

SOLUTIONS TO PROBLEM SET 1

1. Let $f : \mathbb{R} \times \mathbb{R}_+ \rightarrow \mathbb{R}$ be any bounded measurable function. In order to show (X, S) is Markovian, it suffices to show

$$E[f(X_u, S_u) | \mathcal{F}_t] = E[f(X_u, S_u) | X_t, S_t], \quad \text{for any } u \geq t.$$

To this end, note that $X_u = X_t + (X_u - X_t)$ and $S_u = \max(S_t, \sup_{t \leq s \leq u} X_s)$. Moreover, $X_u - X_t$ and $\sup_{t \leq s \leq u} X_s$ are \mathcal{F}'_t measurable. Then

$$\begin{aligned} E[f(X_u, S_u) | \mathcal{F}_t] &= E \left[f(X_t + (X_u - X_t), \max(S_t, \sup_{t \leq s \leq u} X_s) | \mathcal{F}_t \right] \\ &= E \left[f(X_t + (X_u - X_t), \max(S_t, \sup_{t \leq s \leq u} X_s) | X_t, S_t \right]. \end{aligned}$$

Here, given S_t , $f(X_t + (X_u - X_t), \max(S_t, \sup_{t \leq s \leq u} X_s))$ is \mathcal{F}'_t measurable. Hence the second identity follows from Proposition 1.1.1 i) in the note and the Markov property of X . Therefore, (X, S) is Markovian.

As for the transition density, we need to find $P(X_u \leq a, S_u \geq b | X_t = x, S_t = y)$ with $b \geq y, a \leq b$, and $x \leq y$. Let us first consider $b > y$ case first. To this end,

$$\begin{aligned} P(X_u \leq a, S_u \geq b | X_t = x, S_t = y) &= P(X_u \leq a, \sup_{0 \leq s \leq u} X_s \geq b | X_t = x, S_t = y) \\ &= P(X_u \leq a, \sup_{t \leq s \leq u} X_s \geq b | X_t = x) \\ &= P^x(X_{u-t} \leq a, T_b \leq u-t) \\ &= P^0(X_{u-t} \leq a-x, T_{b-x} \leq u-t) \\ &= P^0(X_{u-t} \geq 2b-a-x) \\ &= \frac{1}{\sqrt{2\pi(u-t)}} \int_{2b-a-x}^{+\infty} e^{-\frac{z^2}{2(u-t)}} dz, \end{aligned}$$

where P^x is the probability measure generated by X with $X_0 = x$, $T_y = \inf\{t \geq 0; X_t = y\}$, the second equality is due to the Markov property of X since $\sup_{t \leq s \leq u} X_s$ is \mathcal{F}'_t measurable, and the second last equality follows from the reflection principle. Then differentiation yields

$$p_{t,u}(x, y; da, db) = \frac{2(2b-a-x)}{\sqrt{2\pi(u-t)^3}} \exp\left(-\frac{(2b-a-x)^2}{2(u-t)}\right) da db.$$

When $b = y$, we have

$$\begin{aligned}
P(X_u \leq a, S_u = y \mid X_t = x, S_t = y) &= P(X_u \leq a, \sup_{t \leq s \leq u} X_s \leq y \mid X_t = x) \\
&= P^x(X_{u-t} \leq a, T_y \geq u-t) \\
&= P^0(X_{u-t} \leq a-x) - P^0(X_{u-t} \leq a-x, T_{y-x} \leq u-t) \\
&= P^0(X_{u-t} \leq a-x) - P^0(X_{u-t} \geq 2y-a-x) \\
&= \frac{1}{\sqrt{2\pi(u-t)}} \int_{2y-a-x}^{a-x} e^{-\frac{z^2}{2(u-t)}} dz.
\end{aligned}$$

Taking differentiation with respect to a gives the transition density

$$p_{t,u}(x, y; da, y) = \frac{1}{\sqrt{2\pi(u-t)}} \left(e^{-\frac{(a-x)^2}{2(u-t)}} - e^{-\frac{(2y-a-x)^2}{2(u-t)}} \right) da = \epsilon_{\{y\}}(b) q_t(y-a, y-x) da,$$

where ϵ is the point mass and q is the density of Brownian motion killed at 0 (see Example 1.4 in the note). In this case, $y - X$ becomes a Brownian motion killed at 0.

2. The proof is similar to that in 1. noticing that $A_u = A_t + \int_t^u f(X_s) ds$ where $\int_t^u f(X_s) ds$ is \mathcal{F}_t' measurable.
3. Note that $X_u = x + N_u = x + N_t + (N_u - N_t) = X_t + (N_u - N_t)$ where $(N_u - N_t)$ is independent of \mathcal{F}_t . Then for any bounded measurable function f ,

$$E[f(X_u) \mid \mathcal{F}_t] = E[f(X_t + (N_u - N_t)) \mid \mathcal{F}_t] = g(X_t) = E[f(X_t + (N_u - N_t)) \mid X_t],$$

where $g(x) = E[f(x + N_u - N_t)]$ and the second identity follows from the independence between $N_u - N_t$ and \mathcal{F}_t . Hence (X_t, \mathcal{F}_t) is Markovian.

Since N_t has Poisson distribution with parameter λt , the transition probabilities then read

$$p_t(x, y) = \begin{cases} e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!}, & \text{if } y \geq x, \\ 0, & \text{otherwise} \end{cases}.$$

4. The Chapman-Kolmogorov equation in this case reads

$$P_{s,u}(x, A) = \int_E P_{s,t}(x, dy) P_{t,u}(y, A),$$

where $P_{s,t}(x, dy) = p_{t-s}(x, y) m(dy)$. Then the right side of the previous equation reads

$$\begin{aligned}
\int_E P_{s,t}(x, dy) P_{t,u}(y, A) &= \int_E \int_A p_{t-s}(x, y) p_{u-t}(y, z) m(dz) m(dy) \\
&= \int_A \int_E p_{t-s}(x, y) p_{u-t}(y, z) m(dy) m(dz) \\
&= \int_A p_{u-s}(x, z) m(dz) = P_{s,u}(x, A),
\end{aligned}$$

where the second identity follows from the Fubini theorem, the third identity holds if and only if

$$\int_E p_s(x, y) p_t(y, z) m(dy) = p_{s+t}(x, z).$$

5. A process X is Gaussian if and only if for any finite set of time indices t_1, \dots, t_k , $(X_{t_1}, \dots, X_{t_k})$ is a multivariate Gaussian random variable. For $s > t$, from $E^x X_t = e^{-t/2}x$ and $Cov(X_s, X_t) = e^{-(s+t)/2}(e^{s+t} - 1)$, we have

$$E^{X_t} X_s = e^{-(s-t)/2} X_t, \quad Cov(X_s, X_u | X_t) = 0, \quad \forall s \leq t \leq u \quad \text{and} \quad Var(X_s | X_t) = 1 - e^{-(s-t)}.$$

Since the distribution of a Gaussian random variable is determined by its mean and covariance matrix, then the previous calculations yield that the conditional law of X_s only depends on X_t . Hence X is Markovian.

The transition density then reads

$$p_t(x, y) = \frac{1}{\sqrt{2\pi(1 - e^{-t})}} \exp\left(-\frac{(y - e^{-t/2}x)^2}{2\pi(1 - e^{-t})}\right).$$