SOLUTIONS TO PROBLEM SET 3

The following treatment follows from Chapter 23 of “Stochastic Processes” by Richard Bass.
L. Let gn = n(f — Py f). Since f is excessive, i.e. f > P f for any ¢t > 0, then g, > 0. We

have ,
00 00 1/n
Ugn:n/ Psfds—n/ PS+1/nfds:n/ P, fds.
0 0 0

Since f is excessive, the right side of the previous identity is less than f for each n. Recall
that X is Feller, hence limg o Psf = f. Therefore lim,, o n fol/n P,fds=f.
2. Let us first understand the set of time 7;, = {k27" : 0 < k < n2"}. For each n, the time
interval [0, n] is divided into n2" sub-intervals. Then T;, contains all time on grid points.
Let us now prove g, is increasing. Observe that g,(z) > Pogn—1(x) = E¥[gn—1(X0)] =
gn—1(x). Then g is increasing.
Now define H(x) := lim,, 00 gn(x). Since the limit of an increasing sequence of continuous
functions is lower semi-continuous!, it suffices to show each g, is continuous function. When
n =1, g1(z) = maxycq,1/2,1} Prg(z). Since X is Feller, P,g(x) is then continuous, and the
maximum of finite continuous functions is continuous. Therefore g; is continuous. The rest
proof follows from induction in n.
3. Let us first fix m and take ¢t € T;,,. Then for n > m,

H(-T) > gn(x) > Ptgnfl(x) = E$gnfl(Xt)-
Sending n 1 oo and using the monotone convergence theorem, we obtain
H(z) > E*H(X;) for te&T,.

Moreover the previous inequality also holds when ¢ € U,,T,,,. Now for an arbitrary ¢, there

exists a sequence U,, T}, O tx — t. Then Fatou’s lemma yields

H(z) > liminf E*H (X, ) > Ex[lign inf H(Xy,)] > E°H(Xy),
—00

k—oo
where the last inequality utilises lim infy_, H(Xy, ) > H(X¢) since H is lower semi-continuous
from Problem 2.
It then remains to show limy o P,H(z) = H(x). For a € R, let E, = {y : H(y) > a},
which is an open set. If a < H(x), then

P,H(x)=E*H(X;) > aP*(X, € E,) >a as t|0.

Therefore liminf; g P.H (z) > a for any a < H(x). This implies that
liminf P,H (z) > H(x).
1r1151u1)n VH (z) > H(x)

IThe function f is lower semi-continuous if liminf, -, f(x) > f(zo) for any zo € R.
1
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On the other hand, we have already show H(z) > E*H(Xy), hence H(x) > lim sup; o P H ().
Therefore we confirmed limy g P,H () = H(x). Thus H is excessive.

We have shown that H is excessive and H dominates g by its construction. Therefore H
is an excessive majorant of g. Let us show H is the least one. Take an arbitrary excessive
function F such that FF > g. If F > g¢,_1, then F(z) > P,F(x) > Pign—1(x) for every
t € T, hence F(z) > gn(z). By an induction argument, F(x) > g,(z) for all n, hence
F(z) > H(x). Therefore H is the least excessive majorant of g.

. Let G be the least excessive majorant of g. We are going to show that G is the value of the

optimal stopping problem, and one optimal stopping time is the first time that process X
hits the set {x : g(x) = G(x)}.

In order to prove this result, let us prepare the following lemma:

Lemma 1. (a) If f is excessive, T is a finite stopping time, and h(x) = E*f(Xr), then h
1S excessive.
(b) If f is excessive and T is a finite stopping time, then f(z) > E* f(X7).

(c) If f is excessive, then f(X}) is a supermartingale.
Proof. (a) First suppose f = Ug for some nonnegative g. Then

h(z) = E*Ug(X7) = E*EXT /0 h g(X)ds

57 [ X ds =B [ g(x.)ds
0 T

by the strong Markov property and a change of variables. The same argument shows that

o0 o0

o) ds =B [~ g(X.)ds

Pih(z) = E*h(X;) = E*EXt /
T+t

T
This is less than E* [° g(X,) ds = h(x) and increases up to h(z) as t | 0.

Now let f be excessive but not necessarily of the form Ug. In the paragraph above,
replace g by g, in Problem 1 to conclude

Pih(xz) = lim Ex/ gn(Xs)ds < lim EI/ gn(Xs) ds = h(x).

nreo T+t oo T
That P,h increases up to h is proved similarly.
(b) When T is a real number, this has been proved in Proposition 2.1.2 in the lecture
note. Let us also prove it here. As in the proof of (1), it suffices to consider the case where
f = Ug and then take limits. It follows from (1) that

E*Ug(Xr) = E /
T

o0

g(X,)ds < B /0 " g(X.) ds = Ug(a).

(c¢) This can be proved using Proposition 2.1.3 in the lecture note. We also give a direct

argument here. By the Markov property,

Ex[f(Xt) |ft] = wa(ths) = Ptfsf(Xs) < f(Xs)
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Let us now come back to our optimal stopping problem. The proof of Problem 4 is split
into the following three steps.
Step 1. Let D, = {z : g(z) < G(x) — €} and 7. = inf{t : X; ¢ D.}. Define
H. = E*|G(X.,)].
It then follows from Lemma 1 (a) that H, is excessive.

In this step, we show
g(x) < H(x)+e€ x€D.
To prove this, we suppose not, that is, we let

b= sup(g(x) — He(x))
z€D

and suppose b > €. Choose 1 < ¢, ad then choose xg such that
9(xo) — He(z0) = b —1n.

Since H + b is an excessive majorant of g be the definition of b, and G is the least excessive
majorant, then
G(l’o) < HE(.T(]) + b.

From the previous two inequalities, we conclude

G(zo) < g(zo) + 1.
By the Blumenthal 0-1 Law (HW2, Problem 9), P*° (7. = 0) is either 0 or 1. In the first
case, for any ¢t > 0,

g(xo) +n = Glxo) > E*[G(Xinr )] = E[9(Xinr + €); 7 > 1,

where the first inequality is (3), the second is due to G being excessive, and the third
because G > g + ¢ until 7.. Sending ¢ | 0 and use the fact that g is continuous, we get
g(zo) + 1 > g(xo) + €, which contradicts with the choice of 7.

In the second case, where 7¢ = 0 with probability 1, we have
He(wo) = E™G(Xr,) = G(xo) = g(x0) = He(wo) +b—m,

a contradiction since we choose n < b.
In either cases, we must have (2) hold.

Step 2. A conclusion we reach from (2) is that Hc+€ an excessive majorant of g. Therefore,
G(r) < H(x)+e=E*[G(Xx, )] + e < E"[g(X) + € +e < g*(x) + 2e.

The first inequality holds since G is the least excessive majorant, the second inequality
follows from g(X, ) + € > G(X,.) by the definition of 7, and the third b the definition of
g*. Since € is arbitrarily chosen, we see that G(z) < g*(x).

Step 3. For any stopping time 7', because G is excessive and majorizes g,

G(z) > E*[G(XT)] > E*g(X7).
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Taking the supremum over all stopping times 7', G(x) > ¢g*(z) and therefore G(z) = g*(x).

Step 4. Because 7p is finite almost surely, the continuity of g tells us that E*g(X,.) —
E®[g(X:,)] as €} 0. This is due to the fact that a strong Markov process does not jump at
stopping times which can be approximated from below by an increasing sequence of stopping
times. By the definition of ¢*, we know that E*g(X,,) < g*(x).

On the other hand, by the definitions of 7. and H.,

E7g(X,) > E°G(X,.) — e = Ho(z) —e.

By the first inequality in (4), the right-hand side is greater than or equal to G(z) — 2¢ =
g*(z) — 2e. Sending € | 0, we obtain

E*9(Xe, 2 g7 ()

as desired.

. Let G be the least excessive majorant of g. Then h(x) > G. However,
hz) = E*g(X~,) < sup E*[g(X7)] = ¢"(z) = G(z),

by results in Problem 4.

. Let F' be the smallest concave function which dominates g. By Jensen’s inequality
P,F(z) = E*F(X;) < F(E*[X}]) = F(x).

Because F' is concave, it is continuous, and so PF(z) = E*F(X;) — F(x) as t — 0.
Therefore F is excessive. If F is another excessive function larger than g and a < c < = <
d < h, we have F(z) > E*F(Xg), where S is the first time that X leaves [c,d] by Lemma
1. Since X is a Brownian motion, we have

~ ~ d—zx ~ T —cC =

F(z) > B'F(Xs) = ——F(c) +

Rearranging this inequality shows that F' is concave. Recall that the minimum of two

concave functions is concave, so F' A F is a concave function larger than ¢g. But F is the
smallest concave function dominating g, hence F = F' A F, or F < F. Therefore F is the

least excessive majorant of g. It then follows from results in Problem 4 that F = g*.



