
SOLUTIONS TO PROBLEM SET 2

1. Since Gt ⊂ Ft, it follows from the tower property that, for any bounded measurable function

f ,

E[f(Xs) | Gt] = E [E[f(Xs) | Ft] | Gt] = E [E[f(Xs) |Xt] | Gt] = E[f(Xs) |Xt],

where the second identity follows from the Markov property of (Xt,Ft), the third identity

holds since Xt is Gt-measurable.

2. It follows from the Markov property of (Xt,Ft) that

Mt = Pt0−tf(Xt) = EXt [f(Xt0)] = Ex[f(Xt0) | Ft].

Hence M is a P x-martingale.

3. For any s < t,

P x(σx > t) = P x(σx > s)P (σx > t |σx > s) = P x(σx > s)P (σx > t |Xs = x)

= P x(σx > s)P x(σx > t− s),

where Xs = x when σx > s and the Markov property of (Xt,Ft) are used to obtain the

second identity. The previous identity yields that f(t) := P x(σx > t) satisfies the following

equation

f(t) = f(s)f(t− s), for any s < t,

impying f is an exponentail function. Thus,

P x(σx > t) = e−αt, for some α ∈ [0,∞].

When a = 0, X stays at x forever. Such point x is an absorbing point. When a = ∞, X

leaves x immediately. Such point X is then regular.

4. From the definition of resolvent

(1) pUpf(x) =

∫ ∞
0

pe−ptPtf(x)dt = Ex
[∫ ∞

0
pe−ptf(Xt) dt

]
= Ex[f(Xep)],

where the second identity follows from Fubini’s theorem. On the other hand,

pqUpU qf(x) = pUpEx[f(Xeq)] = Ex
[
EXep [f(Xeq)]

]
= Ex

[
Ex
[
f(Xeq ◦ θep) | Fep

]]
= Ex[f(Xeq+ep)],

where both second and third identities utilise (1).

Let us now prove the resolvent equation

(2) Upf(x)− U qf(x) = (q − p)UpU qf(x).
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First,

UpU qf(x) =

∫ ∞
0

e−ptPt

(∫ ∞
0

e−psPsf ds

)
(x) dt =

∫ ∞
0

e−pt
∫ ∞
0

PtPsf(x) dsdt

=

∫ ∞
0

e−pt
∫ ∞
0

e−psPs+tf(x) dsdt.

On the other hand,

Upf(x)− U qf(x) =

∫ ∞
0

(e−pt − e−qt)Ptf(x) dt =

∫ ∞
0

e−pt(1− e−(q−p)t)Ptf(x) dt

= (q − p)
∫ ∞
0

e−pt
1− e−(q−p)t

q − p
Ptf(x) dt = (q − p)

∫ ∞
0

e−pt
∫ t

0
e−(q−p)sdsPtf(s)dt

= (q − p)
∫ ∞
0

ds e−(q−p)s
∫ ∞
s

dt e−ptPtf(x) = (q − p)
∫ ∞
0

ds e−qs
∫ ∞
s

dt e−p(t−s)Ptf(x)

= (q − p)
∫ ∞
0

ds e−qs
∫ ∞
0

dv e−pvPv+sf(x),

where we change the order of integrals to obtain the fifth identity and introduce new variable

v = t− s to get the last identity. Therefore, the resolvent equation (2) is confirmed.

5. We prove this for Brownian motion, the same technique works for Poisson process as well.

Recall that the transition density of Brownian motion is homogeneous in space and time.

Let p(t, x− y) be this density. Thus, for f ∈ C and x 6= ∆

Ptf(x) =

∫
R
f(y)p(t, y − x)dy =

∫
R
f(y + x)p(t, y)dy,

and Ptf(∆) = f(∆). Since f is bounded, the desired continuity property of Ptf is a direct

consequence of bounded convergence theorem. ‖Ptf − f‖ → 0 follows from the fact that

the density p(t, y) converging to the delta function at 0 weakly as t→ 0.

6. Let T be an exponential random variable with parameter 1. Consider

Xt = (t− T )+, t ∈ R+.

This X is a Markov process. Its semi-group Pt can be computed as follows:

Ptf(x) = E[f(Xs+t) |Xs = x].

If x > 0, then Xs+t = x + t. If x = 0, X has not left 0 yet, hence T > s. Because of the

memoryless property of T , we get

Ptf(x) =

{
f(x+ t) if x > 0,

e−tf(0) +
∫ t
0 du e

−uf(t− u) if x = 0.

Therefore X is a Markov process. But X is not strong Markov. Then XT = X0 = 0. If X

were strong Markov, the future after T would have the same law as the future at t = 0. But

this is not the case, future at t = 0 starts with an exponential delay, whereas the future at

T is that X starts immediate motion after T .

Another example:
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Let (Bt, t ≥ 0) be a Brownian motion not necessarily starting from 0. Consider

Xt = Bt I{B0 6=0} =

{
Bt, if B0 6= 0

0, if B0 = 0

Its transition density is

pt(x, dy) =

 1√
2πt
e−

(y−x)2
2t dy, if x 6= 0

δ0dy, if x = 0

The process X is a Markov process because for any Borel set B,

E[1B(Xt+s) | Fs]

= E[1B(Xt+s) · 1B0 6=0 | Fs] + E[1B(Xt+s) · 1B0=0 | Fs]

= 1B0 6=0 ·
∫
B

1√
2πt

e
−Xs−y

2
√
2t dy + 1B0=0 · 1B(0)

= 1X0 6=0 ·
∫
B

1√
2πt

e−
(Xs−y)2

2t dy + 1B0 6=0,Xs=0 ·
∫
B

1√
2πt

e−
(Xs−y)2

2t dy + (1Xs=0 − 1B0 6=0,Xs=0) · 1B(0)

= 1Xs 6=0 ·
∫
B

1√
2πt

e−
(Xs−y)2

2t dy + 1Xs=0 · 1B(Xs) + 1B0 6=0,Xs=0 ·
(∫

B

1√
2πt

e−
(Xs−y)2

2t dy − 1B(0)

)
= E[1B(Xs)].

Here the third identity uses {B0 6= 0} = {B0 6= 0, X0 6= 0} ∪ {X0 = 0, B0 6= 0} = {X0 6=
0} ∪ {X0 = 0, B0 6= 0}, {Xs = 0} = {B0 6= 0, Xs = 0} ∪ {B0 = 0, Xs = 0} = {B0 6= 0, Xs =

0} ∪ {B0 = 0}; the fifth identity follows from 1B0 6=0,Xs=0 = 0. Therefore X is a Markov

process.

However, X is not strong Markov. Indeed, consider τ = inf{t > 0, Xt = 0}. Then for

any x > 0, since Px(X1 = 0) = 0,

0 ≤ Px(τ ≤ 1) = Px(X1 6= 0, τ ≤ 1).

However, if X were a strong Markov process,

Px(X1 6= 0, τ ≤ 1) = PXτ (X1 6= 0) = 0,

which is a contradiction.

7. We only need to verify Chapman-Kolmogorov equation for the first part, which follows from

Fubini’s theorem.

Now suppose X is a Feller process with such transition function. For any f ∈ C and t,

Ex[f(Xt −X0)] = Ex[f(Xt − x)] =

∫
Rd
f(x+ y − x)µt(dy) =

∫
Rd
f(y)µt(dy) = µt(f).

Hence the distribution of Xt−X0 does not depend on X0, which implies X has independent

increments. Therefore, by the Markov property, for s < t,

Ev [f(Xt −Xs) | Fs] = EXs [f(Xt −Xs)] = EXs [f(Xt−s −X0)] = µt−s(f),
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where the second identity uses the identity four lines above. Hence X has stationary incre-

ments.

On the other hand, if X has independent stationary increments, for any A ∈ F ,

µt+s(A) = P (Xt+s −X0 ∈ A) = P (Xt+s −Xt +Xt −X0) ∈ A) = µs ∗ µt(A).

To find the semigroup, note that

Ptf(x) = Ex[f(Xt −X0 + x)] =

∫
Rd
f(x+ y)µt(dx),

using the distribution of Xt −X0 defined above.

8. Since the Brownian will reach any level a in a finite time, XTa = a. For b > a, the strong

Markov property yields that

P (Tb − Ta ∈ dt | FTa) = PXTa (Tb − Ta ∈ dt) = P a(Tb − Ta ∈ dt) = P 0(Tb−a ∈ dt).

Therefore, the distribution of Tb−Ta is independent of a and only depends on b− a. Hence

(Ta)a>0 has independent and stationary increments.

9. This follows from Blumental 0-1 Law since

[TA = 0] = ∩∞n=1[TA <
1

n
] ∈ F̃0.

10. When a ∈ (0,∞), we have P x(σx < ∞) = 1. Observe that on [Xσx = x], σx ◦ θσx = 0. It

then follows from the strong Markov property that

P x[σx <∞, Xσx = x] = P x[σ <∞, Xσx = x, σx ◦ θσx = 0]

= Ex
[
1[σx<∞,Xσx=x]PXσx [σx = 0]

]
= P x[σx = 0]P x[σx <∞, Xσx = x].

Therefore, if P x[Xσx = x] > 0, we must have P x[σx = 0] = 1, which contradicts with

P x[σx > 0] = 1.


