
SOLUTIONS TO PROBLEM SET 4

1. Without loss of generality suppose f ∈ C2
0. First, note that∫ ∞

0
e−αt

1√
2πt

e−
(x−y)2

2t dt =
1√
2α
e−
√
2α|x−y|.

Thus,

Uαf(x) =

∫ ∞
−∞

f(y)
1√
2α
e−
√
2α|x−y|dy

=

∫ x

−∞
f(y)

1√
2α
e−
√
2α(x−y)dy(1)

+

∫ ∞
x

f(y)
1√
2α
e
√
2α(x−y)dy.(2)

In order to find the derivative of the first integral with respect to x, note that for h > 0:∫ x+h

−∞
f(y)

1√
2α
e−
√
2α(x+h−y)dy −

∫ x

−∞
f(y)

1√
2α
e−
√
2α(x−y)dy

=

∫ x+h

x
f(y)

1√
2α
e−
√
2α(x−y) +

{
e−
√
2αh − 1

}∫ x+h

−∞
f(y)

e−
√
2α(x−y)
√

2α
dy

The first integral on the right hand side divided by h converges to

f(x)
1√
2α

by the fundamental theorem of calculus. The second term divided by h converges to

−
∫ x

−∞
f(y)e−

√
2α(x−y)dy

by the continuity of the integral with respect to dy. Taking h < 0 and repeating similar steps ends

up with the same limit. Therefore, the derivative of (1) equals

f(x)
1√
2α
−
∫ x

−∞
f(y)e−

√
2α(x−y)dy.

Similarly, the derivative of (2) equals

−f(x)
1√
2α

+

∫ ∞
x

f(y)e
√
2α(x−y)dy.

Hence, Uαf is differentiable and its derivative is given by

−
∫ x

−∞
f(y)e−

√
2α(x−y)dy +

∫ ∞
x

f(y)e
√
2α(x−y)dy.

After a change of variable the above can be rewritten as∫ ∞
0
{f(x+ u)− f(x− u)} e−

√
2αdu.

Since f is bounded and continuous, and vanishing at infinity, the Dominated Convergence Theorem

implies the derivative of Uαf ∈ C0.
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Repeating the above arguments yields

d2

dx2
Uαf(x) = −2f(x)+

∫ x

−∞

√
2αf(y)e−

√
2α(x−y)dy+

∫ ∞
x

f(y)
√

2αe
√
2α(x−y)dy =

∫ ∞
−∞

√
2αf(y)e−

√
2α|x−y|dy.

Hence,

1

2

d2

dx2
Uαf(x) = αUαf − f.

2. To show the Markov property note that

P (|Bt| ∈ dy|Fs) = P (|Bt| ∈ dy|Bs).

Then, for all x ∈ R

P (|Bt| ∈ dy|Bs = x) = p(t− s, x, y)dy + p(t− s, x,−y)dy = p(t− s, |x|, y)dy + p(t− s, |x|,−y)dy

where p is the transition density of standard Brownian motion. This shows that the conditional

distribution only depends on Bs, hence the Markov property. If we denote the transition density of

X by q, then we have

q(t, x, dy) = p(t, x, dy) + p(t, x,−dy)

=
1√
2πt

[
e−

(x−y)2

2t + e−
(x+y)2

2t

]
dy.

To show the Feller property take an arbitrary f ∈ C0(R+), i.e. a continuous function on R+ which

vanishes at ∞. Then, g : R 7→ R defined by g(x) = f(|x|) belongs to C0(R). Note that

Qtf(x) = Ptg(x), x ≥ 0.

Thus, the desired Feller property follows from the Feller property of Brownian motion. One can

also have a direct proof of this fact by using the explicit form of q using the arguments leading to

the solution of Q5 in Problem Set 2.

Recall that the domain of the infinitesimal generator are the functions in C0(R+) for which

the limt→0
Qtf(x)−f(x)

t exists and belongs to C0(R+). Note that if f belongs to the infinitesimal

generator of X, then the function g defined by g(x) = f(|x|) should belong to the infinitesimal

generator of B. On the other hand, g is C2
0(R) if and only if f is C2

0(R+) with f ′(0) = 0. Thus,

the domain of the generator are twice continuously differentiable functions on [0,∞) with zero

derivative at 0. Moreover, for any such f

lim
t→0

Qtf(x)− f(x)

t
=

1

2
f ′′(x).

3. Let N be a Poisson process with parameter λ. Then, using the fact that e−λt = 1− λt+ o(t),

where o(t) is the collection of terms having a higher order than t,

Ex[f(Nt)]− f(x)

t
=

1

t
(f(x)(1− λt) + f(x+ 1)λt− f(x) + o(t))→ λ(f(x+1)−f(x)), as t→ 0.

Therefore the infinitesimal generator is

Lf(x) = λ(f(x+ 1)− f(x)).
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4. To show the Chapman-Kolmogorov identity, it suffices to show that Qt+sf = QtQsf for all

bounded and measurable f . Note that

Qsf(x) = Ex
[
f(Xs) exp

(
−
∫ s

0
c(Xr) dr

)]
.

Then,

QtQsf(x) = Ex
[
Qsf(Xt) exp

(
−
∫ t

0
c(Xr) dr

)]
= Ex

[
EXt

[
f(Xs) exp

(
−
∫ s

0
c(Xr) dr

)]
exp

(
−
∫ t

0
c(Xr) dr

)]
= Ex

[
Ex
[
f(Xt+s) exp

(
−
∫ t+s

t
c(Xr) dr

) ∣∣∣∣Ft] exp

(
−
∫ t

0
c(Xr) dr

)]
= Ex

[
f(Xt+s) exp

(
−
∫ t+s

0
c(Xr) dr

)]
= Qt+sf(x).

To calculate the infinitesimal generator of Q, observe

Qtf − f
t

=
1

t
Ex
[
f(Xt)

(
exp

(
−
∫ t

0
c(Xs)ds

)
− 1

)]
+

1

t
(Ex[f(Xt)]− f(x)) .

Let C be an upper bound of c. Then,

1− exp
(
−
∫ t
0 c(Xs)ds

)
t

≤ 1− exp (−tC)

t
.

Moreover, the function 1−exp(−tC)
t is continuous and bounded on [0, 1]. Thus, sending t ↓ 0, we

obtain via the Dominated Convergence Theorem,

lim
t↓0

Qtf − f
t

= −c(x)f(x) +Af(x).

5. The statement follows from Hille-Yosida theorem. In what follows we work with the space

without one-point compactification. Let us verify its three conditions. First, Since C2 ⊂ D(A),

D(A) is dense in Cb (Banach space of bounded continuous functions). Second, A satisfies the

positive maximum principle. Indeed, if f(x0) = sup{f(x);x ∈ R}, then f
′′
(x0) ≤ 0 and f ′(x0) = 0,

which implies 1
2a(x0)f

′′
(x0) + b(x0)f

′(x0) ≤ 0. Third, given g belonging to some fixed dense subset

of Cb and some fixed α > 0, we want to find a function f ∈ Cb such that it solves the ordinary

differential equation (α − A)f = g. When a(x) > 0 on E, the previous equation is a second order

ordinary differential equation

1

2
a(x)f

′′
(x) + b(x)f ′(x)− αf + g = 0.

Bounded solution to such equation exists for α > 0 by Theorem 13.1 of Feller, W. The Parabolic

Differential Equations and the Associated Semi-Groups of Transformations, Annals of Mathematics,

Second Series, Vol. 55, No. 3 (May, 1952) , pp. 468-519.


