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Abstract. We construct explicitly a bridge process whose distribution, in its own filtration, is

the same as the difference of two independent Poisson processes with the same intensity and its

time 1 value satisfies a specific constraint. This construction allows us to show the existence of

Glosten-Milgrom equilibrium and its associated optimal trading strategy for the insider. In the

equilibrium the insider employs a mixed strategy to randomly submit two types of orders: one

type trades in the same direction as noise trades while the other cancels some of the noise trades

by submitting opposite orders when noise trades arrive. The construction also allows us to prove

that Glosten-Milgrom equilibria converge weakly to Kyle-Back equilibrium, without the additional

assumptions imposed in K. Back and S. Baruch, Econometrica, 72 (2004), pp. 433-465, when the

common intensity of the Poisson processes tends to infinity.

1. Introduction

In this paper we perform an explicit construction of a particular bridge process associated to

a point process that arises in the solution of Glosten-Milgrom type insider trading models from

Market Microstructure Theory. Our starting point is the work of Back and Baruch [4] who studies

a class of equilibrium models of insider trading (of Glosten-Milgrom type) and their convergence to

Kyle model.

In Glosten-Milgrom type insider trading models, there exists an insider who possesses the knowl-

edge of the time 1 value of the asset given by the random variable ṽ. There is also another class

of traders, collectively known as noise traders, who trade without this insider knowledge. Their

trades are of the same size and arrive at Poisson times which are assumed to be independent of ṽ.

The insider trades using her extra information in order to maximise her expected wealth at time 1

but taking into account that her trades move the prices to her disadvantage since the price is an

increasing function of the total demand for the asset. Moreover, in order to hide her trades, and

thus her private information, she will also submit orders that are of the same size as noise trades.

The price of the asset in this market is determined by a market maker in the equilibrium whose

precise definition is given in Section 2.

In the specific model that we will study (and also studied in [4]) ṽ takes values in {0, 1}. Since the

noise buy and sell orders arrive at Poisson times and are of the same size, the net Z of cumulative

buy and sell noise trades, after normalization, is given by the difference of two independent Poisson

processes. Writing Y = Z + X for the total demand for the asset, where X denotes the trading

strategy of the insider, we will see in Theorem 3.4 that a Glosten-Milgrom equilibrium exists if
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(i) Y in its own filtration has the same distribution as Z,

(ii) [Y1 ≥ y] = [ṽ = 1] almost surely for some y to be determined.

The second condition above implies that in the equilibrium the insider drives the process Y so

that the event whether Y1 is larger than y is predetermined at time 0 from the point of view of

the insider, since the set [ṽ = 1] is at the disposal of the insider already at time 0. Given this

characteristic of Y , it can be called (with a slight abuse of terminology) a point process bridge.

In Section 4, we explicitly construct a pure jump process X whose jump size is the same as that

of Z and Y = X +Z satisfies aforementioned conditions. From the point of view of filtering theory

X can be considered as the unobserved ‘drift’ added to the martingale Z. The specific choice of X

used in the bridge construction ensures that this drift disappears when we consider Y in its own

filtration.

To the best of our knowledge such a bridge construction has not been studied in the literature

before. On the other hand, the analogy with the enlargement of filtration theory for Brownian

motion is obvious. Indeed, if Z is instead a Brownian motion and we consider the problem of

finding a stochastic process X so that Y = Z + X is a Brownian motion in its own filtration and

[ṽ = 1] = [Y1 ≥ y] almost surely for some y ∈ R to be determined, the solution follows easily from the

enlargement of filtration theory. The recipe is the following: Find the Doob-Meyer decomposition

of Z when its natural filtration is initially enlarged with the random variable [Z1 ≥ y]. Then, in

the finite variation part of this decomposition, replace Z with Y and [Z1 ≥ y] with [ṽ = 1] to find

X. This recipe gives

(1.1) X = I[ṽ=1]

∫ ·
0
∂y log p0(Ys, s) ds+ I[ṽ=0]

∫ ·
0
∂y log(1− p0(Ys, s)) ds,

where p0 is the function given in (5.1). From the insider trading point of view, X defined by (1.1)

is the insider’s optimal trading strategy in a Kyle model, see Remark 5.2 in this respect. The

counterpart of these arguments in the theory of enlargement of filtrations for jump processes also

exists in the literature, see [13].

Yet the above recipe does not work when Z is the difference of independent Poisson processes.

The problem is that the enlargement of filtration technique gives us the decomposition of Z as a sum

of a martingale and an absolutely continuous process. This is clearly not useful for the construction

that we are after, since we want to write Y as sum of Z and X which changes only by jumps. The

desired jump process X is constructed explicitly in Section 4 using [ṽ = 1] and a sequences of iid

uniformly distributed random variables independent of everything else. This amounts to say that

the insider uses her private information and some additional randomness from uniformly distributed

random variables to construct her optimal strategy. Moreover, we will see in Section 5 that, after an

appropriate rescaling, these jump processes converge weakly to X given by (1.1) as the intensity of

the Poisson processes that constitute Z increases to infinity. Note the process X given in (1.1) does

not need any extra randomness other than the set [ṽ = 1]. This brings fore the question whether

the bridge process defined in Section 4 can alternatively be constructed without the aid of the extra

randomness. We believe this would be a quite interesting avenue for further research.

The construction of the point process bridge Y allows us to prove the existence of Glosten-

Milgrom equilibrium (see Theorem 5.1) which was demonstrated in [4] via a numeric computation.

In such an equilibrium the insider uses a mixed strategy to randomly submit two types of orders:
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one type trades in the same direction as noise trades while the other cancels noise trades by submit-

ting opposite orders when noise trades arrive. Observing noise trades, the insider uses the uniformly

distributed random variables to construct her strategy inductively. On the other hand, the con-

struction of Y invites a natural application of weak convergence theory to show Glosten-Milgrom

equilibria converge weakly to Kyle equilibrium when the intensity of Z increases to infinity. This

convergence was first proved in [4] under strong assumption on the convergence of value functions.

Utilising the theory of weak convergence, we are able to prove the result of Back and Baruch on

convergence without the additional assumptions; see Theorem 5.3.

The outline of the paper is as follows. In Sections 2 and 3 we describe the Glosten-Milgrom

model and characterise its equilibrium which is the motivation of this paper. Section 4 discusses

the construction of the aforementioned point process bridge. In Section 5 we apply the results of

Section 4 to show the existence of Glosten-Milgrom equilibria and discuss their weak convergence.

2. The model

We consider a market in continuous-time for a risky asset whose fundamental value is given by

ṽ. The investors in this market can also trade a riskless asset at an interest rate normalised to

0 for simplicity. Following [4] we assume that ṽ has two states: high and low, which correspond

to two numeric representations respectively, 1 and 0. This fundamental value will be revealed to

the market participants at time 1 at which point we assume the market for the risky asset will

terminate1.

The microstructure of the market, and the interaction of market participants, is modelled simi-

larly as in [4]. There are three types of agents: noisy/liquidity traders, an informed trader (insider),

and a market maker, all of whom are risk neutral. All the processes and random variables in this

section are defined on a filtered probability space (Ω,F , (Ft)t∈[0,1],P) satisfying the usual conditions.

We assume that ṽ is indeed random, i.e. P(ṽ = 0) ∈ (0, 1).

• Noisy/liquidity traders trade for liquidity reasons, and their total demand is given by the

difference of two pure jump processes ZB and ZS , which represent their cumulative buy

and sell orders, respectively. As such, the net order flow of the noise traders are given by

Z := ZB − ZS . Noise traders only submit orders of fixed size δ every time they trade.

As in [4], ZB/δ and ZS/δ are assumed to be independent Poisson processes with constant

intensity β. Moreover, they are independent of ṽ.

• The informed trader observes the market price process and is given the value of ṽ at time

0. The net order of the insider is denoted by X := XB −XS where XB (resp. XS) denotes

the cumulative buy (resp. sell) orders of the insider.

• A competitive market maker observes only the total net demand process Yt = Xt + Zt

and sets the price based solely on this information. This in particular implies that the

market maker’s filtration is (FYt ), the minimal filtration generated by Y satisfying the usual

conditions. We assume that the market maker is risk neutral and, thus, the competitiveness

means that he sets the price at E[ṽ|FYt ] in the equilibrium.

1[4] assumes that the market has a random horizon defined by an independent exponential random variable.

However, one can see that this distinction is not relevant by comparing our results to those of Back and Baruch.
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Although the noise traders trade for liquidity reasons exogenous to this model, the insider has

the objective to maximise her expected profit out of trading. This strategic behaviour of the insider

and the pricing mechanism set by the market maker as described above results in the price being

determined in an equilibrium. In order to define precisely what we mean by an equilibrium between

the market maker and the insider, we first need to establish the class of admissible actions available

to both.

Definition 2.1. A function p : δZ× [0, 1]→ [0, 1] is a pricing rule if

i) y 7→ p(y, t) is strictly increasing for each t ∈ [0, 1);

ii) t 7→ p(y, t) is continuously differentiable for each y ∈ δZ.

This Markov assumption on the pricing functional is standard in the literature (see, e.g., [2], [6]

or [8]). Given the pricing rule, the market maker sets the price to be p(Yt, t). It would be irrational

for the market maker to price the asset at some value larger than 1 or less than 0 since everybody

knows that the true value of the asset is 0 or 1. As we mentioned above the market maker is

competitive so that in equilibrium the price equals E[ṽ | FYt ]. Hence, p is typically [0, 1]-valued.

The monotonicity of p(·, t) implies that an increase in demand has a positive feedback on the asset

price. Moreover, this leads the insider to fully observe the noise trades, Z, by simply inverting

the price process and subtracting her own trades from it. Consequently, the insider’s filtration,

denoted with FI , contains the filtration generated by Z and ṽ. We shall assume FI satisfies the

usual conditions. However, we refrain from setting FI equal to the filtration generated by Z and

initially enlarged with ṽ since we will only be able to show the existence of equilibrium if the insider

also possess a sequence of independent random variables, which she will use in order to construct

her mixed strategy. Admissible strategy of the insider is defined as follows.

Definition 2.2. The strategy (XB, XS ;FI) is admissible, if

i) FI is a filtration satisfying the usual conditions such that FIt = σ(v,FZt ,Ht), where H is a

filtration independent of v and FZ .

ii) XB and XS , with XB
0 = XS

0 = 0, are FI -adapted and integrable2 increasing point processes

with jump size δ;

iii) the (FI ,P)-dual predictable projections3 of XB and XS are absolutely continuous functions

of time.

The first assumption on FI makes the insider’s filtration part of the equilibrium. This is to allow

mixed strategies which will be determined in equilibrium. Note that the additional information can

only come from a source that is independent of Z. This implies in particular that the insider does

not have any extra information about the future demand of the noise traders. Although we allow

this additional source of information to vary in time, in the form of filtration H, in the equilibrium

that we will compute, Ht = H0 for all t ∈ [0, 1].

We assume that the insider can only trade δ-shares of the asset in every trade like the noise

traders. This is one of the underlying assumptions of the Glosten-Milgrom model, which we keep

2That is, E[XB
1 ] and E[XS

1 ] are both finite.
3These are simply the predictable compensators of the increasing processes XB and XS . See, e.g. [11] for a precise

definition.
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in this paper as well. One intuitive reason for this is that a rational insider will never submit an

order of a different size, since this will immediately reveal her identity and make, at least a part

of, her private information public causing to lose her comparative advantage. Moreover, in order

to make this argument rigorous one needs to make assumptions on the pricing rule as to how to

handle the orders of sizes which are multiples of δ. One can do the pricing uniformly, i.e. every

little bit of the order is priced the same, or different parts of the order is priced differently as one

walks up or down in an order book (see [5] for a discussion of such issues). However, this requires

different techniques for the analysis of optimal strategies given this complicated nature of pricing;

thus, we leave such analysis to a future investigation.

The third assumption on the dual predictable projections implies that XB and XS admit FI -
intensities θB and θS such that XB−

∫ ·
0 θ

B
s ds and XS−

∫ ·
0 θ

S
s ds are FI -martingales (see [12, Chapter

1, Theorem 3.15]). This assumption is technical and to ensure tractability.

Given that the insider submits orders of size δ and the assumption that the market maker

observes only the net demand, we see that when the insider submits an order at the same as when

an uninformed order arrives, but in the opposite direction (i.e. a trade between the informed and

uninformed occurs without needing a market maker) this transaction goes unnoticed by the market

maker. Thus, what we are effectively assuming is that the market maker only becomes aware of the

transaction when there is a need for him. The assumption that the market maker only observes net

demand is a common assumption in market microstructure literature. In particular, it is always

assumed in Kyle type models (see, e.g. [3]). Henceforth, when the insider makes a trade at the

same with an uninformed trader but in an opposite direction, we will say that the insider cancels

the noise trades.

Although we allow the insider to trade at the same time with the noise traders in the same

direction, we will see that in the equilibrium the insider will not carry such trades. This is intuitive.

does not trade in the same direction at the same time as the uniformed trades, but she does

randomly cancel part of uninformed orders. Both actions are required to hide her identity from the

market maker. Indeed, when two buy orders arrive at the same time the market maker will know

that one of them is an informed trade. Therefore it would be to the advantage of the insider to hide

her trades by submitting randomly, but of the same size, among the uninformed trades. On the

other hand, since the market maker is not aware of the transactions which consist in canceling noise

trades, submitting an order at the same time with the noise traders but in the opposite direction is

not necessarily suboptimal. We will in fact see that the insider does randomly cancel some trades

that are placed by the noise traders in the equilibrium.

As discussed in the last paragraphs, the insider’s buy orders XB consist of three components: we

denote by XB,B the cumulative buy orders which arrive at different time than those of ZB, by XB,T

the cumulative buy orders which arrive at the same time as some orders of ZB, and by XB,S the

cumulative buy orders which cancel some sell orders of ZS . As such, the jump time of XB,T (resp.

XB,S) are contained in the set of jump times of ZB (resp. ZS). Sell orders XS,S , XS,T , and XS,B

are defined analogously. Therefore XB = XB,B +XB,T +XB,S and XS = XS,S +XS,T +XS,B.



6 POINT PROCESS BRIDGES AND WEAK CONVERGENCE OF INSIDER TRADING MODELS

As mentioned earlier, the insider aims to maximise her expected profit. Given an admissible

trading strategy (XB, XS) the associated profit at time 1 of the insider is given by∫ 1

0
Xt− dp(Yt, t) + (ṽ − p(Y1, 1))X1.

The last term appears due to a potential discrepancy between the market price and the liquidation

value. Since X is of finite variation, an application of integration by parts rewrites the above as∫ 1

0
(ṽ − p(Yt, t)) dXB

t −
∫ 1

0
(ṽ − p(Yt, t)) dXS

t

=

∫ 1

0
(ṽ − p(Yt− + δ, t)) dXB,B

t +

∫ 1

0
(ṽ − p(Yt− + 2δ, t)) dXB,T

t +

∫ 1

0
(ṽ − p(Yt−, t)) dXB,S

t

−
∫ 1

0
(ṽ − p(Yt− − δ, t)) dXS,S

t −
∫ 1

0
(ṽ − p(Yt− − 2δ, t)) dXS,T

t −
∫ 1

0
(ṽ − p(Yt−, t)) dXS,B

t ,

where the last line is due to the fact that Y increases by δ when XB,B jumps, increases by 2δ

when XB,T jumps, and is unchanged when XB,S and ZS jump at the same time but different

directions. Similar situation goes for negative jumps of Y . As seen from the above formula, the

profit is zero when the insider place two opposite orders as the same time, we then assume without

loss of generality that insider does not do so.

Let’s define

a(y, t) := p(y + δ, t) and b(y, t) = p(y − δ, t).

Then, the expected profit of the insider conditional on her information equals

EP

[∫ 1

0
(ṽ − a(Yt−, t)) dX

B,B
t +

∫ 1

0
(ṽ − a(Yt− + δ, t)) dXB,T

t +

∫ 1

0
(ṽ − p(Yt−, t)) dXB,S

t

−
∫ 1

0
(ṽ − b(Yt−, t)) dXS,S

t −
∫ 1

0
(ṽ − p(Yt− − δ, t)) dXS,T

t −
∫ 1

0
(ṽ − p(Yt−, t)) dXS,B

∣∣∣∣ ṽ] .
(2.1)

Note that the assumption E[XB
1 ] < ∞ implies E[XB

1 |ṽ] < ∞ as well since E[XB
1 ] = E[XB

1 |ṽ =

1]P[ṽ = 1] + E[XB
1 |ṽ = 0]P[ṽ = 0], and P[ṽ = 0] ∈ (0, 1). Similarly, E[XS

1 |ṽ] < ∞, too. Thus,

the above expectation will be finite as soon as we assume that the pricing rule is rational in the

sense that it assigns a price to the asset between 0 and 1. This will be part of the definition of

equilibrium, which will be made precise below. As seen from the above formulation, when price

moves, one buys (resp. sells) at a price a(y, t) (resp. b(y, t)), where y is the cumulative order right

before such trade. Thus, a(y, t) (resp. b(y, t)) can be viewed as the ask (resp. bid) price.

Our goal is to find an equilibrium between the market maker and the insider in the following

fashion:

Definition 2.3. A Glosten-Milgrom equilibrium is a quadruplet (p,XB, XS ,FI) such that

i) given (XB, XS ;FI), p is a rational pricing rule, i.e., p(Yt, t) = E[ṽ | FYt ] for t ∈ [0, 1];

ii) given p, (XB, XS ;FI) is an admissible strategy maximising (2.1).

Recall that ṽ takes only two values by assumption. In view of this specification we will often call

the insider in the sequel of high type when ṽ = 1 and low type when ṽ = 0.
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3. Characterisation of equilibrium

Before we give a characterisation of equilibrium, we will provide some heuristics. Due to the

Markov structure of the pricing rule, we will define the informed trader’s value function and derive,

via a heuristic argument, the associated HJB equation. Definition 2.2 ii) implies that the FI -dual

predictable projection of Xi,j , i ∈ {B,S} and j ∈ {B,S, T}, is of the form δ
∫ ·
0 θ

i,j
s ds so that

Xi,j − δ
∫ ·
0 θ

i,j
s ds defines an FI -martingale. Observe that since the set of jumps times of XB,S

and XS,T (resp. XS,B and XB,T ) is contained in the set of jump times of ZS (resp. ZB), we

necessarily have θB,S + θS,T ≤ β (resp. θS,B + θB,T ≤ β). Moreover, Definition 2.3 i) implies

that p takes values in [0, 1], hence both bid and ask prices are [0, 1]-valued by definition. Therefore,∫ ·
0(ṽ−a(Yu−, u))(dXB,B

u −δθB,Bu du) is an FI -martingale (see [7, Chapter 1, T6]). Arguing similarly

with the other terms, the expected profit (2.1) can then be expressed as

δ EP

[∫ 1

0
(ṽ − p(Yu− + δ, u))θB,Bu du+

∫ 1

0
(ṽ − p(Yu− + 2δ, u))θB,Tu du+

∫ 1

0
(ṽ − p(Yu−, u))θB,Su du

−
∫ 1

0
(ṽ − p(Yu− − δ, u))θS,Su du−

∫ 1

0
(ṽ − p(Yu− − 2δ, u))θS,Tu du−

∫ 1

0
(ṽ − p(Yu−, u))θS,Bu du

∣∣∣∣ ṽ] .
This motivates us to define the following value function for the informed trader:

V (ṽ, y, t) = sup
θi,j ; i∈{B,S},j∈{B,S,T}

δ EP

[∫ 1

t
(ṽ − p(Yu− + δ, u))θB,Bu du+

∫ 1

t
(ṽ − p(Yu− + 2δ, u))θB,Tu +

∫ 1

t
(ṽ − p(Yu−, u))θB,Su du

−
∫ 1

t
(ṽ − p(Yu− − δ, u))θS,Su du−

∫ 1

t
(ṽ − p(Yu− − 2δ, u))θS,Tu du−

∫ 1

t
(ṽ − p(Yu−, u))θS,Bu du

∣∣∣∣Yt = y, ṽ

]
,

for ṽ ∈ {0, 1}, t ∈ [0, 1), and y ∈ δZ. The terminal value of V at 1 can be defined via the left limit

V (ṽ, y, 1) := limt↑1 V (ṽ, y, t). As we will see in Remark 3.3 below, V (ṽ, y, 1) is not always zero.

Recall that Y = X + Z so that if one defines Y B = XB,B + XB,T + ZB − XS,B and Y S =

XS,S +XS,T +ZS −XB,S , then it is easy to see that (Y B
t − δ

∫ t
0 (β− θB,Ts − θS,Bs ) ds− δ

∫ t
0 θ

B,B
s ds−

2δ
∫ t
0 θ

B,T
s ds) and (Y S

t − δ
∫ t
0 (β − θS,Ts − θB,S) ds− δ

∫ t
0 θ

S,S
s ds− 2δ

∫ t
0 θ

S,T
s ds) are FI -martingales.

Thus, applying Ito’s formula to V (ṽ, Yt, t) yields the following formal HJB equation (the variable ṽ

is omitted in V for simplicity of notation) in view of the standard dynamic programming arguments:

0 = Vt + (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β

+ sup
θB,B≥0

[V (y + δ, t)− V (y, t) + (ṽ − p(y + δ, t)) δ] θB,B

+ sup
θB,T≥0

[V (y + 2δ, t)− V (y + δ, t) + δ(ṽ − p(y + 2δ, t))] θB,T

+ sup
θB,S≥0

[V (y, t)− V (y − δ, t) + (ṽ − p(y, t))δ] θB,S

+ sup
θS,S≥0

[V (y − δ, t)− V (y, t)− (ṽ − p(y − δ, t)) δ] θS,S

+ sup
θS,T≥0

[V (y − 2δ, t)− V (y − δ, t)− δ(ṽ − p(y − 2δ, t))] θS,T

+ sup
θS,B≥0

[V (y, t)− V (y + δ, t)− (ṽ − p(y, t))δ] θS,B, (y, t) ∈ δZ× [0, 1).

(3.1)
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The optimiser (θi,j ; i ∈ {B,S} and j ∈ {B,S, T}) in the previous equation is expected to be the

FI -intensities of the insider’s optimal strategy (Xi,j) when the order size is normalised to 1.

Notice that all maximisations in (3.1) are linear in θ. Therefore (3.1) reduces to the following

system:

Vt + (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β = 0,

V (y + δ, t)− V (y, t) + (ṽ − p(y + δ, t))δ ≤ 0,

V (y − δ, t)− V (y, t)− (ṽ − p(y − δ, t))δ ≤ 0, (y, t) ∈ δZ× [0, 1).

(3.2)

Here the first inequality corresponds to the maximisation in θB,j ; while the second inequality

corresponds to the maximisation in θS,j , j ∈ {B,S, T}. Let’s denote the optimisers in (3.1) with

(θi,j(y, t); (y, t) ∈ δZ × [0, 1)), i ∈ {B,S} and j ∈ {B,S, T}. Observe that the first inequality in

(3.2) can be strict only if θB,B(y, t) = θB,S(y + δ, t) = θB,T (y − δ, t) = 0. Similarly, the second

inequality can be strict only if θS,S(y, t) = θS,B(y − δ, t) = θS,T (y + δ, t) = 0. We will see later that

the optimal θB,B and θB,S are never 0 for the high type insider meanwhile θS,S and θS,B are never

0 for the low type. Therefore the first inequality in (3.2) is actually an equality when ṽ = 1 and the

second inequality is an equality when ṽ = 0. Economically speaking, these equalities imply that at

every instant of time there is a non-zero probability that a high type insider will make a buy order

by either contributing to uninformed buy orders or canceling uninformed sell orders, and the low

type insider will do the opposite. Such actions are certainly reasonable for the insider. Indeed, a

high type insider will reveal her information gradually and keep the market price strictly less than

1. Recall that p is a martingale bounded by 1, so once it hits 1, it will be stopped at that level.

Therefore, since there is always a strictly positive difference between the true price, which is 1 in

this case, and the market price, the insider will always want to take advantage of this discrepancy

and buy with positive probability since the asset is undervalued by the market. The situation for

the low type is similar.

In view of the previous discussion, let’s consider the following system:

V H
t +

(
V H(y + δ, t)− 2V H(y, t) + V H(y − δ, t)

)
β = 0,

V H(y + δ, t)− V H(y, t) + (1− p(y + δ, t))δ = 0;
(HJB-H)

V L
t +

(
V L(y + δ, t)− 2V L(y, t) + V L(y − δ, t)

)
β = 0,

V L(y − δ, t)− V L(y, t) + p(y − δ, t)δ = 0,
(HJB-L)

for (y, t) ∈ δZ × [0, 1). We expect that V H(y, t) = V (1, y, t) and V L(y, t) = V (0, y, t). The

next lemma will construct solutions to the above system and will be useful in solving the insider’s

optimisation problem. However, before the statement and the proof of this lemma we need to

introduce a class of functions satisfying certain boundary conditions and differential equations. We

will nevertheless denote them with p since, as we shall see later, they will appear in the equilibrium

as pricing rules for the market maker.

To this end, for each z ∈ δZ, let

(3.3) P z(y) :=

{
0, y < z

1, y ≥ z
,
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and define

(3.4) pz(y, t) := EP[P z(Z1) |Zt = y].

Observe that Z/δ is the difference of two independent Poisson processes. The Markov property

implies4 that pz satisfies

pzt + (pz(y + δ, t)− 2pz(y, t) + pz(y − δ, t))β = 0, (y, t) ∈ δZ× [0, 1),

pz(y, 1) = P z(y), y ∈ δZ.
(3.5)

Lemma 3.1. Let pz be defined by (3.4) for some fixed z ∈ δZ and define

H(y, 1) := δ

z−δ
δ∑

j= y
δ

(1−A(δj)), L(y, 1) := δ

y
δ∑

j= z
δ

B(δj), y ∈ δZ,

where A(y) := P z(y + δ), B(y) := P z(y − δ), and
∑n

j=m αj = −
∑m

j=n αj by convention whenever

m > n. Then, both H(·, 1) and L(·, 1) are nonnegative and the following equivalences hold:

H(y, 1) = 0⇐⇒ A(y) = 1⇐⇒ y ≥ z − δ, L(y, 1) = 0⇐⇒ B(y) = 0⇐⇒ y < z + δ.

Moreover,

H(y, t) := H(y, 1) + δβ

∫ 1

t
(pz(y + δ, u)− pz(y, u)) du and(3.6)

L(y, t) := L(y, 1) + δβ

∫ 1

t
(pz(y, u)− pz(y − δ, u)) du(3.7)

solve (HJB-H) and (HJB-L) respectively.

Proof. Statements regarding H(y, 1) and L(y, 1) directly follow from the definitions. We will next

show that H satsifies (HJB-H). Analogous statement for L can be proven similarly. First observe

that

H(y + δ, 1)−H(y, 1) = −δ + δA(y) = −δ + δP z(y + δ).

Thus,

H(y + δ, t)−H(y, t) = H(y + δ, 1)−H(y, 1) + δβ

∫ 1

t
(pz(y + 2δ, u)− 2pz(y + δ, u) + pz(y, u)) du

= δ (pz(y + δ, t)− 1) ,(3.8)

where (3.5) is used to obtain the last line. This proves the second equation in (HJB-H).

Next, it follows from the definition of H that

Ht(y, t) + δβ (pz(y + δ, t)− pz(y, t)) = 0.

However, iterating (3.8) yields

H(y + δ, t) +H(y − δ, t)− 2H(y, t) = H(y + δ, t)−H(y, t)− (H(y, t)−H(y − δ, t))

= δ (pz(y + δ, t)− pz(y, t)) ,

and, hence, the claim. �

4The Markov property of Z implies that P(Z1 = z̃ |Zt = y) satisfies pt + (p(y + δ, t)− 2p(y, t) + p(y − δ, t))β = 0.

Therefore summing up the previous equation for different z induces that
∑
δZ3z̃≥z ∂tP(Z1 = z̃ |Zt = y) is finite. Hence

Fubini’s theorem implies that the previous sum is exactly ∂tp
z and pz solves (3.5).
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Given a pricing rule, let us describe insider’s optimal strategies.

Proposition 3.2. Suppose that the market maker chooses pz as a pricing rule, where z is fixed and

pz is as defined in (3.4). Then, the following holds:

i) When ṽ = 1, (XB, XS ;FI) is an optimal strategy if and only if Y1 ≥ z − δ and XS,j = 0,

j = {B,S, T}.
ii) When ṽ = 0, (XB, XS ;FI) is an optimal strategy if and only if Y1 < z + δ and XB,j = 0,

j = {B,S, T}.

When the previous condition holds for ṽ = 1 (resp. ṽ = 0), v(1, y, t) = H(y, t) (resp. v(0, y, t) =

L(y, t)) for (y, t) ∈ δZ× [0, 1].

Remark 3.3. Recall that V (ṽ, y, 1) := limt↑1 V (ṽ, y, t). Lemma 3.1 and Proposition 3.2 combined

implies that V (ṽ, y, 1) ≥ 0. It is only zero when A(y) = 1 for the high type and B(y) = 0 for the

low type.

Proof. The statements for ṽ = 1 case will be proved. Similar arguments can be applied in order

to prove the statement regarding ṽ = 0. Fix (y, t) ∈ δZ × [0, 1). For any admissible trading strat-

egy (Xi,j ; i ∈ {B,S}) and j ∈ {B,S, T} with associated FI -intensities (δθi,j ; i ∈ {B,S} and j ∈
{B,S, T}), applying Ito’s formula to H(Y·, ·) and utilizing Lemma 3.1, we obtain

H(Y1, 1)

= H(y, t) +

∫ 1

t
Ht(Yu−, u)du

+

∫ 1

t
(H(Yu− + δ, u)−H(Yu−, u)) (β − θB,Tu − θS,Bu ) du+

∫ 1

t
(H(Yu− + δ, u)−H(Yu−, u)) θB,Bu du

+

∫ 1

t
(H(Yu− + 2δ, t)−H(Yu−, u)) θB,Tu du

+

∫ 1

t
(H(Yu− − δ, u)−H(Yu−, u)) (β − θS,T − θB,Su ) du+

∫ 1

t
(H(Yu− − δ, u)−H(Yu−, u)) θS,Su du

+

∫ 1

t
(H(Yu− − 2δ, u)−H(Yu−, u)) θS,Tu du+M1 −Mt

= H(y, t)

−
∫ 1

t
(H(Yu− + δ, u)−H(Yu−, u)) θS,Bu du+

∫ 1

t
(H(Yu− + δ, u)−H(Yu−, u)) θB,Bu du

+

∫ 1

t
(H(Yu− + 2δ, t)−H(Yu− + δ, u)) θB,Tu du

−
∫ 1

t
(H(Yu− − δ, u)−H(Yu−, u)) θB,Su du+

∫ 1

t
(H(Yu− − δ, u)−H(Yu−, u)) θS,Su du

+

∫ 1

t
(H(Yu− − 2δ, u)−H(Yu− − δ, u)) θS,Tu du+M1 −Mt

= H(y, t) + δ

∫ 1

t
(p(Yu− + δ, u)− 1) θB,Bu du+ δ

∫ 1

t
(1− p(Yu−, u)) θS,Su du

−δ
∫ 1

t
(p(Yu− + δ, u)− 1) θS,Bu du− δ

∫ 1

t
(1− p(Yu−, u)) θB,Su du

−δ
∫ 1

t
(1− p(Yu− + 2δ, u)) θB,Tu du+ δ

∫ 1

t
(1− p(Yu− − δ, u)) θS,Tu du+M1 −Mt.
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Here M contains
∫ ·
0(p(Yu− + δ, u)− 1)(dXB,B

u − δθB,Bu du) and similar processes, which are all FI -
martingales due to the bounded integrand and the martingale property of Xi,j − δ

∫ ·
0 θ

i,j
u du for

i ∈ {B,S} and j ∈ {B,S, T} (see [7, Chapter 1, T6]). Thus, on [ṽ = 1]

δ

∫ 1

t
(1− p(Yu− + δ, u)) θB,Bu du+ δ

∫ 1

t
(1− p(Yu−, u)) θB,Su du+ δ

∫ 1

t
(1− p(Yu− + 2δ, u))θB,Tu du

−δ
∫ 1

t
(1− p(Yu− − δ, u)) θS,Su du− δ

∫ 1

t
(1− p(Yu−, u)) θS,Bu du− δ

∫ 1

t
(1− p(Yu− − 2δ, u)) θS,Tu du

= M1 −Mt −H(Y1, 1) +H(y, t)

−δ
∫ 1

t
(p(Yu−, u)− p(Yu− − δ, u)) θS,Su du− δ

∫ 1

t
(p(Yu− + δ, u)− p(Yu−, u)) θS,Bu du

−δ
∫ 1

t
(p(Yu− − δ, u)− p(Yu− − 2δ, u)) θS,Tu du.

Observe that the left side of the above equality is the wealth of the insider. Moreover, since

H ≥ 0 and p is strictly increasing in y, the expected wealth, conditioned on FIt , is maximised

when H(Y1, 1) = 0 P-a.s., θS,S , θS,T , and θS,B are identically zero. However, in view of Lemma 3.1,

H(Y1, 1) = 0 if and only if Y1 ≥ z − δ. �

We are now ready to state the conditions for equilibrium.

Theorem 3.4. (p,XB, XS ,FI) is a Glosten-Milgrom equilibrium if there exists a yδ ∈ δZ such

that

i) [Y1 ≥ yδ] = [ṽ = 1] P-a.s.;

ii) p = pyδ which is defined by (3.4);

iii) (XB, XS ;FI) is an admissible strategy such that Y = Z + XB − XS = Y B − Y S where

Y B/δ and Y S/δ are independent, FY -adapted Poisson processes with common intensity β,

and XS ≡ 0 (resp. XB ≡ 0) on [ṽ = 1] (resp. [ṽ = 0]).

Proof. Given the pricing rule p = pyδ , Proposition 3.2 implies that (XB, XS ;FI) is optimal because

[Y1 ≥ yδ] = [ṽ = 1] P-a.s. and XS ≡ 0 (resp. XB ≡ 0) on [ṽ = 1] (resp. [ṽ = 0]). Thus it remans

to show pyδ is a rational pricing rule given (XB, XS ;FI). Indeed, since Y and Z have the same

distribution, it follows from (3.4) and the Markov property of Y that EP[ṽ|FYt ] = P[Y1 ≥ yδ|FYt ] =

pyδ(Yt, t) for t ∈ [0, 1]. �

Remark 3.5. Theorem 3.4 iii) necessarily requires that XB,T ≡ 0 (resp. XS,T ≡ 0) on [ṽ = 1] (resp.

[ṽ = 0]) since it implies that the jumps occur with magnitude δ only. Recall from the proof of

Proposition 3.2 that this is not a requirement for optimality from the point of view of the insider.

Rather, the insider chooses not to trade at the same time and in the same direction with the noise

traders in order to make it possible that there is a rational pricing rule that the market maker can

choose.

The equilibrium given in the above theorem is another manifestation of inconspicuous trade

theorem commonly observed in the insider trading literature (see, e.g., [14], [2], [6], etc.). Indeed,

when the insider is trading optimally in the above equilibrium, the distribution of the net order

process is the same as that of the net orders of the noise traders, i.e. the insider is able to hide her

trades among the noise trades. However, the private information is fully, albeit gradually, revealed
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to the public since ṽ ∈ FY1 . We will construct an admissible strategy satisfying conditions above

and show the existence of Glosten-Milgrom equilibrium in the following section.

Remark 3.6. Proposition 3.2 and Theorem 3.4 indicate that ‘bluffing’ strategies selling for the high-

type and buying for the low-type are sub-optimal. This is in contrast to the results in [4], which

use numeric computations to suggest such bluffing might be optimal.

4. Construction of a point process bridge

As seen in Theorem 3.4 we are interested in the construction of a process Y = Z + XB − XS

such that, in its natural filtration, Y = Y B − Y S such that Y B/δ and Y S/δ are independent

Poisson processes with intensity β. To this end, we will construct explicitly a process Y on some

(Ω,F , (Ft)t∈[0,1],P) such that

(4.1) Y = ZB − ZS +XB II −XS IIc ,

where I ∈ F0 with specified probability, XB and XS are two point processes and Z/δ is F-adapted

and is the difference of two independent Poisson processes with intensity β. In particular, I is

independent of Z since Z has independent increments and Z0 = 0. The set I is to be associated

with the set [ṽ = 1]. In order to comply with the conditions of the equilibrium described in the

last section, we will further require [Y1 ≥ yδ] = I P-a.s. for a given suitable yδ. Since Y is expected

to have the same distribution as Z, the previous condition necessitates P(I) = P(Z1 ≥ yδ). During

the construction of the probability space and the process Y , we will take δ = 1 without loss of

generality since all the processes can be scaled by δ to construct the process we are after.

In order to construct such a process we first need to determine its intensity. Since Y would behave

like Z in its own filtration, we can view, in the sense of equality in distributions, the decomposition

in (4.1) as that of Z when its own filtration is initially enlarged with the random variable I[Z1≥y1].

Thus, the intensity of Y will be that of Z in this enlarged filtration.

Let (D([0, 1],Z),F1, (F1
t )t∈[0,1],P1) be the canonical space where D([0, 1],Z) is Z-valued càdlàg

functions, P1 is a probability measure under which ZB and ZS are independent Poisson processes

with intensities β, (F1
t )t∈[0,1] is the minimal filtration generated by ZB and ZS satisfying the usual

conditions, and F1 =
∨
t∈[0,1]F1

t . Let’s denote with (G1t )t∈[0,1] the filtration (F1
t )t∈[0,1] enlarged

with the random variable I[Z1≥y1].

In order to find the G1-intensity of Z, we will use a standard enlargement of filtration argument

which can be found, e.g., in [15]. To this end, let h : [0, 1]× Z 7→ [0, 1] be the function defined by

(4.2) h(z, t) := P1[Z1 ≥ y1 |Zt = z].

Note that h is strictly positive on [0, 1) × Z. Moreover since (h(Zt, t))t∈[0,1] is an F1-martingale,

Ito’s formula yields

(4.3) ht(z, t) + β (h(z + 1, t) + h(z − 1, t)− 2h(z, t)) = 0, (t, z) ∈ [0, 1)× Z.

Lemma 4.1. The G1-intensities of ZB and ZS at t ∈ [0, 1) are given by

I[Z1≥y1]β
h(Zt− + 1, t)

h(Zt−, t)
+ I[Z1<y1]β

1− h(Zt− + 1, t)

1− h(Zt−, t)
,

I[Z1≥y1]β
h(Zt− − 1, t)

h(Zt−, t)
+ I[Z1<y1]β

1− h(Zt− − 1, t)

1− h(Zt−, t)
,
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respectively.

Proof. We will only calculate the intensity for ZB. The intensity of ZS can be obtained similarly.

All expectations are taken under P1 throughout this proof. For s ≤ t < 1, take an arbitrary E ∈ F1
s

and denote MB
t := ZBt − βt. The definition of h and the F-martingale property of MB imply

E
[
(MB

t −MB
s )IEI[Z1≥y1]

]
= E

[
(MB

t −MB
s )IEh(Zt, t)

]
= E

[
IE
(
〈MB, h(Z·, ·)〉t − 〈MB, h(Z·, ·)〉s

)]
= E

[
IE
∫ t

s
(h(Zr− + 1, r)− h(Zr−, r))β dr

]
= E

[
IE
∫ t

s
I[Z1≥y1]

h(Zr− + 1, r)− h(Zr−, r)

h(Zr−, r)
β dr

]
.

Since P1(Z1 < δ |Zt = z) = 1− h(z, t), similar computations yield

E
[
(MB

t −MB
s )IEI[Z1<y1]

]
= E

[
IE
∫ t

s
I[Z1<y1]

h(Zr−, r)− h(Zr− + 1, r)

1− h(Zr−, r)
β dr

]
.

These computations imply that

MB −
∫ ·
0
I[Z1≥y1]

h(Zr− + 1, r)− h(Zr−, r)

h(Zr−, r)
β dr −

∫ ·
0
I[Z1<y1]

h(Zr−, r)− h(Zr− + 1, r)

1− h(Zr−, r)
β dr

defines a G1-martingale. Therefore the G1-intensity of ZB follows from ZBt = MB
t + βt. �

In what follows, given I ∈ F0 and h as in (4.2) such that P(I) = h(0, 0), XB on I and XS on

Ic will be constructed so that Y matches the intensities given in the above lemma. As a result,

Proposition 4.4 ensures I = [Y1 ≥ y1] P-a.s., which is what we are after. We will focus on the

construction of XB on I in what follows. By symmetry, XS on Ic can be constructed by the same

method but applied to −Z and −y1.
Recall that one of the goals of the process XB on I is to make sure that Y1 ends up at a value

larger than or equal to y1. In order to achieve this goal XB will have to add some jumps in addition

to the jumps coming from ZB. However, this by itself won’t be enough since ZS will make Y jump

downward. Thus, XB will also need to cancel some of downwards jumps coming from ZS . Of

course, there are many ways in which XB achieves this goal. However, Y is required to have the

same distribution as Z. We will see in Proposition 4.4 that this distribution requirement will also

be satisfied once Y has the correct intensity given by Lemma 4.1.

As described above XB will consist of two components XB,B and XB,S , where XB,B complements

jumps of ZB and XB,S cancels some jumps of ZS . Let’s denote by (τi)i≥1 the sequence of jump

times for the Y process we wish to construct. These stopping times will be constructed inductively

as follows. Given τi−1 < 1, τi is the minimum of the following three random times:

i) the next jump of ZB,

ii) the next jump of XB,B,

iii) the next jump of ZS which is not cancelled by a jump of XB,S .

Here XB,B and XB,S are constructed so that Y B = ZB + XB,B and Y S = ZS − XB,S have the

required F-intensities on I. To achieve all these aims simultaneously, when the (i − 1)th jump of

Y happens before time 1, we will generate random variables νi and another sequence of Bernoulli

random variables (ξj,i)j≥1 to determine the next jump of Y . In the context of the informed trader
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trying to make a decision, construction of XB corresponds to the following pattern: place a buy

order at time νi unless the next buy order from the uninformed trader arrives before νi and also

buy at every sell order of the uninformed trader until ξj,i = 1 for the first time.

We will now make this intuitive construction rigorous. In order to perform the subsequent

construction, we must assume that the filtered probability space (Ω,F , (Ft)t∈[0,1],P) is large enough

so that there exist I ∈ F0 with P(I) = h(0, 0) and two independent sequences of iid F-measurable

random variables (ηi)i≥1 and (ζi)i≥1 with uniform distribution on [0, 1], moreover (ηi)i≥1 and (ζi)i≥1

are independent of both Z and I. These requirements can be easily satisfied by extending F0 and F
if necessary. The sequences (ηi)i≥1 and (ζi)i≥1 will be used to construct νi and (ξj,i)j≥1 in the last

paragraph. As for the filtration (Ft)t∈[0,1], we require that Z/δ, as the difference of two independent

Poisson processes with intensity β, is adapted to (Ft)t∈[0,1]. Since Z has independent increments

and Z0 = 0, Z is independent of I. We will make one more assumption on the filtration later during

the construction.

Denote by (σ+i )i≥1 and (σ−j )j≥1 jump times of ZB and ZS , respectively. We set σ±i = ∞ when

σ±i > 1, since we are only interested in processes before time 1. In what follows, we will inductively

define two sequences of [0, 1] ∪ {∞}-valued random variables (τ+i )i≥1 and (τ−i )i≥1 on I. τ+i+1 (resp.

τ−i+1) will denote the first potential upward (resp. downward) jump of Y after time τi starting with

τ0 = 0. The process Y on I thus jumps at each τi := τ+i ∧ τ
−
i . In particular, when τ+i < τ−i ,

∆Yτi = ∆Y B
τi = 1; when τ−i < τ+i , ∆Yτi = −∆Y S

τi = −1.

Let’s start with the construction until the first jump of Y . Recall that, in view of Lemma 4.1,

we want to construct Y B (resp. Y S) so that its intensity until its first jump is given by

β
h(1, t)

h(0, t)

(
resp. β

h(−1, t)

h(0, t)

)
.

Hence τ1 is constructed to match this intensity.

To define τ+1 , set

f1(t) := 1− exp

(
β

∫ t

0

h(0, u)− h(1, u)

h(0, u)
du

)
, t ∈ [0, 1).

Since z 7→ h(z, t) is strictly increasing, f1 is strictly increasing. We consider the inverse function

f−11 (y) := inf{t ∈ [0, 1) : f(t) > y}, where the value is ∞ if the indicated set is empty. Now define

ν1 := f−11 (η1) and τ+1 := ν1 ∧ σ+1 on I.

Then τ+1 is potentially the first jump time of Y B. It follows from the definition of ν1 that P(τ+1 <

1) > 0. Such τ+1 is constructed to match the intensity of Y B before the first jump of Y . On the

other hand, in order to define τ−1 , consider

(4.4) ξj,1 := I[
ζj≤

h(−1,σ−
j

)

h(0,σ−
j

)
, σ−j <1

] + I[σ−j ≥1] for j ≥ 1.

This indicator random variable determines whether the jth jump of ZS will be cancelled by an

opposite jump of XB,S . When ξj,1 = 0, which only happens when the jth jump of ZS happens

before 1, this jump of ZS will be cancelled by a jump of XB,S . Such cancelation is performed at a

rate h(−1, σ−j )/h(0, σ−j ) so as to match the intensity of Y S before the first jump of Y . Therefore,
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τ−1 , which is potentially the first negative jump, is the first jump time σ−j of ZS which is not

cancelled. That is,

τ−1 := min{σ−j : ξj,1 = 1}.

Consequently, we define the first jump time of Y on I as

τ1 := τ+1 ∧ τ
−
1 .

This construction yields P(τ1 < 1) > 0. On [t ≤ τ1, I] with t ≤ 1, we define XB,B and XB,S as

XB,B
t := I[ν1<σ+

1 ]I[τ+1 ≤t] and XB,S
t :=

∞∑
j=1

(1− ξj,1) I[σ−j ≤t].

Now suppose that τi−1 with P(τi−1 < 1) > 0 and Yt for t ≤ τi−1 ∧ 1 have been defined. We will

define in this paragraph τi and Yt for t ∈ (τi−1 ∧ 1, τi ∧ 1]. To this end, when τi−1 < 1, consider the

random function

fi(t) := 1− exp

(
λ

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
, t ∈ [τi−1, 1).

Since fi is strictly increasing, the inverse function f−1i (y) := inf{t ∈ [τi−1, 1) : f(t) > y} is well-

defined. When τi−1 ≥ 1, set f−1i (y) =∞. Now define

νi := f−1i (ηi) and τ+i := νi ∧ σ+ZBτi−1
+1

on I.

To ease notation, we denote σ̃+i := σ+
ZBτi−1

+1
, where ZBτi−1

counts the number of ZB jumps until

τi−1. Hence σ̃+i indicates which jumps of ZB could be the next jump of Y B after τi−1. Similarly,

define

ξj,i := I[
ζj≤

h(Yτi−1−1,σ−
j

)

h(Yτi−1 ,σ
−
j

)
, τi−1≤σ−j <1

] + I[σ−j ≥1],

and set

τ−i := min{σ−j > τi−1 : ξj,i = 1}.

The i-th jump of Y on I is then defined as

τi := τ+i ∧ τ
−
i .

Since P(τi−1 < 1) > 0, the above construction yields P(τi < 1) > 0. The increment of XB,B and

XB,S on (τi−1 ∧ 1, τi ∧ 1] are defined as

XB,B
t −XB,B

τi−1
= I[σ̃+

i >νi]
I[τ+i ≤t] and XB,S

t −XB,S
τi−1

=
∞∑
j=1

(1− ξj,i) I[τi−1≤σ−j ≤t]
,

for t ∈ (τi−1 ∧ 1, τi ∧ 1].

This completes the construction of XB since XB = XB,B + XB,S and we thus obtain the

decomposition (4.1) on I for t ∈ [0, 1∧ limi→∞ τi]. As mentioned earlier, the construction on Ic can

be performed analogously.

Remark 4.2. A natural question on whether τ := limi→∞ τi ≥ 1 or not arises at this point. Observe

that since ZB and ZS are finite processes, P(τ < 1, I) > 0 implies that there are infinitely many

jumps in XB,B so that limi→∞ Y
B
τi = ∞, in which case we define Y B = ∞ after τ . A similar

explosion on Ic will result in Y becoming −∞. However, we will see in Proposition 4.4 that Y is

P-a.s. a finite process and, thus, τ ≥ 1, P-a.s..
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In order to be able to perform the construction above on (Ω,F , (Ft)t∈[0,1],P), in addition to the

assumptions already imposed on the filtration, we add one more assumption that (Ft)t∈[0,1] is right

continuous and complete such that XB and XS are F-adapted and (τ+i )i≥1, (τ
−
i )i≥1 and (νi)i≥1

are F-stopping times. This completes our assumptions on (Ω,F , (Ft)t∈[0,1],P). We now return to

verify that the process Y just constructed satisfies

i) [Y1 ≥ y1] = I, P-a.s., and

ii) In its own filtration Y = Y B − Y S where Y B and Y S are FY -adapted independent Poisson

processes with intensity β.

We first establish that the F-intensity of Y is of the same form as the G1-intensity of Z computed

in Lemma 4.1.

Lemma 4.3. The F-intensities of Y B and Y S at t ∈ [0, 1) are given by

IIβ
h(Yt− + 1, t)

h(Yt−, t)
+ IIcβ

1− h(Yt− + 1, t)

1− h(Yt−, t)
and IIβ

h(Yt− − 1, t)

h(Yt−, t)
+ IIcβ

1− h(Yt− − 1, t)

1− h(Yt−, t)
.

Proof. We will calculate the F-intensities of Y B and Y S on I. Their intensities on Ic can be

similarly verified. First, observe that the construction of νi implies that on I and [τi−1 < 1]

P
(
νi > t ∨ τi−1 | Fτi−1

)
= P

(
ηi > fi(t ∨ τi−1) | Fτi−1

)
= exp

(
β

∫ t∨τi−1

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
, for t ∈ [0, 1).

(4.5)

We will make repeated use of (4.5) in order to obtain the F-intensity of Y B on I. To this end, note

that [τ+i > t ≥ τi−1, I] = [σ̃+i > t, νi > t, t ≥ τi−1, I]. Therefore we have on [t ≥ τi−1, I] that

P(τ+i > t | Fτi−1) = P(σ̃+i > t | Fτi−1)P(νi > t | Fτi−1)

= P(Zt = Zτi−1 | Fτi−1) exp

(
β

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)

= exp(−β(t− τi−1)) exp

(
β

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
,

(4.6)

where the first line is due to the independence of ZB and νi and the last line follows from the strong

Markov property of ZB and the fact that τi−1 is an F-stopping time.

It is well-known (see, e.g. Proposition 3.1 in [11]) that the F-intensity of Y B on I is given by

P(τ+i ∈ dt | Fτi−1)

P(τ+i > t | Fτi−1)dt
, t ∈ (τi−1, τi].

Utilising (4.3) and (4.6), it follows from direct calculations and the observation that Yt− is constant

in (τi−1, τi] that the above intensity is indeed

β
h(Yt− + 1, t)

h(Yt−, t)
on I for t ∈ (τi−1, τi].

To calculate the intensity of Y S on I and in the time interval (τi−1, τi], we will treat the evolution

of Y S as that of a marked point process with points (σ−j ∨ τi−1)j≥1 and marks (ξj,i)j≥1. Let

σ̃−i := σ−
ZSτi−1

+1
and ξ̃i be the associated mark. Define Gi(dt, 1) = P

(
σ̃−i ∈ dt, ξ̃i = 1 | Fτi−1

)
and
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Hi(dt) = P(σ̃−i ∈ dt | Fτi−1). It then follows from Proposition 3.1 in [11] that the intensity of Y S at

t ∈ (τi−1, τi] is

Gi(dt, 1)

Hi([t,∞])dt
=
EP

[
I[σ̃−i ∈dt]P(ξ̃i = 1 | Fσ̃−i )

∣∣Fτi−1

]
P(σ̃−i > t | Fτi−1)dt

=
h(Yt− − 1, t)

h(Yt−, t)

P(σ̃−i ∈ dt | Fτi−1)

P(σ̃−i > t | Fτi−1)dt

=
h(Yt− − 1, t)

h(Yt−, t)
β,

due to the strong Markov property of ZS . This verifies the intensity of Y S on I. �

We are now ready to prove that our construction as desired.

Proposition 4.4. The process (Yt; t ∈ [0, 1]) as constructed above satisfies the following properties:

i) [Y1 ≥ y1] = I, P-a.s.;

ii) Y B and Y S are independent Poisson processes with intensity β with respect to the natural

filtration (FYt )t∈[0,1] of Y . In particular, Y is finite P-a.s. over [0, 1].

iii) E[XB
1 ] and E[XS

1 ] are finite. Hence the constructed strategy (XB, XS ;FI) is admissible.

Proof. To verify that Y satisfies the desired properties, let us introduce an auxiliary process (`t)t∈[0,1)

via

`t := II
h(0, 0)

h(Yt, t)
+ IIc

1− h(0, 0)

1− h(Yt, t)
, t ∈ [0, 1).

The construction of Y S on I (resp. Y B on Ic) implies that there are only a finite number of jumps

before a fixed time t < 1. Therefore Yt > −∞ on I (resp. Yt <∞ on Ic) for t ∈ [0, 1), which implies

h(Yt, t) > 0 on I (resp. h(Yt, t) < 1 on Ic) for t ∈ [0, 1). As a result, (`t)t∈[0,1) is a well-defined

positive process with `0 = 1. To prove the first statement, we first show that ` is a positive F-local

martingale on [0, 1). To this end, Ito’s formula yields that

d`t = II`t−
[
h(Yt−, t)− h(Yt− + 1, t)

h(Yt− + 1, t)
dMB

t +
h(Yt−, t)− h(Yt− − 1, t)

h(Yt− − 1, t)
dMS

t

]
+IIc`t−

[
h(Yt− + 1, t)− h(Yt−, t)

1− h(Yt− + 1, t)
dMB,c

t +
h(Yt− − 1, t)− h(Yt−, t)

1− h(Yt− − 1, t)
dMS,c

t

]
, t ∈ [0, 1).

Here

MB = IIY B − IIβ
∫ ·
0

h(Yu− + 1, u)

h(Yu−, u)
du, MS = IIY S − IIβ

∫ ·
0

h(Yu− − 1, u)

h(Yu−, u)
du,

MB,c = IIcY B − IIcβ
∫ ·
0

1− h(Yu− + 1, u)

1− h(Yu−, u)
du, MS,c = IIcY S − IIcβ

∫ ·
0

1− h(Yu− − 1, u)

1− h(Yu−, u)
du

are all F-local martingales. Define ζ+n = inf{t ∈ [0, 1] : Yt = n} and ζ−n = inf{t ∈ [0, 1] : Yt = −n}.
Consider the sequence of stopping times (ηn)n≥1, where

ηn :=
(
IIζ−n + IIcζ+n

)
∧ (1− 1/n).

It follows from the definition of h that h(Yt, t) on I (resp. 1− h(Yt, t) on Ic) is bounded away from

zero uniformly in t ∈ [0, ηn]. This implies that `ηn is bounded, hence `ηn is a F-martingale. The

construction of Y S on I (resp. Y B on Ic) yields limn→∞ ηn = 1. Therefore, ` is a positive F-local

martingale, hence also a supermartingale, on [0, 1).
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Define `1 := limt→1 `t, which exists and is finite due to Doob’s supermartingale convergence

theorem. This implies h(Y1−, 1) > 0 on I (resp. 1−h(Y1−, 1) > 0 on Ic). Recall that Y S on I (resp.

Y B on Ic) does not jump at time 1 almost surely. Therefore h(Y1, 1) > 0 on I (resp. 1−h(Y1, 1) > 0

on Ic), which yields Y1 ≥ y1 on I (resp. Y1 < y1 on Ic).

Let us now prove the second statement for Y B. The statement for Y S can be shown similarly.

In view of the F-intensity of Y B calculated in Lemma 4.3, one has that, for each i ≥ 1

Y B
·∧τi∧1 − β

(
II
∫ ·∧τi∧1
0

h(Yu− + 1, u)

h(Yu−, u)
du+ IIc

∫ ·∧τi∧1
0

1− h(Yu− + 1, u)

1− h(Yu−, u)
du

)
is an F-martingale. We will show in the next paragraph that, when stopped at τi ∧ 1, Y B is a

Poisson process in FY by showing that (Y B
t∧τi − β(t ∧ τi))t∈[0,1] is a FY -martingale–recall that τi

is an FY -stopping time. This in turn will imply that Y B is a Poisson process with intensity β on

[0, τ ∧ 1) where τ = limi→∞ τi is the explosion time. Since Poisson process does not explode, this

will further imply Y B
τ∧1 <∞ and, therefore, τ ≥ 1, P-a.s. in view of Remark 4.2.

We proceed by projecting the above martingale into FY to see that

Y B − β
∫ ·
0

[
P(I | FYu )

h(Yu− + 1, u)

h(Yu−, u)
+ P(Ic | FYu )

1− h(Yu− + 1, u)

1− h(Yu−, u)

]
du

is a FY -martingale when stopped at τi ∧ 1. Therefore, it remains to show that, for almost all

t ∈ [0, 1), on [t ≤ τi]

P(I | FYt )
h(Yt− + 1, t)

h(Yt−, t)
+ P(Ic | FYt )

1− h(Yt− + 1, t)

1− h(Yt−, t)
= 1.

In the remaining of the proof, we will show that on [t ≤ τi]

(4.7) P(I | FYt ) = h(Yt, t) and P(Ic | FYt ) = 1− h(Yt, t), for t ∈ [0, 1).

The statement then follows since Yt 6= Yt− only for countably many times.

We have seen that (`u∧τi)u∈[0,t] is a strictly positive F-martingale for each i. Define a probability

measure Qi ∼ P on Ft via dQi/dP|Ft = `τi∧t. It follows from a simple application of Girsanov’s

theorem that (Y B
· ) and (Y S

· ) are Poisson processes when stopped at τi ∧ t and with intensity β

under Qi. Therefore, they are independent from I under Qi. Then, for t < 1 we obtain from Bayes’

formula that

I[u≤τi∧t]P(I | FYu ) = I{u≤τi∧t}
EQi

[
II`−1u | FYu

]
EQi

[
`−1u | FYu

]
= I[u≤τi∧t]

EQi
[
II h(Yu,u)h(0,0) | F

Y
u

]
EQi

[
II h(Yu,u)h(0,0) + IIc 1−h(Yu,u)1−h(0,0) | FYu

]
= I[u≤τi∧t]h(Yu, u),

(4.8)

where the third identity follows from the aforementioned independence of Y and I under Qi along

with the fact that Qi does not change the probability of F0 measurable events, so that Qi(I) =

P(I) = h(0, 0). As a result, (4.7) follows from (4.8) after sending i→∞.

Finally, since Y B and Y S are Poisson processes in FY and they do not jump simultaneously

by their construction, they are independent (see [9, Proposition 5.3]). Since Y B and Y S are in-

dependent Poisson processes, it also follows E[XB
1 ] < ∞. Indeed, since XB

1 IIc = 0, we have
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E[XB
1 ] = E[XB

1 II ] = E[(Y B
1 − ZB1 + XB,S)II ] ≤ E[Y B

1 ] + E[ZB1 ] + E[ZS1 ] < ∞. Similar arguments

also show that E[XS
1 ] <∞. Hence, the constructed strategy (XB, XS ;FI) is admissible. �

5. Existence and convergence of Glosten-Milgrom equilibria

In view of the results of Section 4, we can now show that a Glosten-Milgrom equilibrium exists

for the market model under consideration.

Theorem 5.1. Suppose that (ηi)i≥1 and (ζi)i≥1 are two sequences of independent F-measurable

random variables uniformly distributed over [0, 1] that are independent from each other, Z and ṽ.

If there exists a yδ such that

P(Z1 ≥ yδ) = P(ṽ = 1),

and FI is the right continuous augmentation of (σ(ṽ, Zs, ηi, ζi; s ≤ t, i ≥ 1))t∈[0,1] with the P-null

sets, then there exists a Glosten-Milgrom equilibrium.

Proof. In view of Theorem 3.4, an equilibrium exists if Y satisfies the conditions stated in Theorem

3.4 and the high type (resp. low type) insider never sells (resp. buys). However, the insider can

use the uniform random variables available in her filtration to perform the construction described

in Section 4 so that Y satisfies the desired properties, due to Proposition 4.4, without having to

sell (resp. buy) when high type (resp. low type). �

In the remainder of this section we will analyse what happens when the trade size becomes small

(δ → 0) and the noise trades arrive more frequently (β →∞). A similar convergence has also been

studied by Back and Baruch in [4] who have established that the limiting economy can be described

by a Kyle-Back equilibrium. We would like to mention at this point that Back and Baruch have

proved their convergence results under some extra hypotheses on the convergence of value functions

which may be hard to verify. As we shall see below, we will verify the convergence via a weak

convergence approach and we do not need any extra assumptions in addition to the ones which

have already been assumed. Before performing a weak convergence analysis of Glosten-Milgrom

equilibria, whose existence is justified by Theorem 5.1, let’s first briefly describe what we mean by

a Kyle-Back equilibrium.

The continuous-time model of Kyle [14], which was later extended by Back [2], studies the

equilibrium pricing of a risky asset whose liquidation value at time 1 is given by ṽ. In this model,

the cumulative noise trades is modelled by a Brownian motion, denoted with W , independent of

ṽ. The risk neutral insider knows the true liquidation value from the beginning and competition

among the risk neutral market makers forces them to quote prices as conditional expectations of

ṽ based on their information. The price is again set in a Markovian manner, i.e. there exists a

function p0 : R 7→ [0, 1] so that the market price is given by p0(Yt, t) at time t where Y is, as before,

the cumulative demand at time t.

Let Ω0 = D([0, 1],R) be the space of R-valued càdlàg functions on [0, 1] with the coordinate

process Y 0 and P0 be the Wiener measure. In view of the results of [2] and [8], the equilibrium

price of the risky asset in this economy is given by

(5.1) p0(y, t) := P0
y

[
Y 0
1−t ≥ y0

]
,
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where

y0 := Φ−1(1− P(ṽ = 1)),

and Φ(·) =
∫ ·
−∞

1√
2π
e−x

2/2dx. The equilibrium demand satisfies the SDE

(5.2) Y = W + I[ṽ=1]

∫ ·
0
∂y log p0(Ys, s) ds+ I[ṽ=0]

∫ ·
0
∂y log(1− p0(Ys, s)) ds.

Remark 5.2. Strictly speaking, the equilibrium price (5.1) and demand (5.2) in this economy do

not follow directly from the results of [2] and [8] since in their framework ṽ has a continuous

distribution. However, if one follows the arguments for the description of equilibrium given in [8],

it follows that in equilibrium the insider trades so that ṽ = p0(Y1, 1) and Y is a Brownian motion

in its own filtration. This immediately gives (5.1) as the equilibrium price, since the price follows

a martingale with respect to the filtration of the market maker, which is the same as the filtration

generated by Y . Moreover, the same characterisation gives that the SDE satisfied by Y with respect

to the filtration of the insider is the same as the SDE satisfied by a standard Brownian motion when

its natural filtration is initially enlarged with the random variable corresponding to its time 1 value

being larger than y0. The standard arguments contained in, e.g. Section 1.3 of [15], gives (5.2).

In view of the well-known results on the weak convergence of a sequence of difference of Poisson

processes to Brownian motion (see, e.g., Theorem 5.4 in Chapter 6 of [10]), it is easy to see that

the cumulative demand of noise traders in a Kyle-Back model can be considered as the weak limit

of noise demands in a sequence of Glosten-Milgrom models. Based on this observation it is natural

to ask whether the Kyle-Back equilibrium is the weak limit of Glosten-Milgrom equilibria.

We now return to give an affirmative answer to this question. More precisely, we consider

the convergence of Glosten-Milgrom equilibria to the Kyle-Back equilibrium described by (5.1) and

(5.2). In what follows, the superscript δ ≥ 0 indicates the trade size associated to different processes,

probabilities, random variables, and functions.

Let (Ωδ,Fδ, (Fδt )t∈[0,1],Pδ)δ≥0 be a sequence of probability spaces on which the Glosten-Milgrom

models of different order sizes are defined. When δ > 0, Ωδ = D([0, 1], δZ) is the space of δZ-valued

càdlàg functions on [0, 1] with the coordinate process Y δ, (Fδt )t∈[0,1] is the minimal right continuous

and complete filtration generated by Y δ, and Pδ for δ > 0 is the probability measure under which

Y δ is the difference of two independent Poisson processes with the same intensity βδ. P0 is the

Wiener measure as mentioned in the earlier paragraphs.

To construct a sequence of pricing rules in Glosten-Milgrom equilibria which converges to the

Kyle-Back equilibrium, set

yδ := inf{y ∈ δZ, Pδ(Y δ
1 ≤ y) ≥ 1− P(ṽ = 1)}, for δ > 0,

and denote pyδ , defined in (3.4), by pδ for simplicity. To ensure the existence of Glosten-Milgrom

equilibria with pricing rules (pδ)δ>0, we introduce a sequence of Bernoulli random variables (ṽδ)δ>0

whose distribution is

(5.3) P(ṽδ = 1) = Pδ(Y δ
1 ≥ yδ).

These (ṽδ)δ>0 will be the liquidation values of the risky asset in the sequence of Glosten-Milgrom

models which converges to the Kyle-Back model.
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Theorem 5.3. For any ṽ satisfying P(ṽ = 1) ∈ (0, 1), there exists a sequence of admissible strategies

(XB,δ, XS,δ)δ>0 such that, for each δ > 0, (pδ, XB,δ, XS,δ) is a Glosten-Milgrom equilibrium whose

fundamental value of the risky asset is ṽδ.

When the intensity of Poisson process is given by βδ = (2δ2)−1 in the Glosten-Milgrom model,

as δ → 0, the sequence of Glosten-Milgrom equilibria converge to the Kyle-Back equilibrium in the

following sense:

i) The bid and ask prices in these Glosten-Milgrom equilibria converge to the price in the

Kyle-Back equilibrium. That is, limδ↓0 a
δ(y, t) = limδ↓0 b

δ(y, t) = limδ↓0 p
δ(y, t) = p0(y, t)

for (y, t) ∈ R × [0, 1). Moreover, the corresponding market depths in the Glosten-Milgrom

equilibria converges to the market depth in the Kyle-Back equilibrium:

lim
δ↓0

1

δ

(
aδ(y, t)− pδ(y, t)

)
= lim

δ↓0

1

δ

(
pδ(y, t)− bδ(y, t)

)
= ∂yp

0(y, t), for (y, t) ∈ R× [0, 1).

ii) Let Y 0,H and Y 0,L be the solutions to the following two SDEs, respectively,

dYt =
∂yp

0(Yt, t)

p0(Yt, t)
dt+ dWt and dYt = − ∂yp

0(Yt, t)

1− p0(Yt, t)
dt+ dWt, t ∈ [0, 1),

where W is a Brownian motion under (Ω,F0, (F0
t )t∈[0,1],P0). Define

B0
· =

∫ ·
0

∂yp
0(Y 0,H

t , t)

p0(Y 0,H
t , t)

dt and S0
· =

∫ ·
0

∂yp
0(Y 0,L

t , t)

1− p0(Y 0,L
t , t)

dt.

Then,

• When ṽ = 1, XB,δ L→ B0;

• When ṽ = 0, XS,δ L→ S0,

where
L→ represents the convergence in law.

iii) (p0, Y 0) satisfies (5.1) and (5.2) where

Y 0 = I[v=1]Y
0,H + I[v=0]Y

0,L.

As such, p0 and Y 0 are the equilibrium price and demand in the Kyle-Back equilibrium,

respectively.

The above theorem tells us that Kyle-Back model with Bernoulli distributed ṽ can be approxi-

mated by a sequence of Glosten-Milgrom models whose risky asset fundamental price converges to

ṽ in distribution. Since there is no bid-ask spread in the Kyle-Back equilibrium, the above conver-

gence results in particular tell us that the bid-ask spread gets smaller and vanish in the limit as the

frequency of noise trades increase. Moreover the rate the convergence is O(δ).

To show the desired convergence results contained in the theorem above, let us first prove the

convergence in law of the cumulative order processes as seen in the filtration, say Fδ, with respect

to which Xδ and Zδ are adapted and ṽ ∈ Fδ0. Note that this filtration is smaller than the filtration

that is assumed to be contained in the insider’s filtration in Theorem 5.1, however, it contains

all the relevant processes and random variables describing insider’s strategy and the informational

advantage. Moreover, it will be enough to limit ourselves to these filtrations in order to prove

Theorem 5.3. Recall from Section 4 that, for each δ > 0, the distribution of the cumulative order

process in Fδ is the same as the distribution of Y δ conditioned on Y δ
1 ≥ yδ or Y δ

1 < yδ. Here Y δ/δ

is the difference of two Poisson processes in its own filtration.
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Lemma 5.4. Let βδ = (2δ2)−1. We have

Law(Y δ |Y δ
1 ≥ yδ)⇒ Law(Y 0,H) and Law(Y δ |Y δ

1 < yδ)⇒ Law(Y 0,L), as δ → 0,

where Y 0,H and Y 0,L are defined in Theorem 5.3 ii) and ⇒ represents the weak convergence of

probability measures.

Proof. The first convergence will be proved. The second convergence can be shown similarly. Since

βδ = (2δ2)−1, it follows from [10, Theorem 5.4 in Chapter 6] that Pδ ⇒ P0 and, in particular,

Law(Y δ
1 ) ⇒ Law(Y 0

1 ). Observe that yδ is the (1 − P(ṽ = 1))th quantile of the distribution for Y δ
1

and the distribution of Y 0
1 is continuous. It then follows

(5.4) lim
δ↓0

yδ = y0.

Meanwhile the conditional distribution Law(Y δ |Y δ
1 ≥ yδ) is defined via

(5.5) Pδ,H(A) :=
Pδ(A, Y δ

1 ≥ yδ)
Pδ(Y δ

1 ≥ yδ)
, for A ∈ Fδ.

We will show Pδ,H ⇒ P0,H as δ ↓ 0. This statement will follow once we show the finite dimensional

distributions of Y δ converge weakly to the finite dimensional distributions of Y 0, and (Pδ,H)δ>0 is

tight (see e.g. [12, VI.3.20]). We will prove both of these conditions using the already observed

convergence of Pδ to P0.

To this end, we will first establish the the convergence of Pδ(Y δ
1 ≥ yδ) to P0(Y 0

1 ≥ y0). Indeed,

due to (5.4), there exists a sufficiently small δε such that yδ ≥ y0 − ε for δ ≤ δε. Thus,

Pδ(Y δ
1 ≥ yδ) ≤ Pδ(Y δ

1 ≥ y0 − ε)→ P0(Y 0
1 ≥ y0 − ε), as δ ↓ 0,

where the convergence follows from Law(Y δ
1 )⇒ Law(Y 0

1 ) and the fact that the distribution of Y 0
1

is continuous at y0 − ε. Then the previous inequality yields lim supδ↓0 Pδ(Y δ
1 ≥ yδ) ≤ P0(Y 0

1 ≥ y0)

since the choice of ε is arbitrary. Combining the previous inequality with lim infδ↓0 Pδ(Y δ
1 ≥ yδ) ≥

P0(Y 0
1 ≥ y0), which can be similarly proved, we obtain

(5.6) lim
δ↓0

Pδ(Y δ
1 ≥ yδ) = P0(Y 0

1 ≥ y0) = P(ṽ = 1) > 0.

In order to prove the convergence of the finite dimensional distributions of Y δ, we are first going

to show

lim
δ↓0

EPδ,H
[
f(Y δ

t1 , · · · , Y
δ
tn)
]

= EP0,H [
f(Y 0

t1 , · · · , Y
0
tn)
]
,

for arbitrary bounded continuous function f : Rn → R and 0 ≤ t1 ≤ · · · < tn ≤ 1. However, similar

arguments as those employed in the last paragraph yield

lim
δ↓0

EPδ
[
f(Y δ

t1 , · · · , Y
δ
tn) I[Y δ1 ≥yδ]

]
= EP0

[
f(Y 0

t1 , · · · , Y
0
tn) I[Y 0

1 ≥δ0]

]
.

The claim then follows from combining the previous convergence with (5.5) and (5.6).

To verify the tightness of (Pδ,H)δ>0, it is equivalent to prove the following two conditions (see

[12, Theorem VI.3.21]):

(1) for any ε > 0, there exist δε and K ∈ R with

Pδ,H
(

sup
0≤t≤1

|Y δ
t | > K

)
≤ ε, for all δ ≤ δε;
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(2) for any ε > 0 and η > 0, there exists δε,η and θε,η such that

Pδ,H
(
w′1(Y

δ, θε,η) ≥ η
)
≤ ε, for all δ ≤ δε,η.

We refer reader to [12, Chapter VI, Section 1a] for the definition of w′1.

Observe that, since Pδ ⇒ P0, (Pδ)δ>0 is tight which implies that the two conditions above hold when

Pδ,H is replaced by Pδ. Moreover, if A stands for the event [sup0≤t≤1 |Y δ
t | > K] or [w′1(Y

δ, θε,η) ≥ η],

(5.5) along with (5.6) yields

Pδ,H(A) =
Pδ(A, Y δ

1 ≥ yδ)
Pδ(Y δ

1 ≥ yδ)
≤ Pδ(A)

Pδ(Y δ
1 ≥ yδ)

≤ ε

Pδ(Y δ
1 ≥ yδ)

≤ 2ε

P0(Y 0
1 ≥ y0)

for sufficiently small δ,

which confirms the aforementioned conditions for Pδ,H .

Finally, it remains to verify that P0,H is the law of Y 0,H . To this end, note that P0,H is the law

of a Brownian motion conditioned on its time 1 value being larger than y0. A standard calculation

using the well-known h-transform technique gives the following semimartingale decomposition of

Y 0 under P0,H :

Y 0
t =

∫ t

0

∂yp
0(Y 0

u , u)

p0(Y 0
u , u)

du+ W̃t, t ∈ [0, 1),

where W̃ is a P0,H -Brownian motion. Since ∂yp
0/p0 is locally Lipschitz, the previous SDE has a

unique solution in law, therefore P0,H must be the law of Y 0,H . �

We are now ready to prove the convergence results.

Proof of Theorem 5.3. The existence of Glosten-Milgrom equilibria follows from (5.3) and Theorem

5.1 directly. We will prove the statements on convergence in what follows.

i) First note that limδ↓0 p
δ(y, t) = p0(y, t) follows from the argument which leads to (5.6).

Moreover, this immediately implies the convergence of bid and ask prices as given in i) since

aδ(y, t) = pδ(y + δ, t) and bδ(y, t) = pδ(y − δ, t). To verify the convergence of the market

depth, observe that

aδ(y, t)− pδ(y, t) = Pδy+δ[Y δ
1−t ≥ yδ]− Pδy[Y δ

1−t ≥ yδ] = Pδ0[Y δ
1−t = yδ − y − δ]

= P
[
Y 1−t =

yδ − y − δ
δ

]
,

where Y 1−t is the difference of two independent Poisson random variables with the common

parameter (1− t)β = (1− t)(2δ2)−1 under P. Recall that the difference of two independent

Poissons has the so-called Skellam distribution (see [16]). Thus, P(Y 1−t = k) = e−2µI|k|(2µ),

where I|k|(·) is the modified Bessel function of the second kind and µ = (1− t)(2δ2)−1. As

a result

1

δ
(aδ(y, t)− pδ(y, t)) =

1

δ
P
[
Y 1−t =

yδ − y − δ
δ

]
=

1

δ
exp

(
−1− t

δ2

)
I∣∣∣ yδ−y−δδ

∣∣∣
(

1− t
δ2

)
→ 1√

2π(1− t)
exp

(
−(y0 − y)2

2(1− t)

)
, as δ ↓ 0.

Here the convergence follows from (5.4) and [1, Theorem 2], which states that the density of

the Skellam distribution converges to the density of the normal after appropriate rescaling.
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Similar argument shows that (pδ(y, t) − bδ(y, t))/δ converges to the same function. This

establishes the convergence of market depths given in i) since ∂yp
0(y, t) is exactly the normal

density above.

ii) Recall from Section 4 and the discussion preceding Lemma 5.4 that, for each δ > 0, the

distribution of the cumulative order process in Fδ on the set [ṽ = 1] (resp. [ṽ = 0]) is the

same as the distribution of Y δ conditioned on Y δ
1 ≥ yδ (resp. Y δ

1 < yδ). However, Lemma

5.4 has already shown that Law(Y δ |Y δ
1 ≥ yδ)⇒ Law(Y 0,H), where Y 0,H = B0 +W . Since

Law(Zδ)⇒ Law(W ) as δ ↓ 0, it follows from [12, Proposition VI.1.23] that Law(XB,δ)⇒
Law(B0) as δ ↓ 0. The convergence of Law(XS,δ) can be similarly proved.

iii) This now follows from Remark 5.2.

�
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