SOLUTIONS TO PROBLEM SET 6

Let = be a 1-dimensional diffusion satisfying assumptions in the lecture note. For | < a < x <

b < r, there exists a function s such that
, s(
(1) PY Ty < T,) = .
1. For x < y, observe that P*(T,, < T;.) = 1. Then
P(T, < T)) = PY(T, < T}, T, < T).
Note T, = T, + T; o 01, and on the event [T;. < Tj], T; = T, 4 T; o 0r,. Thus,
PHT. <Th) = E* 1, <my)im, <y © 01, = P(T, < T))PY(T, <Tp),

where the second identity follows from the strong Markov property and Xr, = y when T, < oco.
Recalling s(z) = P*(T, < 1j), the previous identity then reads

(2) s(z) = s(y)P*(T, <Th).

Identity (2) obviously yields s(z) < s(y). If s(z) = s(y), for any b > y, (1) yields P¥(T, < T) =0
which contradicts with the regularity of the process X. Indeed, let Sy = 0, R, 1 = inf{t > S, :
Xt =y}, Spy1 =inf{t > Rp41 : Xt € {x,b}}. Note that

P*(T, < 00) = P*(for some n, S, < oo, Xg, =b).

However,

P(S, < 00, Xg, =b) = E” [[[g, <o) PY(T < T;;)] = 0,
implying P*(T, < oo) = 0, which is a contradiction to the regularity. Therefore, s is strictly
increasing.

To show s is right-continuous, suppose z < y. In view of (2), we need to show lim,, P*(T}, <
T;) = 1. Moreover, this limit equals P*(sup,<py X¢ > z). If P*(sup,<q; Xt > x) < 1, then
P*(Xy < x,Vt <T;) > 0, which contradicts the regularity of X. The left-continuity is shown in the
same way.

2. It follows from Theorem 6.2 in the lecture notes that s is the scale function if and only if
5(X)® is a local martingale. Using Ito’s formula, one can check the drift of s(X) is zero, hence

s(z)f is a local martingale. Therefore the scale function must be

s(z) = / " exp (- / ’ 9b(2)o2(2) dz> dy.

3. Choosing ¢ = 1 and calculating via formula in Problem 2, we obtain s(z) = —1/x + 1. Since
scale function is defined up to affine transformations, the we can set s(z) = 1/x.
4. Via the homoeomorphism ¢ : E — E, X = ¢(X). Let 5 be the scale function of X,

then §(X) is a local martingale. On the other hand, 5(X) = §(¢(X)), which implies §o0 ¢ is a
1
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local martingale, hence § o ¢ = s. Therefore we conclude § = s o ¢~!. For the speed measure,
let I = ¢(I) and o7 = inf{t > 0; X; ¢ I}. Since ¢ is a one-to-one map, o; = o7. Therefore,
(D) = m(I) = m(o(1)).

5. Let ¢(x) = s(x). As we have seen in problem 1, s is strictly increasing and continuous. Note
that the scale function of Z is §(x) = z. It then follows from Theorem 3.5.3 in the lecture note that

L) = o o) = Ghten) = e = [ Armian = [ 5ot )25 ().

The last identity yields 7 (ds(x)) = 2(s'(z)o(z)) ~2s'(x)dz. On the other hand, the previous problem
gives m(dx) = m(ds(x)) since m(I) = m(s(I)) for any I in int(E). Therefore, m(dz) = dx.
6. For case (a), we have from (1) for [ <a<zx <b<r:

’(1)02(1)

@ PPl dnt X0 < a2 P, = = ),

Letting b 1 r, we obtain P*[info<;cs, X3 < a] = 1 for every a € I. Now we let a | [ to get
P*linfo<t<y, Xy = 1] = 1. A similar argument shows that P*[supy<;.,, X; = 7] = 1. Suppose
that P*[o; < oo] > 0; then the event [supy<;.,, X; = 7| and [info<i<; Xy = I] cannot both have
probability one. This is contradiction shows that P*[o; < oo] = 1.

For case (b), we first observe that (3) still implies P*[info<;<s, X; = {] = 1. On the other hand,
we recall P*[Xt, , =b] = (s(x) — s(a))/(s5(b) — s(a)) from (1) and let a | [ to see that
s(z) — s(l+)
s(b) = s(i+)”
(Observe that for b > x, [sup, Xs > b] = [X; = b for some ¢] in above) Letting now b T r, we

P?[X;=0b; some 0 <t <oj]=

conclude that P*[supy<;.,, Xt = r] = 0. We have then shown
P*[ inf Xy =I]=P" sup Xy <r]=1.
0<t<or 0<t<or

It remains to show that lim;_,,, X; = info<;<,, X¢, and for this it suffices to establish that the limit
exists, almost surely. With o, = inf{t > 0; X; ¢ (l,,,7)}; n > 1, for sequence (l,,) | [ and (ry,) 17,
the process Y (") = s(Xpo,) —s(I1+); 0 < t < 0o is for each n > 1 a nonnegative martingale. Letting
n — oo and using Fatou’s lemma, we see that Y; = s(Xins) — s(l+); 0 < ¢ < o0, is a nonnegative
supermartingale. Therefore it converges almost surely as ¢ — oco. Because s : [[,7] — oo has a
continuous inverse, lim; ;o Xins, must exists.

Case (c) is similar to (b), and case (d) is obtained by taking limits in (1).



