is simpler than ρS , in the sense
that it can be defined using only two rather than three independent replications of (X,Y ), or,
more specifically, in terms of probabilities of concordance and discordance of two rather than
three points. This was a reason for Kruskal to prefer τ to ρS (Kruskal, 1958, page 846).

An alternative definition of ρS , which was originally given by Spearman, is as a Pearson
correlation between uniform rank scores of the X and Y variables. For continuous random
variables, both this and the aforementioned definition lead to the same quantity. However, with
this definition, ρS is to some extent an ad hoc measure, since the choice of scores is arbitrary,
and alternative scores (e.g., normal scores) might be used.

A test of independence based on iid data can be obtained by application of the permutation
test to an estimator of τ or ρS , which is easy to implement and fast to carry out with modern
computers. Such ordinal tests are also used as a robust alternative to tests based on the Pearson
correlation.

A drawback for certain applications is that τ and ρS may be zero even if there is an association
between X and Y , so tests based on them are inconsistent for the alternative of a general
association. For this reason alternative coefficients have been devised. The best known of these
are those introduced by Hoeffding (1948) and Blum, Kiefer, and Rosenblatt (1961). With F12

the joint distribution function of (X,Y ), and F1 and F2 the marginal distribution functions of
X resp. Y , Hoeffding’s coefficient is given as

H =

∫
[F12(x, y)− F1(x)F2(y)]

2dF12(x, y) (2)

and the Blum-Kiefer-Rosenblatt (henceforth: BKR) coefficient as

D =

∫
[F12(x, y)− F1(x)F2(y)]

2dF1(x)dF2(y) (3)
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A consistent test of independence 3

Both can be seen to be nonnegative with equality to zero under independence. Furthermore,
D = 0 can also be shown to imply independence. However, the Hoeffding coefficient has a severe
drawback, namely that it may be zero even if there is an association, i.e., it does not lead to a
consistent independence test. An example is the case that P (X = 0, Y = 1) = P (X = 1, Y =
0) = 1/2 (Hoeffding, 1948, page 548).

A third option, especially suitable for categorical data, is the Pearson chi-square test; it is
directly applicable to categorical data and can be used for continuous data after a suitable
categorization. However, the chi-square test does not take the ordinal nature of the data into
account, leading to potential power loss for ‘ordinal’ alternatives; effectively the chi-square test
treats the data as nominal rather than ordinal (see also Agresti, 2010).

Although H and D have simple mathematical formulas, they seem to be rather arbitrary,
and many variants are possible (see also Section 3.4). For this reason we decided to develop a
probabilistic interpretation of H and D (given in Section 3 of this paper). However, we then
noticed that H and D were unnecessarily complex, and that a clearly simpler and natural
alternative coefficient was possible. Our new coefficient is a direct modification of Kendall’s τ ,
which we call τ∗. It is nonnegative and zero if and only if independence holds. Like τ and ρS ,
we show that H, D and τ∗ equal the difference of concordance and discordance probabilities of
a number of independent replications of (X,Y ). Analogously to the aforementioned way that
τ is simpler than ρS , τ

∗ is simpler than D and H in that only four independent replications
of (X,Y ) are required, whereas H needs five, and D needs six. It appears to us that relative
simplicity of interpretation of a coefficient is of utmost importance, and that this is also the
main reason for the current popularity of Kendall’s tau. In particular, when it was introduced
in the pre-computer age in 1938, the sample value of Kendall’s tau was much harder to compute
than the sample value of Spearman’s rho, which had been in use since 1904 (Kruskal, 1958). In
spite of this, judging by the number of Google Scholar hits, both currently appear to be about
equally popular1.

The organization of this paper is as follows. In Section 2, we first define τ∗, and then state
our main theorem that τ∗ ≥ 0 with equality if and only if independence holds. Furthermore,
we provide a probabilistic interpretation in terms of concordance and discordance probabilities
of four points. Section 5 contains the proof of the main theorem. The proof turns out to be
surprisingly involved for such a simple to formulate coefficient, and the ideas in the proof may
be useful for other related research. A comparison with the Hoeffding and the BKR coefficients
is given in Section 3, and new probabilistic interpretations for these coefficients are given. In
Section 4 we give a description of independence testing via the permutation test and a simulation
study compares average p-values of our test and the aforementioned other two tests. Our test
compares well with the other two in this respect.

2. Definition of τ ∗ and statement of its properties

We denote iid sample values by (x1, y1), . . . , (xn, yn), but will also use {(Xi, Yi)} to denote iid
replications of (X,Y ) in order to define population coefficients. The empirical value t of Kendall’s

1The Google Scholar search "kendall’s tau" OR "kendall tau" gave us 15,200 hits and the search
"spearman’s rho" OR "spearman rho" 17,500
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4 Bergsma and Dassios

tau is

t =
1

n2

n∑
i,j=1

sign(xi − xj) sign(yi − yj)

and its population version is

τ = E sign(X1 −X2) sign(Y1 − Y2)

(Kruskal, 1958; Kendall & Gibbons, 1990). With

s(z1, z2, z3, z4) = sign(z1 − z4)(z3 − z2)

= sign(|z1 − z2|2 + |z3 − z4|2 − |z1 − z3|2 − |z2 − z4|2)

we obtain

t2 =
1

n4

n∑
i,j,k,l=1

s(xi, xj , xk, xl)s(yi, yj , yk, yl)

and

τ2 = Es(X1, X2, X3, X4)s(Y1, Y2, Y3, Y4)

Replacing squared differences in s by absolute values of differences, we define

a(z1, z2, z3, z4) = sign (|z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|) (4)

This leads to a modified version of t2,

t∗ =
1

n4

n∑
i,j,k,l=1

a(xi, xj , xk, xl)a(yi, yj , yk, yl)

and the corresponding population coefficient

τ∗ = τ∗(X,Y ) = Ea(X1, X2, X3, X4)a(Y1, Y2, Y3, Y4)

The quantities t∗ and τ∗ are new, and the main result of the paper is the following:

Theorem 1 It holds true that τ∗(X,Y ) ≥ 0 with equality if and only if X and Y are indepen-
dent.

The proof is given in Section 5.
If the sign functions are omitted from τ∗, we obtain the covariance introduced by Bergsma

(2006) and Székely, Rizzo, and Bakirov (2007). They showed that for arbitrary real random
variables X and Y , this covariance is nonnegative with equality to zero if and only if X and Y
are independent.

By the Cauchy-Schwarz inequality, the normalized value

τ∗b =
τ∗(X,Y )√

τ∗(X,X)τ∗(Y, Y )
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A consistent test of independence 5

does not exceed one. (Note that this notation is in line with Kendall’s τb, defined analogously.)
The definition of τ∗ can easily be extended to X and Y in arbitrary metric spaces, but

unfortunately Theorem 1 does not extend then, as it is possible that τ∗ < 0. This is shown by
the following example. Consider a set of points {u1, . . . , u8} ⊂ R8, where ui = (ui1, . . . , ui8)

′

such that uii = 3, uij = −1 if i ̸= j and i, j ≤ 4 or i, j ≥ 5, and uij = 0 otherwise. Suppose Y is
uniformly distributed on {0, 1}, and given Y = 0, X is uniformly distributed on u1, . . . , u4, and
given Y = 1, X is uniformly distributed on u5, . . . , u8. Then τ∗ = −1/64.

Note that τ∗(X,Y ) is a function of the copula, which is the joint distribution of F1(X) and
F2(Y ), where F1 and F2 are the cumulative distribution functions of X and Y . Nelsen (2006,
Chapter 5) explores the way in which copulas can be used in the study of dependence between
random variables, paying particular attention to Kendall’s tau and Spearman’s rho.

We now give a probabilistic interpretation of τ∗. Recall that Kendall’s tau is the probability
that a pair of points is concordant minus the probability that a pair of points is discordant. Our
τ∗ is proportional to the probability that two pairs are ‘jointly’ concordant, plus the probability
that two pairs are ‘jointly’ discordant, minus the probability that, ‘jointly’, one pair is discordant
and the other concordant. Here, ‘jointly’ refers to there being a common axis separating the two
points of each of the two pairs.

To use a slightly different terminology which will be convenient, we say that a set of four
points is concordant if two pairs are either ‘jointly’ concordant or ‘jointly’ discordant, while
four points are called discordant if, ‘jointly’, one pair is concordant and the other is discor-
dant. These configurations are given in Figure 3. In mathematical notation, a set of four points
{(x1, y1), . . . , (x4, y4)} is concordant if there is a permutation (i, j, k, l) of (1, 2, 3, 4) such that

(xi, xj < xk, xl)& [(yi, yj < yk, yl)||(yi, yj > yk, yl)]

and discordant if there is a permutation (i, j, k, l) of (1, 2, 3, 4) such that

[(xi, xj < xk, xl)||(xi, xj > xk, xl)]& [(yi, yk < yj , yl)||(yi, yk > yj , yl)]

where || and & are logical OR resp. AND, and I(z1, z2 < z3, z4) is shorthand for I(z1 < z3&z1 <
z4&z2 < z3&z2 < z4). It is straightforward to verify that

a(z1, z2, z3, z4) = I(z1, z3 < z2, z4) + I(z1, z3 > z2, z4)

−I(z1, z2 < z3, z4)− I(z3, z4 > z1, z2)

where I is the indicator function. Hence,

τ∗ = 4P (X1, X2 < X3, X4&Y1, Y2 < Y3, Y4) + (5)

4P (X1, X2 < X3, X4&Y1, Y2 > Y3, Y4)−
8P (X1, X2 < X3, X4&Y1, Y3 < Y2, Y4)

Denoting the probability that four randomly chosen points are concordant as ΠC4 and the
probability that they are discordant as ΠD4 , we obtain that the sum of the first two probabilities
on the right hand side of (5) equals ΠC4/6, while the last probability equals ΠD4/24. Hence,

τ∗ =
2ΠC4 −ΠD4

3
(6)
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6 Bergsma and Dassios

(a) Concordant points (b) Discordant points

Figure 3. Configurations of concordant and discordant quadruples of points associated with τ∗. The dotted axes
indicate strict separation of points in different quadrants; within a quadrant, no restrictions apply on the relative
positions of points.

It can be seen that t∗ and τ∗ do not depend on the scale at which the variables are measured,
but only on the ranks or grades of the observations. Four points are said to be tied if they
are neither concordant nor discordant. Clearly, for continuous distributions the probability of
tied observations is zero. Hence, under independence, when all configurations are equally likely,
ΠC4 = 1/3 and ΠD4 = 2/3, and if one variable is a strictly monotone function of the other, then
ΠC4 = 1 and ΠD4 = 0.

3. Comparison to other tests

The two most popular (almost) consistent tests of independence for ordinal random variables are
those based on Hoeffding’sH and BKR’sD, given in (2) and (3). Probabilistic interpretations for
these coefficients do not appear to have been given in the literature, and the present section gives
these. The probabilistic interpretation shows that τ∗ is simpler than both H and D. Since H = 0
does not imply independence if the distributions are discrete, it should perhaps not be used,
and we are left with two coefficients, τ∗ and D, of which τ∗ is the simplest. Further discussions
of ordinal data and nonparametric methods for independence testing are given Agresti (2010),
Hollander and Wolfe (1999) and Sheskin (2007).

3.1. Hoeffding’s H

Hoeffding’s (1948) coefficient for measuring deviation from independence for a bivariate distri-
bution function is given by (2) (see also Blum et al., 1961; Hollander & Wolfe, 1999 and Wilding
& Mudholkar, 2008). An alternative formulation given by Hoeffding is

H =
1

4
Eϕ(X1, X2, X3)ϕ(X1, X4, X5)ϕ(Y1, Y2, Y3)ϕ(Y1, Y4, Y5)

where ϕ(z1, z2, z3) = I(z1 ≥ z2) − I(z1 ≥ z3). A severe drawback of Hoeffding’s H is that, for
discrete distributions, it is not necessarily zero under independence. An example is the case that
P (X = 0, Y = 1) = P (X = 1, Y = 0) = 1/2 (Hoeffding, 1948, page 548).

Interestingly, Hoeffding’s H has an interpretation in terms of concordance and discordance
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A consistent test of independence 7

probabilities closely related to the interpretation of τ∗. With

F12(x, y) = P (X ≤ x, Y ≤ y)

F12(x, y) = P (X ≤ x, Y > y) = F1(x)− F12(x, y)

F12(x, y) = P (X > x, Y ≤ y) = F2(y)− F12(x, y)

F12(x, y) = P (X > x, Y > y) = 1− F1(x)− F2(y) + F12(x, y)

we have the equality

F12 − F1F2 = F12F12 − F12F12 (7)

Let five points be H-concordant if four are configured as in Figure 3(a) and the fifth is on the
point where the axes cross and, analogously, five points are H-discordant if four are configured
as in Figure 3(b) and the fifth is on the point where the axes cross. Denote the probabilities of
H-concordance and discordance by ΠC5 and ΠD5 . Then, omitting the arguments x and y,∫ (

F 2
12F

2
12

+ F 2
12
F 2
12

)
dF12 =

2!2!1!

5!
ΠC5 =

1

30
ΠC5

and ∫
F12F12F12F12dF12 =

1

5!
ΠD5 =

1

120
ΠD5

Hence, using (7),

H =

∫
(F12F12 − F12F12)

2
dF12 =

2ΠC5 −ΠD5

60

3.2. The Blum-Kiefer-Rosenblatt coefficient D

The coefficient D is given by (3), and tests based on it were first studied by Blum et al. (1961).
Analogously to Hoeffding’s H, a probabilistic interpretation of D can be given but based on six
rather than five independent replications of (X,Y ). In particular, let six points be D-concordant
if four are configured as in Figure 3(a), such that a fifth point lies on the x-axis and a sixth
on the y-axis. Analogously, six points are D-discordant if four are configured as in Figure 3(b),
such that a fifth point lies on the x-axis and a sixth on the y-axis. Denote the probabilities of
D-concordance and discordance by ΠC6 and ΠD6 . Then, omitting the arguments x and y,∫ (

F 2
12F

2
12

+ F 2
12
F 2
12

)
dF1dF2 =

2!2!2!

6!
ΠC6 =

1

90
ΠC6

and ∫
F12F12F12F12dF1dF2 =

2!

6!
ΠD6 =

1

360
ΠD6

Hence, using (7),

D =

∫
(F12F12 − F12F12)

2
dF1dF2 =

2ΠC6 −ΠD6

180
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8 Bergsma and Dassios

It follows from results in Bergsma (2006) that in the continuous case, with

h(z1, z2, z3, z4) = |z1 − z2|+ |z3 − z4| − |z1 − z3| − |z2 − z4|,

D = Eh(F1(X1), F1(X2), F1(X3), F1(X4))h(F2(Y1), F2(Y2), F2(Y3), F2(Y4))

A similar formulation was given by Feuerverger (1993), who used characteristic functions for its
derivation. This connection of Feuerverger’s work to that of Blum et al. does not appear to have
been noted before.

Replacing absolute values in h by squares, it is straightforward to show that D reduces to
Spearman’s rho.

3.3. Comparison of τ ∗, H, and D

We can see that Hoeffding’s H has two drawbacks compared to τ∗. Firstly, it is more complex
in that it is based on concordance and discordance of five points rather than four and, secondly,
it is not necessarily zero under independence for discrete distributions. D has one drawback
compared to τ∗, in that it is more complex in that it is based on concordance and discordance
of six points rather than four. Following Kruskal’s (1958) preference for Kendall’s tau over
Spearman’s rho due to its relative simplicity, the same preference might be expressed for τ∗

compared to D.

3.4. Related work

If one of the variables is binary, our approach leads to the Cramér von Mises test, as shown in
Section 3 in Dassios and Bergsma (2012).

We now describe further approaches to obtaining consistent independence tests for ordinal
variables described in the literature. It may be noted that H and D are special cases of a general
family of coefficients, which can be formulated as

Qg,h = Qg,h(X,Y ) =

∫
g(|F12(x, y)− F1(x)F2(y)|)d[h(F12)(x, y)] (8)

For appropriately chosen g and h, Qg,h = 0 if and only if X and Y are independent. Instances
were studied by De Wet (1980), Deheuvels (1981), Schweizer and Wolff (1981) and Feuerverger
(1993) (where the former two focussed on asymptotic distributions of empirical versions, while
the latter two focussed on population coefficients). Alternatively, Rényi (1959) proposedmaximal
correlation, defined as

ρ+ = sup
g,h

ρ(g(X), h(Y ))

where the supremum is taken over square integrable functions. Though applicable to ordinal
random variables, ρ+ does not utilize the ordinal nature of the variables. Furthermore, it is hard
to estimate, and has the drawback that it may equal one for distributions arbitrarily ‘close’
to independence (Kimeldorf & Sampson, 1978). An ordinal variant, proposed by Kimeldorf and
Sampson (1978), was to maximize the correlation over nondecreasing square integrable functions.
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A consistent test of independence 9

Y
1 2 3 4 5 6 7

X 1 2 1 0 0 0 1 2
2 1 2 0 0 0 2 1
3 0 0 2 1 2 0 0
4 0 0 1 1 1 0 0
5 0 0 1 2 1 0 0

Table 1. Artificial contingency table containing multinomial counts. Permutation tests based on Kendall’s tau
and the Pearson chi-square statistic do not yield a significant association (p = .99 resp. p = .25), but a

permutation test based on t∗ yields p = 0.035

Change in size of Ulcer Crater (Y )
Larger Healed (< 2

3
) Healed (≥ 2

3
) Healed

Treatment group (X) A 6 4 10 12
B 11 8 8 5

Table 2. Results of study comparing two treatments of gastric ulcer

4. Testing independence

A suitable test for independence is a permutation test which rejects the independence hypothesis
for large values of t∗. For every permutation π of the observed y-values, the sample τ∗-value t∗π
is computed, and the p-value is the proportion of the {t∗π} which exceed t∗. As is well-known,
the permutation test conditions on the empirical marginal distributions, which are sufficient
statistics for the independence model. In practice, the number of permutations may be too large
to compute and a random sample of permutations is taken, which is also called a resampling
test. Note that there doesn’t seem to be a need for an asymptotic approximation to the sampling
distribution of t∗.

Direct evaluation of t∗ requires computational time O(n4), which may be practically infeasible
for moderately large samples, but t∗ can be well-approximated by taking a random sample of
subsets of four observations. The proof of Theorem 1 suggests that the complexity can be reduced
to O(n3). An open problem is what the minimum computational complexity of computing t∗ is.

Below, we compare various tests of independence using an artificial and a real data set and
via a simulation study.

4.1. Examples

An artificial multinomial table of counts is given in Table 1, where X and Y are ordinal variables
with 5 and 7 categories. Visually, we can detect an association pattern, but as it is non-monotonic
a test based on Kendall’s tau does not yield a significant p-value. The chi-square test also yields a
non-significant p = 0.252, while a permutation test based on t∗ yields p = 0.032, giving evidence
of an association. We also did tests based on D, which yields p = 0.047, and the test based on
Hoeffding’s H yields p = 0.028. In this example, using a consistent test designed for ordinal
data, evidence for an association can be found, which is not possible with a nominal data test
like the chi-square test or with a test based on Kendall’s tau. For all tests except Hoeffding’s
106 resamples were used, and for Hoeffding’s test 4,000 resamples were used.

Table 2 shows data from a randomized study to compare two treatments for a gastric ulcer
crater, and was previously analyzed in Agresti (2010). Using 105 resamples, the chi-square test
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10 Bergsma and Dassios

Bump Zig-zag Double-bump

Cross Box Parallel lines

Figure 4. Simulations were done for data generated from the uniform distribution on the lines within each of
the six boxes. For all except the Zig-zag and the Parallel lines, the ordinary correlation is zero.

yields p = 0.118, Kendall’s tau yields p = 0.019, t∗ yields p = 0.028, D yields p = 0.026, and
using 104 resamples Hoeffding’s H yields p = 0.006.

4.2. Simulated average p-values for independence tests based on D,
H, and τ ∗

Any of the three tests can be expected to have most power of the three for certain alternatives,
and least power of the three for others. Given the broadness of possible alternatives, it cannot be
hoped to get a simple description of alternatives for which any single test is the most powerful.
However, some insight may be gained by looking at average p-values for a set of carefully selected
alternatives.

In Figure 4, six boxes with lines in them are represented, and we simulated from the uniform
distribution on these lines. The first five maximize or minimize the correlation between some
simple orthogonal functions for given uniform marginals. In particular, say the boxes represent
the square [0, 1]× [0, 1], then the Bump, Zig-zag and Double bump distributions maximize, for
given uniform marginals,

ρ[cos(2πX), cos(πY )], ρ[cos(3πX), cos(πY )], and ρ[cos(4πX), cos(πY )]

respectively. The Cross and Box distributions respectively maximize and minimize, for given
uniform marginals,

ρ[cos(2πX), cos(2πY )]

As they represent in this sense extreme forms of association, these distributions should yield good
insight in the comparative performance of the tests. Furthermore, the Parallel lines distribution
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A consistent test of independence 11

Normal increments Cauchy increments

Figure 5. 1000 points of a random walk. In the first plot the (x, y) increments are independent normals, in the
second they are independent Cauchy variables.

was chosen because it is simple and demonstrates a weakness of Hoeffding’s test, as it has
comparatively very little power here (we did not manage to find a distribution where D or τ∗

fare so comparatively poorly). Note that all six distributions have uniform marginals and so are
copulas, and several were also discussed in Nelsen (2006)

We also did a Bayesian simulation, based on random distributions with dependence. In par-
ticular, the data are (X1, Y1), . . . , (Xn, Yn), where, for iid (ε1i, ε2i),

(X1, Y1) = (ε11, ε21)

(Xi+1, Yi+1) = (Xi, Yi) + (ε1i, ε2i) i = 1, . . . , n− 1

Of course, the (Xi, Yi) are not iid, but conditioning on the empirical marginals the permutations
of the Y -values give equally likely data sets under the null hypothesis of independence, so the
permutation test is valid. Two distributions for the increments (ε1i, ε2i) were used: independent
normals and independent Cauchy distributions. In Figure 5, points generated in this way are
plotted. Note that for the Cauchy increments, the heavy tails of the marginal distributions are
automatically taken care of by the use of ranks, so in that respect the three tests described here
are particularly suitable.

Finally, we also simulated normally distributed data with correlation 0.5.
Average p-values are given in Table 3, where all averages are over at least 40,000 simulations

(for D, we did 200,000 simulations). Hoeffding’s test compares extremely badly with our test for
the parallel lines distribution, and is worse than our test for the random walks, but outperforms
our test for the Zig-zag, Double-bump, Cross and Box distributions. The reason for the poor
performance of Hoeffding’s test for the parallel lines distribution is that five points can only be
concordant (see Section 3.1) if they all lie on a single line (a discordant set of five points has zero
probability). Similarly, for the Zig-zag, Double-bump and Cross concordant sets of five points
can be seen to be especially likely, so these choices of distributions favour the Hoeffding test.
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12 Bergsma and Dassios

Distribution Sample size n Average p-value
D H τ∗

Random walk (normal increments) 50 .061 .080 .061
Random walk (Cauchy increments) 30 .039 .065 .031

Bump 12 .087 .061 .045
Zig-zag 25 .083 .011 .036
Double-bump 30 .056 .005 .019
Cross 50 .052 .003 .021
Box 50 .070 .008 .019
Parallel lines 10 .055 .710 .076

Normal distribution (ρ = .5) 30 .055 .052 .073

Table 3. Average p-values. See Figures 4 and 5 and the text for explanations.

Note that Hoeffding’s test is less suitable for general use because it is not necessarily zero under
independence if there is a positive probability of tied observations.

The BKR test fares slightly worse than ours for the random walk with Cauchy increments,
and significantly worse than ours for the Bump, Zig-zag, Cross and Box distributions, and does
somewhat better than ours for the normal distribution. It appears that the BKR test has more
power than ours for a monotone alternative (such as the normal distribution), at the cost of less
power for some more complex alternatives.

5. Proof of Theorem 1

Here we give the proof of Theorem 1 for arbitrary real random variables X and Y . A shorter
proof for continuous X and Y is given by Dassios and Bergsma (2012). Readers wishing to gain
an understanding of the essence of the proof may wish to study the shorter proof first.

First consider three real valued random variables U , V and W . They have continuous densities
f̃ (x), g̃ (x) and k̃ (x) as well as probability masses f (xi), g (xi) and k (xi) at points x1, x2, . . .
. We also define

F (x) = P (U < x) =
∑
xi<x

f (xi) +

∫
y<x

f̃ (y) dy,

G (x) = P (V < x) =
∑
xi<x

g (xi) +

∫
y<x

g̃ (y) dy

and

K (x) = P (W < x) =
∑
xi<x

k (xi) +

∫
y<x

k̃ (y) dy .

We will also use H (x) = K(x)
G(x) . Note that H (x) also admits the representation

H (x) =
∑
xi<x

h (xi) +

∫
y<x

h̃ (y) dy .

but unlike the other three function that are non-decreasing h̃ (x) and h (xi) can take negative
values.

We start by proving the following intermediate result.
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A consistent test of independence 13

Lemma 1 Assume that H (x) > 0 implies G (x) > 0. Define

A = 2
∑

(F (xi)−G (xi)) (F (xi) g (xi)−G (xi) f (xi))
K (xi)

G2 (xi)
−

∑
(F (xi) g (xi)−G (xi) f (xi))

2 K (xi)

G2 (xi)
+

2

∫
(F (x)−G (x))

(
F (x) g̃ (x)−G (x) f̃ (x)

) K (x)

G2 (x)
dx

where summation is over all xi such that H (xi) > 0 and integration over all x such that
H (x) > 0.

We then have A ≥ 0 with equality iff F ≡ G (the two distributions are identical).

Proof: We can rewrite

A = 2
∑

(F (xi)−G (xi)) (F (xi) g (xi)−G (xi) f (xi))
H (xi)

G (xi)
−

∑
(F (xi) g (xi)−G (xi) f (xi))

2 H (xi)

G (xi)
+

2

∫
(F (x)−G (x))

(
F (x) g̃ (x)−G (x) f̃ (x)

) H (x)

G (x)
dx

For simplicity we denote F (x) , G (x) ,H (x) , f (xi) , g (xi) ,H (xi) , f̃ (x) , g̃ (x) and h̃ (x) by F,G,H, f, g, h, f̃ , g̃
and h̃. We have

A = 2
∑

(F −G) ((F −G) g −G (f − g))
H

G
+

2

∫
(F −G)

(
(F −G) g̃ −G

(
f̃ − g̃

)) H

G
dx−

∑
((F −G) g −G (f − g))

2 H

G
=

2
∑

(F −G)
2 H

G
g + 2

∫
(F −G)

2 H

G
g̃ dx−

2
∑

H (F −G) (f − g)− 2

∫
H (F −G)

(
f̃ − g̃

)
dx−

∑
((F −G) g −G (f − g))

2 H

G
(9)

The function H (F −G)
2
vanishes at −∞ and −∞. Considering its integral and sum represen-

tation we have

2
∑

H (F −G) (f − g) + 2

∫
H (F −G) (f − g) dx+

∑
(F −G)

2
h+

∫
(F −G)

2
h̃dx+
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14 Bergsma and Dassios

+2
∑

(F −G) (f − g)h+
∑

(f − g)
2
h+

∑
H (f − g)

2
= 0

and therefore

−2
∑

H (F −G) (f − g)− 2

∫
H (F −G) (f − g) dx =

∑
(F −G)

2
h+

∫
(F −G)

2
h̃dx+

+2
∑

(F −G) (f − g)h+
∑

(f − g)
2
h+

∑
H (f − g)

2
= 0 (10)

Moreover,
H

G
((F −G) g −G (f − g))

2
=

(F −G)
2
g2

H

G
+GH (f − g)

2 − 2 (F −G) (f − g)Hg. (11)

Substituting (10) and (11) into (9), and denoting M = F − G, m = f − g and m̃ = f̃ − g̃ we
have

A =
∑

M2

(
2g

H

G
+ h− g2

H

G

)
+ 2

∑
Mm (h+ gH) +

∑
m2 (H + h−GH)+

∫
M2

(
2g̃

H

G
+ h̃

)
dx =

∑
(M +m)

2

(
g

H

G+ g
+ h

)
+
∑

M2

(
2g

H

G
− g

H

G+ g
− g2

H

G

)
−

2
∑

Mm

(
g

H

G+ g
− gH

)
+m2

(
H −GH − g

H

G+ g

)
+

∫
M2

(
g̃
H

G
+ h̃

)
dx+

∫
M2g̃

H

G
dx =

∑
(M +m)

2

(
g

H

G+ g
+ h

)
+

∫
M2

(
g̃
H

G
+ h̃

)
dx+

∫
M2g̃

H

G
dx+

∑
M2

(
g
H

G
+ g2

H (1−G− g)

G (G+ g)

)
− 2

∑
Mm

(
g
H (1−G− g)

G+ g

)
+

∑
m2 H

G+ g
((1−G)G+ g (1−G− g)) .

Observe now that since K = HG

g
H

G+ g
+ h =

gH + hG+ hg

G+ g
=

k

G+ g
≥ 0

and

g̃
H

G
+ h̃ =

k̃

G
≥ 0.

imsart-bj ver. 2011/12/01 file: taustar8.tex date: July 24, 2012



A consistent test of independence 15

Moreover the quadratic form

M2

(
g
H

G
+ g2

H (1−G− g)

G (G+ g)

)
− 2Mm

(
g
H (1−G− g)

G+ g

)
+

m2 H

G+ g
((1−G)G+ g (1−G− g))

is non-negative as we can see that its discriminant is non-positive; this is because

g2
H2 (1−G− g)

2

(G+ g)
2 −

(
g
H

G
+ g2

H (1−G− g)

G (G+ g)

)
H

G+ g
((1−G)G+ g (1−G− g)) ≤

g2
H2 (1−G− g)

2

(G+ g)
2 − g2

H2 (1−G− g)

G2
=

g2H2 (1−G− g)

(
1−G− g

(G+ g)
2 − 1

G2

)
≤ g2H2 (1−G− g)

(
1

(G+ g)
2 − 1

G2

)
≤ 0.

All terms in A are non-negative and are equal to zero iff M ≡ 0, that is the two distributions
F and G are identical. 2

Before we prove Theorem 1, we will prove another result as it will be used repeatedly.

Lemma 2 Let A, B and Cbe events in the same probability space as the random variable X
and define

L
(
x(1), x(2)

)
=
(
P
(
A
∣∣∣X = x(1)

)
− P

(
A
∣∣∣X < x(1) ∧ x(2)

))
·(

P
(
A
∣∣∣X = x(2)

)
− P

(
A
∣∣∣X < x(1) ∧ x(2)

))
·

P
(
B
∣∣∣X < x(1) ∧ x(2)

)
P
(
C
∣∣∣X < x(1) ∧ x(2)

)(
P
(
X < x(1) ∧ x(2)

))2
.

We then have
E (L (X1, X2)) ≥ 0

with equality iff X is independent of the event A.

Proof: Let X have continuous density g̃ (x) and probability masses g (xi) at points x1, x2, . . .
and let X have continuous density g̃A (x) and probability masses gA (xi) at points x1, x2, . . .
conditionally on Y ∈ A. Define also

G (x) = P (X < x) =
∑
xi<x

g (xi) +

∫
y<x

g̃ (y) dy

and

GA (x) = P (X < x | A) =
∑
xi<x

gA (xi) +

∫
y<x

g̃A (y) dy .
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16 Bergsma and Dassios

Conditioning on values of X1 ∧X2 and using Bayes’ theorem, we can see that

E (L (X1, X2)) = (P (A))
2
∑

P (B |X < xi )P (C |X < xi ) ·

{2 ((1−GA (xi))G (xi)− (1−G (xi))GA (xi)) (gA (xi)G (xi)− g (xi)GA (xi))−

(gA (xi)G (xi)− g (xi)GA (xi))
2 } +

(P (Y ∈ A))
2
∫

P (B |X < x )P (C |X < x ) ·

((1−GA (x))G (x)− (1−G (x))GA (x)) (g̃A (x)G (x)− g̃ (x)GA (x)) dx =

P (B)P (C) (P (A))
2
∑ K (xi)

G2 (xi)
·

{2 (G (xi)−GA (xi)) (gA (xi)G (xi)− g (xi)GA (xi))− (gA (xi)G (xi)− g (xi)GA (xi))
2 } +

P (B)P (C) (P (A))
2
∫

K (x)

G2 (x)
2 (G (x)−GA (x)) (g̃A (x)G (x)− g̃ (x)GA (x)) dx,

where
K (x) = P (X < x |B )P (X < x |C ) .

The result then follows from Lemma 1 (F = GA). 2

Proof of Theorem 1: We need to prove that

P (Y1 ∧ Y2 > Y3 ∨ Y4, X3 ∨X4 < X1 ∧X2)+

P (Y1 ∧ Y2 < Y3 ∨ Y4, X3 ∨X4 < X1 ∧X2)−

P (Y1 ∧ Y3 > Y2 ∨ Y4, X3 ∨X4 < X1 ∧X2)−

P (Y1 ∧ Y3 < Y2 ∨ Y4, X3 ∨X4 < X1 ∧X2) ≥ 0

with equality in the independence case.
Let (X,Y ) represent any of the pairs (Xi,Yi). Define now F1 (y) = P

(
Y < y

∣∣X = x(1)
)
,

F2 (y) = P
(
Y < y

∣∣X = x(2)
)
and G (y) = P

(
Y < y

∣∣X < x(1)∧ x(2)
)

with the representations

F1 (x) =
∑
yi<y

f1 (yi) +

∫
z<y

f̃1 (z) dz,

F2 (x) =
∑
yi<y

f2 (yi) +

∫
z<y

f̃2 (z) dz

and

G (x) =
∑
yi<y

g (yi) +

∫
z<y

g̃ (z) dz .
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A consistent test of independence 17

Note that conditionally on the event Θ =
{
X1 = x(1), X2 = x(2), X3 < x(1) ∧ x(2), X4 < x(1) ∧ x(2)

}
the distribution of the minimum of Y1 and Y2 has density (1− F1) f̃2 + (1− F2) f̃1 and prob-
ability masses (1− F1) f2 + (1− F2) f1 − f1f2 at x1, x2, . . ., the distribution of the minimum
of Y3 and Y4 has density 2 (1−G) g̃ and probability masses 2 (1−G) g − g2, the distribu-

tion of the minimum of Y1 and Y3 has density (1− F1) g̃ + (1−G) f̃1 and probability masses
(1− F1) g + (1−G) f1 − f1g and the distribution of the minimum of Y2 and Y4 has density

(1− F2) g̃ + (1−G) f̃2 and probability masses (1− F2) g + (1−G) f2 − f2g. We therefore have
(suppressing the arguments of the functions)

P (Y1 ∧ Y2 > Y3 ∨ Y4 |Θ) + P (Y1 ∧ Y2 < Y3 ∨ Y4 |Θ)−

P (Y1 ∧ Y3 > Y2 ∨ Y4 |Θ)− P (Y1 ∧ Y3 > Y2 ∨ Y4 |Θ) =∑
((1− F1) f2 + (1− F2) f1 − f1f2)G

2 +
∑(

2 (1−G) g − g2
)
F1F2−∑

((1− F1) g + (1−G) f1 − f1g)F2G−
∑

((1− F2) g + (1−G) f2 − f2g)F1G+∫ (
(1− F1) f̃2 + (1− F2) f̃1

)
G2 dy+

∫ (
2 (1−G) g − g2

)
F1F2 dy−∫ (

(1− F1) g̃ + (1−G) f̃1

)
F2G dy−

∫ (
(1− F2) g̃ + (1−G) f̃2

)
F1G dy =∑

(F1 −G) (F2g −Gf2) +
∑

(F2 −G) (F1g −Gf1)−
∑

(F1g −Gf1) (F2g −Gf2)+∫
(F1 −G)

(
F2g̃ −Gf̃2

)
dy+

∫
(F2 −G)

(
F1g̃ −Gf̃1

)
dy =

2
∑

(F1 −G) (F2 −G) g −
∑

(F1 −G) (f2 − g)G−
∑

(F2 −G) (f1 − g)G−∑
(F1g −Gf1) (F2g −Gf2) + 2

∫
(F1 −G) (F2 −G) g̃ dy−∫

(F1 −G)
(
f̃2 − g̃

)
Gdy−

∫
(F2 −G)

(
f̃1 − g̃

)
Gdy

The function G (F1 −G) (F2 −G) vanishes at −∞ and −∞. Considering its integral and sum
representation we have

−
∑

(F1 −G) (f2 − g)G−
∑

(F2 −G) (f1 − g)G−∫
(F1 −G)

(
f̃2 − g̃

)
Gdy−

∫
(F2 −G)

(
f̃1 − g̃

)
Gdy =∑

(F1 −G) (F2 −G) g +
∑

(F1 −G) (f2 − g) g +
∑

(F2 −G) (f1 − g) g+∑
(f1 − g) (f2 − g)G−

∑
(f2 − g) (f1 − g) g +

∫
(F1 −G) (F2 −G) g̃ dy =∑

(F1 + f1 −G− g) (F2 + f2 −G− g) g+
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18 Bergsma and Dassios∑
(f1 − g) (f2 − g)G+

∫
(F1 −G) (F2 −G) g̃ dy . (12)

Moreover,

(F1g −Gf1) (F2g −Gf2) = (F1 −G) (F2 −G) g2 − (F1 −G) (f2 − g)Gg−

(F2 −G) (f1 − g)Gg + (f1 − g) (f2 − g)G2 =

(F1 −G) (F2 −G) g2 + (f1 − g) (f2 − g)G2 − (F1 + f1 −G− g) (F2 + f2 −G− g) gG+

(F1 −G) (F2 −G) gG+ (f1 − g) (f2 − g) gG =

(F1 −G) (F2 −G) g (G+ g) + (f1 − g) (f2 − g)G (G+ g)−

(F1 + f1 −G− g) (F2 + f2 −G− g) gG. (13)

Using (13) and (12) we have

P (Y1 ∧ Y2 > Y3 ∨ Y4 |Θ) + P (Y1 ∧ Y2 < Y3 ∨ Y4 |Θ)−

P (Y1 ∧ Y3 > Y2 ∨ Y4 |Θ)− P (Y1 ∧ Y3 > Y2 ∨ Y4 |Θ) =∑
(F1 −G) (F2 −G) g +

∑
(F1 −G) (F2 −G) g (1−G− g)+∑

(F1 + f1 −G− g) (F2 + f2 −G− g) g +
∑

(F1 + f1 −G− g) (F2 + f2 −G− g) gG+∑
(f1 − g) (f2 − g)G (1−G− g) +

∫
(F1 −G) (F2 −G) g̃ dy .

We therefore conclude that conditionally on
{
X1 = x(1), X2 = x(2)

}
P (Y1 ∧ Y2 > Y3 ∨ Y4, X3 ∨X4 < X1 ∧X2)+

P (Y1 ∧ Y2 < Y3 ∨ Y4, X3 ∨X4 < X1 ∧X2)−

P (Y1 ∧ Y3 > Y2 ∨ Y4, X3 ∨X4 < X1 ∧X2)−

P (Y1 ∧ Y3 < Y2 ∨ Y4, X3 ∨X4 < X1 ∧X2) =∑(
P
(
Y < y | X = x(1)

)
− P (Y < y)

)(
P
(
Y < y | X = x(2)

)
− P (Y < y)

)
·

P
(
Y = y

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
+∑(

P
(
Y < y | X = x(1)

)
− P (Y < y)

)(
P
(
Y < y | X = x(2)

)
− P (Y < y)

)
·

P
(
Y = y

∣∣∣X < x(1)∧ x(2)
)
P
(
Y > y

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
+∑(

P
(
Y ≤ y | X = x(1)

)
− P (Y ≤ y)

)(
P
(
Y ≤ y | X = x(2)

)
− P (Y ≤ y)

)
·

P
(
Y = y

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
+∑(

P
(
Y ≤ y | X = x(1)

)
− P (Y ≤ y)

)(
P
(
Y ≤ y | X = x(2)

)
− P (Y ≤ y)

)
·
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A consistent test of independence 19

P
(
Y = y

∣∣∣X < x(1)∧ x(2)
)
P
(
Y < y

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
+∑(

P
(
Y = y | X = x(1)

)
− P (Y ≤ y)

)(
P
(
Y = y | X = x(2)

)
− P (Y = y)

)
·

P
(
Y < y

∣∣∣X < x(1)∧ x(2)
)
P
(
Y > y

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
+∫ (

P
(
Y < y | X = x(1)

)
− P (Y < y)

)(
P
(
Y < y | X = x(2)

)
− P (Y < y)

)
·

P
(
Y ∈ dy

∣∣∣X < x(1)∧ x(2)
)(

P
(
X < x(1) ∧ x(2)

))2
.

All of the above terms lead to non-negative expressions because of Lemma 2 (for the first, third
and sixth term we take C = Ω, the set of all possible outcomes). We also see that these terms
can be zero iff X and Y are independent. 2
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