SOLUTIONS TO PROBLEM SET 4

1. Without loss of generality suppose f € C3. First, note that

/Ooe—at 1 _ (z—y)? y gt — 1 e_m‘x_y“
0 \/27Tt V2«

Thus,

vot@) = [ sy
(1) _ / Fly 1 —\/ﬁ(z Y q dy
2 76\/%(w—y)d .
@) T / 0) = y

In order to find the derivative of the first integral with respect to x, note that for h > 0:
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The first integral on the right hand side divided by h converges to

by the fundamental theorem of calculus. The second term divided by h converges to

B

by the continuity of the integral with respect to dy. Taking h < 0 and repeating similar steps ends

up with the same limit. Therefore, the derivative of (1 ) equals
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Hence, U%f is differentiable and its derivative is given by
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After a change of variable the above can be rewritten as

/000 {flx+u)— f(zx— u)}e_mdu.

Since f is bounded and continuous, and vanishing at infinity, the Dominated Convergence Theorem

Similarly, the derivative of (2) equals

implies the derivative of U%f € C.
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Repeating the above arguments yields
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2. To show the Markov property note that
P(|By| € dy|Fs) = P(|By| € dy|Bs).
Then, for all z € R

P(|By| € dy|Bs = x) = p(t — s,x,y)dy + p(t — s,x, —y)dy = p(t — s, |z|,y)dy + p(t — s, |x], —y)dy

where p is the transition density of standard Brownian motion. This shows that the conditional
distribution only depends on By, hence the Markov property. If we denote the transition density of

X by q, then we have

q(t, z, dy) = p(t, z,dy) + p(t, z, —dy)

1 (z—y)? y>2 (z+1)?
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To show the Feller property take an arbitrary f € Co(R4), i.e. a continuous function on Ry which
vanishes at co. Then, g : R — R defined by g(x) = f(]z|) belongs to Cy(R). Note that

Qif(x) = Pg(x), x > 0.

Thus, the desired Feller property follows from the Feller property of Brownian motion. One can

also have a direct proof of this fact by using the explicit form of ¢ using the arguments leading to
the solution of Q5 in Problem Set 2.

Recall that the domain of the infinitesimal generator are the functions in Cy(R4) for which
the lim;_,q w exists and belongs to Co(Ry). Note that if f belongs to the infinitesimal
generator of X, then the function g defined by g(z) = f(|z|) should belong to the infinitesimal
generator of B. On the other hand, g is C4(R) if and only if f is C3(Ry) with f/(0) = 0. Thus,
the domain of the generator are twice continuously differentiable functions on [0, 00) with zero

derivative at 0. Moreover, for any such f

3. Let N be a Poisson process with parameter A. Then, using the fact that e™ = 1 — At + o(t),

where o(t) is the collection of terms having a higher order than ¢,

Ew[f(Ntt” —f@) L@ )+ flo + DN = (&) +0lt) = A(f ) —f (@), as ¢ 0,
Therefore the infinitesimal generator is

Lf(x) = AMf(z+1) = f(2)).




SOLUTIONS TO PROBLEM SET 4 3

4. To show the Chapman-Kolmogorov identity, it suffices to show that Qi4sf = Q:Qsf for all
bounded and measurable f. Note that

Quf (@) = B [f(Xs) exp (— /0 T (X)) d>] .
Then,

QQsf(x) = E* :st (o) exp (‘ /OtC(X’“)dT)]

- Ex [f(XS)eXp <_ /0 C(Xr)drﬂ exp (— /OtC(Xr)dr>}
_ E:ﬂ [f(Xm)eXp (_ /fs C(Xr)dr) ‘}}] exp (— /Ot c(XT)dr)]

r t+s
= B (X exp (— Jaes d)] = Quyaf(z).
L 0
To calculate the infinitesimal generator of @, observe

=T L s0x) (e (- [ t ()ds) =1) |+ § (ELCx] - fia).

Let C be an upper bound of ¢. Then,

1 —exp (— fg C(Xs)d8> _l—exp (—tC’).
t - t

1—exp(—tC)
t

Moreover, the function is continuous and bounded on [0,1]. Thus, sending ¢ | 0, we

obtain via the Dominated Convergence Theorem,
im @ = ) f ) + Af ().
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5. The statement follows from Hille-Yosida theorem. In what follows we work with the space
without one-point compactification. Let us verify its three conditions. First, Since C2 C D(A),
D(A) is dense in C® (Banach space of bounded continuous functions). Second, A satisfies the
positive maximum principle. Indeed, if f(zo) = sup{f(z);z € R}, then r (xo) <0 and f'(z9) =0,
which implies 1a(z) £ (z0) + b(zo) f'(x0) < 0. Third, given g belonging to some fixed dense subset
of C® and some fixed o > 0, we want to find a function f € C® such that it solves the ordinary
differential equation (v — A)f = g. When a(x) > 0 on E, the previous equation is a second order

ordinary differential equation

S0@)f" (2) + b)) — af +9. =0

Bounded solution to such equation exists for o > 0 by Theorem 13.1 of Feller, W. The Parabolic
Differential Equations and the Associated Semi-Groups of Transformations, Annals of Mathematics,
Second Series, Vol. 55, No. 3 (May, 1952) , pp. 468-519.



