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1. It follows from Ito’s formula that

Mf
t =

d∑
i=1

r∑
j=1

M
(i,j)
t , with M

(i,j)
t =

∫ t

0
σij(s,Xs)

∂

∂xi
f(s,Xs)dW

j
s .

Then the expression of the covariation follows. When σij are bounded on the support of f , then

the integrand in each M (i,j) is bounded. It then follows from Ito isometry that

Ex
[
(Mf

t )2
]

= Ex
[
〈Mf ,Mf 〉t

]
=
∑
i,j

∫ t

0
aij

∂f

∂xi

∂f

∂xj
(s,Xs) ds <∞.

Hence Mf is a square integrable martingale.

2. For any f ∈ C2((0,∞) × Rd), define σn = inf{t ≥ 0 | ‖σ∇f(t,Xt)‖ ≥ n}. The definition

yields limn→∞ σn = ∞. Then the same argument as in Problem 1 implies that {Mf
σn∧t}t≥0 is a

P-martingale. Hence Mf is a P-local martingale. Since f is chosen arbitrarily, P is a solution to

the local martingale problem.

Let us show the second assertion. For any f ∈ C2
0 ((0,∞) × Rd), since σij are locally bounded

and f has compact support, ‖σ∇f‖ is bounded. It then follows from Problem 1 that Mf is a

P-martingale. Hence P is a solution to the martingale problem.

3. For any p > 0 we have

(1) |a1|p + . . .+ |an|p ≤ n(|a1|+ . . .+ |an|)p ≤ np+1 (|a1|p + . . .+ |an|p) .

Applying above inequality to

‖Xt‖2m = ‖X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs‖

yields

‖Xt‖2m ≤ K
(
‖X0‖+ ‖

∫ t

0
b(s,Xs)ds‖2m + ‖

∫ t

0
σ(s,Xs)dWs‖2m

)
,

for some K that depends on m and d. Moreover,

‖
∫ t

0
b(s,Xs)ds‖2m =

(
d∑
i=1

(∫ t

0
bi(s,Xs)ds

)2
)m

≤ tm

(
d∑
i=1

∫ t

0
b2i (s,Xs)ds

)m
= tm

∫ t

0
‖b(s,Xs)‖2ds

≤ t2m−1
∫ t

0
‖b(s,Xs)‖2mds,

where the last inequality follows from Holder’s inequality. Thus,

E
[

max
0≤s≤t

‖Xs‖2m
]
≤ K

{
t2m−1

∫ t

0
E‖b(s,Xs)‖2mds+ E‖X0‖2m + E

[
max
0≤s≤t

‖
∫ s

0
σ(u,Xu)dWu‖2m

]}
1
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Using Burkholder-Davis-Gundy inequality along with Holder inequality we have

E
[

max
0≤s≤t

‖
∫ t

0
σ(u,Xu)dWu‖2m

]
≤ C

∫ t

0
E‖σ(u,Xu)‖2mdu,

for some constant that depends on t and m only. The linear growth condition now gives

E
[

max
0≤s≤t

‖Xs‖2m
]
≤ K

{
1 + E‖X0‖2m +

∫ t

0
E‖Xu‖2mdu

}
≤ K

{
1 + E‖X0‖2m +

∫ t

0
E
(

sup
s≤u
‖Xs‖2m

)
du

}
,

where K is a constant depending only on t,m and d. Application of Gronwall’s inequality yields

the claim.

The second inequality can be proved in the same manner since

‖Xt −Xs‖2m ≤ K
(
‖
∫ t

s
b(u,Xu)du‖2m + ‖

∫ t

s
σ(u,Xu)dWu‖2m

)
.

4. We begin with a d-dimensional Brownian family X = {Xt,Ft; 0 ≤ t ≤ T}, (Ω,F), {P x}x∈Rd .

According to Corollary 3.5.16 in ”Brownian Motion and Stochastics Calculus” by Karatzas and

Shreve that

Zt = exp

 d∑
j=1

∫ t

0
bj(s,Xs)dX

j
s −

1

2

∫ t

0
‖b(s,Xs)‖2 ds


is a martingale under each measure P x, so the Girsanov theorem implies that under Qx given by

(dQx/dP x) = ZT , the process

Wt = Xt −X0 −
∫ t

0
b(s,Xs) ds; 0 ≤ t ≤ T

is a Brownian motion with Qx(W0 = 0) = 1. We can then rewrite the previous equation as

Xt = X0 +

∫ t

0
b(s,Xs) ds+Wt; 0 ≤ t ≤ T.

Therefore the triple (X,W ), (Ω,F , Q), {Ft} is a weak solution to the previous stochastic differential

equation.

5. Without loss of generality suppose b1 is Lipschitz and denote a common Lipschitz constant for

b1 and σ by K. Let {an}n≥0 be a sequence such that limn→∞ an = 0, a0 = 1 and
∫ an−1

an
K−2x−2dx =

n. Then, there exists a continuous function ρn on R with support in (an, an−1) so that 0 ≤ ρn(x) ≤
(2/nK2x2) holds for any x > 0, and

∫ an−1

an
ρn(x)dx = 1. Then the function

ψn(x) =

∫ |x|
0

∫ y

0
ρn(u)dudy; x ∈ R,

is even and twice continuously differentiable, with |ψ′n(x)| ≤ 1 and limn→∞ ψn(x) = |x| for x ∈ R.

Also note that ψ is increasing on the positive real line. Moreover. ψ
′′
(x) = ρn(|x|).

Without loss of generality, we can assume that

E
∫ t

0
|σ(s,X(i)

s )|2ds <∞; 0 ≤ t <∞, i = 1, 2.

Otherwise, we may use a localization argument to reduce to the previous case. Define

∆t = X
(1)
t −X

(2)
t =

∫ t

0

(
b1(s,X

(1)
s )− b2(s,X(2)

s )
)
ds+

∫ t

0

(
σ(s,X(1)

s )− σ(s,X(2)
s )
)
dWs,
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and a new sequence of functions φn(x) = ψn(x) · 1(0,∞)(x). By the Ito’s formula, we have

φn(∆t) =

∫ t

0
φ′n(∆s)

[
b1(s,X

(1)
s )− b2(s,X(2)

s )
]
ds+

1

2

∫ t

0
φ
′′
n(∆s)

[
σ(s,X(1)

s )− σ(s,X(2)
s )
]2
ds

+

∫ t

0
φ′n(∆s)

[
σ(s,X(1)

s )− σ(s,X(2)
s )
]
dWs.

The expectation of the stochastic integral is zero, whereas the expectation of the second integral is

bounded from above by E
∫ t
0 φ
′′
n(∆s)K

2|∆s|2ds ≤ 2t/n due to the bound on ρn. We than conclude

Eφn(∆t)−
t

n
≤ E

∫ t

0
φ′n

[
b(s,X(1)

s )− b(s,X(2)
s )
]
ds+

t

n
.

The expectation on the right-hand side is can be bounded from above by considering

E
∫ t

0
φ′n(∆s)

[
b1(s,X

(1)
s )− b1(s,X(2)

s )
]
ds+E

∫ t

0
φ′n(∆s)

[
b1(s,X

(2)
s )− b2(s,X(2)

s )
]
ds ≤ K

∫ t

0
E[∆+

s ]ds.

Send n→∞ to obtain E[∆+
t ] ≤ K

∫ t
0 E[∆+

s ]ds and by Gronwall inequality, we conclude E[∆+
t ] = 0;

ie., X
(1)
t ≤ X(2)

t a.s..

6.

Nt = u(Xt∧τD)Ex
(
−
∫ t∧τD

0
k(Xs)ds

)
+

∫ t∧τD

0
g(Xs) exp

(
−
∫ s

0
k(Xr)dr

)
ds.

Since k is positive, u and g are continuous in bounded domain D, then for any stopping time T ,

|NT | is bounded from above by

‖u‖∞ + τD‖g‖∞,

which has finite expectation because ExτD < ∞. On the other hand, applying Ito’s formula and

utilizing the equation Lu− ku = −g that u satisfies, we can verify Nt is a local martingale. Thus,

N is a uniformly integrable martingale.

It then follows from the optional sampling theorem that

u(x) = N0 = ExNτD = Ex
[
u(XτD) exp

(
−
∫ τD

0
k(Xs)ds

)
+

∫ τD

0
g(Xs) exp

(
−
∫ s

0
k(Xr)dr

)
ds

]
= Ex

[
f(XτD) exp

(
−
∫ τD

0
k(Xs)ds

)
+

∫ τD

0
g(Xs) exp

(
−
∫ s

0
k(Xr)dr

)
ds

]
.


