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Abstract. Multiple equilibria models are one of the major categories of theoretical models for
stock market crashes. The main objective of this paper is to model multiple equilibria and demon-
strate how market prices move from one regime into another in a continuous time framework. As a
consequence of this, a multiple jump structure is obtained with both booms and crashes, which are
defined as points of discontinuity of the stock price process. For the constructed model, we prove
that the stock price is a càdlàg semimartingale process, find the conditional distributions for the
time of the next jump, the type of the next jump and the size of the next jump, given the public
information available to market participants, and conduct a number of numerical studies.

1. Introduction

The main objective of this paper is to develop a simple quantitative framework for a financial
market with multiple equilibria in order to analyse how booms and crashes could appear in a
financial market. The presence of multiple equilibria amounts to different pricing regimes and for
a complete analysis a model should also describe how the market switches from one regime to
another. The connection between the multiple equilibria and market crashes or booms stems from
the fact that a regime change typically produces a jump in the asset price, which can be associated
to a boom or crash.

As a starting point for this study, we follow Gennotte and Leland [17]. In [17] Gennotte and Leland
propose a one-period model to explain the market crash of 1987, which is commonly attributed to
the presence of dynamic hedgers and information asymmetry about their hedging activity. In this
rational expectations equilibrium model, two assets are traded: a single risky stock and a risk-free
bond. The net supply of the risky asset consists of several components: a part observable by
all market participants, an unobserved normally distributed liquidity shock, a normally distributed
liquidity shock observed only by a class of informed investors, and the cumulative trades of dynamic
hedgers,which was assumed to be deterministic. On the other hand, the total demand consists of
uninformed, price-informed and supply-informed investors, who all maximise expected exponential
utility of their wealth over a single period. While all the investors observe the equilibrium price, the
price-informed investors also observe a personal unbiased signal on future price. According to this
model, in the absence of dynamic hedgers no crashes can occur. However, if the hedging activity is
sufficiently large, the market experiences multiple equilibria leading to crashes. Moreover, even if
the hedging activity is relatively small, the market crashes could occur as a consequence of shifts in
the information structure. We refer the reader to [17] for the precise description of their findings.

This paper aims to extend the model of Genotte and Leland to continuous time. In order to keep
the model tractable we ignore the information asymmetry and assume all the traders have the same
information. As such we describe the pricing mechanism among the following classes of traders:
rational investors, dynamic hedgers and noise traders. In making their decisions, agents approxi-
mate the future stock price dynamics with an auxiliary Brownian motion with a drift process. As
in [17] we find that a large amount of hedging activity is responsible for market crashes and booms
manifested as big jumps in the price process. These jumps occur at random times when a certain

1



2 A SIMPLE MODEL FOR MARKET BOOMS AND CRASHES

Brownian motion crosses a moving boundary. The magnitude of these jumps are also found to be
random as one would expect from any meaningful model attempting to understand the impact of
market crashes. Given our assumptions we are able to establish that the stock price process is a
special semimartingale and find its explicit semimartingale decomposition.

Given such a model, one would naturally want to obtain expressions for the likelihood of booms
or crashes along with their magnitudes. We compute the distributions for the time, the type and
the size of the next jump of price process conditional on the market’s filtration. These quantities
are not obtained in closed form but rather in terms of integral equations. In order to complete the
picture, we also undertake a numerical study to approximate these distributions and simulate some
trajectories for possible price evolutions in this market with potential booms and crashes.

Our paper belongs to the class of papers on multiple equilibria and sunspot models in the literature
(see, e.g., [24], [14], [4], [6], [40], [3], [5], [30], and [16]). The market crashes have been studied using
other approaches as well. One can cite three categories in this respect: liquidity shortage models,
bursting bubble models, and lumpy information aggregation models. In liquidity shortage models,
the crashes occur when market price plummets due to a temporary reduction in liquidity (see, e.g.,
[18] and [20]). Bursting bubble models examine the scenarios when all market participants realise
an asset price is greater than its fundamental value and, nevertheless, keep buying the asset as they
believe there are others who do not know that the asset is overpriced, and to whom they expect
to sell the asset at a higher price later. At some point everyone realises that everyone else is aware
of the overpricing, which results in bubble bursts and corresponding market crashes (see, e.g., [1],
[35], [29], [2], [9], [15], [23], and [10]). The papers in the final category follow an approach based on
lumpy information aggregation. In these models the overpricing issue is not a common knowledge
among the market participants. However, a revelation of a relevant information in the course of
trading makes the less informed traders suddenly realise that an overpricing exists leading to sharp
declines in prices (see, e.g., [34], [13] and [19]). We refer the reader to [8] for an excellent survey
of these models. As an alternative to traditional approaches, more recently, [25] examined market
crashes from the perspective of market microstructure invariance introduced in [26] and suggested
that executions of large orders during volatile times at a rate which is too fast may induce dramatic
price falls.

The outline of this paper is as follows. In Section 2, the market microstructure framework is defined.
Section 3 is on model setup and analysis of its properties. Section 4 contains numerical studies.

2. Market microstructure framework

We will work on a filtered stochastic base (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions. It is
assumed that the trading horizon, T , is finite and trading takes place continuously. In the model
developed in this paper, there are two underlying assets in the economy: risky stock and risk-free
bond. Risk-free bonds are in perfectly elastic supply and earn interest at the fixed rate r > 0. The
risky stock is assumed to be in zero net supply. Three types of agents trade in this market: rational
investors, dynamic hedgers, and noise traders.

2.1. Rational investors’ demand for the stock. In order to obtain the demand process for
a given investor we start with a discrete-time extension of the one-period model of [17] and take
the limit of the corresponding demands in order to arrive at the demand process for continuous
trading. To this end, suppose that the time between successive trades equals ∆t and assume that
the objective of the ‘rational’ investor at time t is to maximise the expected utility from wealth at
time t+ ∆t. As such the ‘rational’ investor in this model has myopic preferences, which is enforced
in order to obtain a more tractable framework. Rational investors believe that given the current
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price, Pt, the equilibrium price at time t + ∆ is normally distributed with mean Pt + µ̂∆t and
variance σ̂2∆t. Assuming exponential utility function with the CARA coefficient ρ−1 > 0, the
rational investors solve the following maximisation problem:

−e
(er∆t−1)xPt−µ̂x∆t

ρ E
(
e
− σ̂x

√
∆tZ
ρ

)
→ max

x
,

where Z is a standard Normal random variable. Therefore, the form of the moment-generating
function of a normal random variable yields the following individual rational investor’s demand for
stock in discrete time:

ρ(µ̂∆t− (er∆t − 1)Pt)

σ̂2∆t
.

As ∆t ↓ 0, it can be concluded that the cumulative demand for rational investors in the continuous
framework is equal to

wR × ρ(µ̂− rPt)
σ̂2

,

where wR is the total number of rational investors, which is assumed to be constant.

2.2. Dynamic hedgers’ demand for the stock. It is assumed that the total number of dynamic
hedgers is equal to some constant wD with the sole objective to replicate contingent claims of the
following type:

F (PT ) = max(K − PT , 0).

We normalise the total number of contingent claims for each hedger to 1 but assume that the

number of contingent claims with strike ∈ dK is equal to 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK for some typically

small σκ > 0, where κ = P0e
rT .

We suppose that the dynamic hedgers share the same belief as the rational investors that the
equilibrium price will evolve as an arithmetic Brownian motion with drift µ̂ and volatility σ̂. Thus,
if the stock price at time t equals x, they value the claim at P (t, x), where

P (t, x) =

∫ Ke−r(T−t)

−∞
(Ke−r(T−t) − y)

1√
2πΣ2(t)

e
− (y−x)2

2Σ2(t) dy

= Σ(t)× 1√
2π
e
− (Ke−r(T−t)−x)2

2Σ2(t) + (Ke−r(T−t) − x)Φ
(Ke−r(T−t) − x

Σ(t)

)
,

with

Σ(t) = σ̂

√
1− e−2r(T−t)

2r
and Φ(x) =

1√
2π

∫ x

−∞
e−

u2

2 du.

Hence, the dynamic hedgers component of demand at time t ∈ [0, T ) is equal to π(t, Pt), where

π(t, x;κ, σκ) = wD
∫ ∞
−∞

∂P (t, x)

∂x

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

= wD
∫ ∞
−∞

[
−Φ
(Ke−r(T−t) − x

Σ(t)

)] 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

= wD ×
[∫ ∞
−∞

Φ
(x−Ke−r(T−t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK − 1

]
.
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2.3. Noise traders’ demand for the stock. Finally, it is assumed that the noise traders’ cumu-
lative demand is given by wN × (µN + σNBt), σN > 0, where (Bt, t ≥ 0) is a standard Brownian
motion starting at 0 and wN is the total number of noise traders, which is assumed to be constant.
Noise traders trade according to the rule that is independent of the stock price fundamental value
and is exogenous to the model. The noise traders component of demand will make the dynamics
of the stock price stochastic.

2.4. The pricing equation. The market clearing condition states that the total demand should
be equal to 0:

wR × ρ(µ̂− rPt)
σ̂2

+ wD ×
[∫ ∞
−∞

Φ
(Pt −Ke−r(T−t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK − 1

]
+ wN × (µN + σNBt) = 0

Denote by

γ1 = wR × ρr

σ̂2
, γ2 = wR × ρµ̂

σ̂2
− wD + wN × µN , γ3 = wN × σN ,

and define function h : [0, T )× R→ R by

(2.1) h(t, x) =
γ1x− wD

∫∞
−∞Φ

(
x−Ke−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK − γ2

γ3
,

and observe that h(t, x) is C1,2([0, T )× R). Thus, the pricing equation is given by

(2.2) h(t, Pt) = Bt.

Remark 1. Since 0 ≤ wD
∫∞
−∞Φ

(
x−Ke−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (K−κ)2

2σ2
κ dK ≤ wD, one can easily conclude

that

lim
x→−∞

h(t, x) = −∞ and lim
x→∞

h(t, x) =∞.

The equilibrium price will be any solution to (2.2). In order to have a multiple equilibria it is
necessary that h is not one-to-one. As h is continuously differentiable uniqueness of solution to
(2.2) can be checked by analysing the behaviour of hx.

Differentiating h(t, x) with respect to x, we can see that

hx(t, x) =
1

γ3

(
γ1 −

wD√
2πσ2

κΣ2(t)

∫ ∞
−∞

1√
2π
e
− (Ke−r(T−t)−x)2

2Σ2(t) e
− (K−κ)2

2σ2
κ dK

)
(2.3)

=
1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)e− (x−κe−r(T−t))2

2(σ2
κe
−r(T−t)+Σ2(t))

)
.

To ensure hx changes sign we impose the following assumption on the number of dynamic hedgers,
wD, and the variance of the distribution of claims of each hedger, σκ.

Assumption 1. wD and σκ obey the following bounds:

wD > γ1

√
2π
(
σ2
κe
−2rT + Σ2(0)

)
0 < σ2

κ ≤
σ̂2

2r
.
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The above assumption immediately yields

wD > max
t∈[0,T )

(
γ1

√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

))
,

and hx(t, x) as a function of x changes its sign at p1(t) and p2(t) as follows:

(2.4) hx(t, x)

 > 0 if x < p1(t) or x > p2(t)
= 0 if x = p1(t) or x = p2(t)
< 0 if p1(t) < x < p2(t),

where

p1(t) = κe−r(T−t) −
√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wD

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
, and(2.5)

p2(t) = κe−r(T−t) +

√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wD

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
.(2.6)

Figure 1 exhibits the shape of h when the number of dynamic hedgers is small or large.

The number of dynamic hedgers is small

x

h
(t

,x
)

The number of dynamic hedgers is large

x

h
(t

,x
)

Figure 1. The shape of h(t, x) as it depends on the magnitude of the number of
dynamic hedgers. The value of wD for the left plot violates Assumption 1.

Let’s denote the local maximum and local minimum values by

hh(t) = h(t, p1(t)) and hl(t) = h(t, p2(t)).(2.7)

Observe that if Bt is between hl(t) and hh(t), the equilibrium price may take 3 different values
under Assumption 1, which we will assume henceforth. Indeed, as the dynamic hedgers’ demand,

π(t, Pt), is an increasing function of Pt, while the rational investors’ demand, wR × ρ(µ̂−rPt)
σ̂2 is

decreasing in Pt, if the total number of dynamic hedgers wD is large enough, then the roots of the
pricing equation (2.2) have the following structure:

Pt ∈


{pl(t, Bt)} if Bt ≤ hl(t)
{pl(t, Bt), pm(t, Bt), p

h(t, Bt)} if hl(t) < Bt < hh(t)
{ph(t, Bt)} if Bt ≥ hh(t),

(2.8)
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where

pl(t, y) = min{x : h(t, x) = y},

ph(t, y) = max{x : h(t, x) = y},

and pm(t, x) is defined to be the middle root of the equation h(t, y) = x for x ∈ (hl(t), hh(t)). As
such, pl (resp. ph) will determine the equilibrium price when the state of the economy is low (resp.
high), while pm will be the pricing function when the economy is in the middle state.

To model how market prices move from one root to another we define a state process St taking
values in a state space S consisting of three different states: low level equilibrium sl, middle level
equilibrium sm and high level equilibrium sh. Thus, when B falls between hl and hh, the equilibrium
price will be determined by the state process, S. The state process will also be responsible for the
jumps in the stock price. We will call a negative jump a crash and positive jumps will be named
booms.

Remark 2. Observe that hx is an affine function of the gamma of the portfolio of dynamic hedgers.
In particular, a higher gamma might result in a more negative hx. This would imply, e.g., when the
equilibrium switches from a higher level to a middle level, the drop in the stock price will be more
pronounced.

In the next section we will make precise how the state of the economy changes. We end this section
with a useful result on hh and hl.

Theorem 2.1. There exists some ∆ > 0 such that

hh(t)− hl(t) ≥ ∆, ∀t ∈ [0, T ).

Proof. The proof is provided in the Appendix. �

3. Exogenous shocks

The state of the economy will change according to some exogenous shocks, i.e. sunspots. If Bt ≤
hl(t) (resp. Bt ≥ hh(t)), i.e. when there is no possibility of multiple equilibria, then St = sl (resp.
St = sh), for all t ∈ [0, T ). If hl(t) < Bt < hh(t), the system stays in its current state until there
is a new arrival in an exogenous sunspot shock process which is assumed to be a Poisson process
independent of Bt. The shock switches the state of the system to one of the other two states for
no fundamental reason, and the new state is determined according to the value of an independent
Bernoulli random variable with probability of success depending on the current state of the state
process.

3.1. Model setup. The sunspot process, (Zt, t ≥ 0), is an adapted homogeneous Poisson process
with intensity λZ and independent of B. When a shock occurs the state of the system will change in
accordance with the values of certain Bernoulli random variables. To this end, let (ζ lhi , i = 0, 1, ...),
(ζmhi , i = 0, 1, ...) and (ζhli , i = 0, 1, ...) be independent sequences of independent Bernoulli random
variables with success probabilities plh, pmh, and phl, respectively. The success event corresponding
to the probability pij indicates a switch from level i to j, while the failure corresponds to a switch
from i to k, where i, j and k are distinct states in S.

The processes S and P will be defined according to the following algorithm.
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Step 1: Set i = 0, τ0 = 0 and the starting value of the state process

Sτ0 =


sl if Bτ0 ≤ hl(τ0)
sh if Bτ0 ≥ hh(τ0)
s if hl(τ0) < Bτ0 < hh(τ0),

where s ∈ S is an arbitrary constant.

Step 2: Set

τi+1 =


inf
{
t > τi : Bt ≥ hh(t)

}
∧ τ̂i ∧ T if Sτi = sl

inf
{
t > τi : Bt ≥ hh(t) or Bt ≤ hl(t)

}
∧ τ̂i ∧ T if Sτi = sm

inf
{
t > τi : Bt ≤ hl(t)

}
∧ τ̂i ∧ T if Sτi = sh,

where τ̂i is the first arrival of Z after τi, while inf ∅ =∞ by convention.

Step 3: Set St = Sτi , ∀t ∈ [τi, τi+1).

Step 4: If τi+1 = T , stop the algorithm.

Step 5: Set

Sτi+1 =



sl if Bτi+1 ≤ hl(τi+1)
sh if Bτi+1 ≥ hh(τi+1)
sh if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sl and ζ lhi = 1
sm if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sl and ζ lhi = 0
sl if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sh and ζhli = 1
sm if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sh and ζhli = 0
sh if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sm and ζmhi = 1
sl if hl(τi+1) < Bτi+1 < hh(τi+1) and Sτi = sm and ζmhi = 0.

Step 6: Set i = i+ 1 and go to Step 2.

In order for the above algorithm to produce meaningful results, we need to make sure that it ends
after finitely many steps.

Theorem 3.1. Let (τi)i≥0 be the sequence of stopping times defined above. Then,

(1) For all i ≥ 0, if τi < T , P-a.s., then τi < τi+1, P-a.s., too.

(2) sup{i : τi < T} <∞, P-a.s..

Proof. The first statement holds due to Theorem 2.1 in view of the continuity of B and the strict
positivity of the exponential random variable.

To show the second statement suppose there is an infinite number of τi in [0, T ) with positive
probability. Then, either there are infinitely many i.i.d. exponential random variables such that
their sum is less than T , or, there exists an interval of length δ in [0, T ) in which B crosses the
moving interval (hl(t), hh(t)) infinitely many times. However, the first option is not possible since

P (

∞∑
i=1

Xi < T ) ≤ P (

n∑
i=1

Xi < T ) = 1−
n−1∑
i=0

(λT )i

i!
e−λT → 0, n→∞.

The second scenario is also not possible. Indeed, since hl is continuously differentiable, there exists
a probability measure Q ∼ P on F under which βt := Bt − hl(t) is a Brownian motion and the
second scenario entails that β crosses (0, hh(t) − hl(t)) in a finite interval infinitely often. As
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Figure 2. Simulated stock price dynamics for the following set of parameters: r =
0.0001, T = 100, α1 = 0.2, σκ = 1, κ = 100, γ1 = 3, γ2 = 40, γ3 = 1, wD = 20.
Initial value of St is assumed to be equal to sl. The shocks occur at times t = 10,
t = 15, t = 25, t = 51, t = 68, t = 91 and t = 98; stock price jumps at t = 15,
t = 18, t = 34, t = 40, t = 51, t = 57, t = 91 and t = 98.

hh(t) − hl(t) ≥ ∆ by Theorem 2.1, such an infinite crossing has zero probability due to Doob’s
upcrossing inequality (see, e.g., Theorem 1.3.8 (iii) in [22]). �

Remark 3. Note that, according to the construction of the stock price process, for all t ∈ [0, T ),
Pt can not be equal to p1(t) or p2(t) in view of the pricing algorithm outlined above. Indeed, if Pt
is equal to p1(t), then Bt = hh(t) and either St = sl or St = sm, but by construction if Bt ≥ hh(t),
then St = sh, which is a contradiction. The same argument applies to p2(t).

Remark 4. In view of the previous remark, there is one-to-one correspondence between Pt and
(Bt, St). More precisely, given Pt,

Bt = h(t, Pt) and St =

 sl if Pt < p1(t)
sm if p1(t) < Pt < p2(t)
sh if Pt > p2(t).

Conversely, if Bt and St are known, Pt can be determined via (2.8).

By the virtue of Theorem 3.1, there is no infinite price oscillation and (τi < T, i = 1, 2, ...) are the
only jump points on [0, T ). We denote the value of the i-th jump in price by Ji = ∆Pτi = Pτi−Pτi−.
Note that by construction P is càdlàg .

Definition 3.1. A big market crash (resp. a big market boom) is a transition of St from state sh
(respectively sl) to state sl (respectively sh). Similarly, a small market crash (resp. a small market
boom) is a transition from state sh (resp. sl) to state sm, or from state sm to state sl (resp. sh).

The following lists the alternative values that Ji can take:

Ji =



Jh(τi) if Bτi = hh(τi)
J l(τi) if Bτi = hl(τi)
J lh(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sl and Sτi+1 = sh
J lm(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sl and Sτi+1 = sm
Jmh(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sm and Sτi+1 = sh
Jml(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sm and Sτi+1 = sl
Jhl(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sh and Sτi+1 = sl
Jhm(τi, Bτi) if hl(τi) < Bτi < hh(τi), Sτi = sh and Sτi+1 = sm.

,(3.1)
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where

Jh(τi) = ph(τi, h
h(τi))− p1(τi)

J l(τi) = pl(τi, h
l(τi))− p2(τi)

J lh(τi, Bτi) = ph(τi, Bτi)− pl(τi, Bτi)

J lm(τi, Bτi) = pm(τi, Bτi)− pl(τi, Bτi)

Jmh(τi, Bτi) = ph(τi, Bτi)− pm(τi, Bτi)

Jml(τi, Bτi) = pl(τi, Bτi)− pm(τi, Bτi)

Jhl(τi, Bτi) = pl(τi, Bτi)− ph(τi, Bτi)

Jhm(τi, Bτi) = pm(τi, Bτi)− ph(τi, Bτi).

Recall that an increase in the number of dynamic hedgers, wD, leads to an increase in the magnitude
of booms and crashes. We next obtain an upper bound on the jump sizes of the price process.

Proposition 3.1. Jump sizes, | ∆Pτi |, of the price process are uniformly bounded such that

| ∆Pτi |≤
wD

γ1
.

Proof. The pricing equation (2.2) and the continuity of Brownian motion yield that h(τi, Pτi) = Bτi
and h(τi, Pτi−) = Bτi . Thus,

h(τi, Pτi) = h(τi, Pτi−),

i.e.

γ1∆Pτi − wD
∫ ∞
−∞

[
Φ
(Pτi −Ke−r(T−τi)

Σ(τi)

)
− Φ

(Pτi− −Ke−r(T−τi)
Σ(τi)

)] 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK = 0.

As a consequence,

|∆Pτi | ≤
wD

γ1

∫ ∞
−∞

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK =

wD

γ1
.

�

Let FPt be the usual augmentation of the natural filtration of P . We call this filtration the market
filtration since this is the public information available to all market agents.

Proposition 3.2. The sequence (τi < T, i = 1, 2, ...) is a sequence of FPt -stopping times.

Proof. Since P is adapted to (FPt ), the result follows from Proposition 1.32 in [21]. �

Theorem 3.2. Stock price process is a special semimartingale such that

Pt = P0 +

∫ t

0
θ1(s, Ps)ds+

∫ t

0
θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi , for t ∈ [0, T ),(3.2)

where Nt =
∑

i≥1 1(τi≤t) is the total number of jumps on [0, t],

θ1(s, Ps) = −
hs(s, Ps) + 1

2hxx(s, Ps)(
1

hx(s,Ps)
)2

hx(s, Ps)
(3.3)

and

θ2(s, Ps) =
1

hx(s, Ps)
.(3.4)
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Proof. Consider the decomposition

Pt − P0 = Pt − PτNt +

Nt∑
i=1

(Pτi− − Pτi−1) +

Nt∑
i=1

∆Pτi .(3.5)

In view of Ito’s formula and the implicit function theorem,

Pt − PτNt =

∫ t

τNt

θ
(Nt)
1 (s, Ps)ds+

∫ t

τNt

θ
(Nt)
2 (s, Ps)dBs,

for some functions θ
(Nt)
1 and θ

(Nt)
2 . Applying again Ito’s formula to (2.2) yields

ht(t, Pt)dt+ hx(t, Pt)θ
(Nt)
1 (t, Pt)dt+ hx(t, Pt)θ

(Nt)
2 (t, Pt)dBt +

1

2
hxx(t, Pt)(θ

(Nt)
2 (t, Pt))

2dt = dBt.

Thus,

θ
(Nt)
2 (s, Ps) =

1

hx(s, Ps)
, θ

(Nt)
1 (s, Ps) = −

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
,

and

Pt − PτNt = −
∫ t

τNt

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
ds+

∫ t

τNt

1

hx(s, Ps)
dBs.

Similarly,

Pτi− − Pτi−1 = −
∫ τi−

τi−1

hs(s, Ps) + 1
2hxx(s, Ps)(

1
hx(s,Ps)

)2

hx(s, Ps)
ds+

∫ τi−

τi−1

1

hx(s, Ps)
dBs, i = 1, 2, ..., Nt.

Next, define the processes (P
(k)
t , k = 1, 2, ...) by

P
(k)
t = P0 +

∫ t∧τk

0
θ1(s, Ps)ds+

∫ t∧τk

0
θ2(s, Ps)dBs +

Nt∧k∑
i=1

∆Pτi .

By Theorem 32 in Chap. II of [33],

P0 +

∫ t∧τk

0
θ1(s, Ps)ds+

∫ t∧τk

0
θ2(s, Ps)dBs

is a semimartingale. Since by Proposition 3.1 the jumps of P are bounded, each P
(k)
t is a semi-

martingale as well. Proposition 1.4.25c in [21] yields P is a semimartingale. Since it has bounded
jumps it is a special semimartingale by Proposition 1.4.24 in [21]. �

3.2. Canonical decomposition of the stock price process. Theorem 3.2 states that the stock
price process is a special semimartingale. In this section, we will find its canonical decomposition
as a sum of a local martingale and predictable process of finite variation. To this end we need to
compute certain conditional distributions. We start with deriving the joint conditional distribution
of the time of the next jump, the type of the next jump and the size of the next jump given the
evolution of stock prices.

Theorem 3.3. Let C1 be any combination of elements in S and C2 ∈ B(R), a Borel subset of R.
The joint distribution of the time of the next jump, the type of the next jump and the size of the
next jump conditional on FPt is given by

P(τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2 | FPt ) =

 F1(t, Bt, u, C1, C2) if St = sl
F2(t, Bt, u, C1, C2) if St = sm
F3(t, Bt, u, C1, C2) if St = sh

for u ∈ (t, T ], where expressions for F1, F2 and F3 are given in (A.3), (A.4), and (A.6), respectively.
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Proof. See the Appendix. �

Remark 5. By integrating the above densities we can in particular obtain

P(τNt+1 < u | FPt ) =

 F4(t, Bt, u) if St = sl
F5(t, Bt, u) if St = sm
F6(t, Bt, u) if St = sh,

where F4, F5 and F6 satisfy

F4(t, Bt, u) = e−λZ(u−t) (1−D1(u, t, Bt)) +

∫ u−t

0
λZe

−λZr
[
(1−D1(t+ r, t, Bt))

+

∫ hl(t+r)

−∞
q1(x; r, t, Bt)F4(t+ r, x, u)dx+ Φ1(t+ r, t, Bt)

]
dr,

F5(t, Bt, u) = 1− e−λZ(u−t)Dm(u, t, Bt),

F6(t, Bt, u) = e−λZ(u−t) (1−D2(u, t, Bt)) +

∫ u−t

0
λZe

−λZr
[
(1−D2(t+ r, t, Bt))

+

∫ ∞
hh(t+r)

q2(x; r, t, Bt)F6(t+ r, x, u)dx+ Φ2(t+ r, t, Bt)
]
dr.

In above representation,

Dm(u, t, y) = P
(
hl(t+ s)− y < Bs < hh(t+ s)− y,∀s ∈ [0, u− t]

)
,

Φ1(u, t, y) = P
(
Bs < hh(t+ s)− y, 0 ≤ s ≤ u− t;Bu−t > hl(u)− y

)
,

Φ2(u, t, y) = P
(
Bs > hl(t+ s)− y, 0 ≤ s ≤ u− t;Bu−t < hh(u)− y

)
.

Recall that D1 and D2 are as defined in (A.2) and (A.7), q1(x; r, t, y) is the density of Br on the

set
[
Bs < hh(t + s) − y,∀s ∈ [0, r]

]
whereas q2(x; r, t, y) is the density of Br on the set

[
Bs >

hl(t+ s)− y,∀s ∈ [0, r]
]
.

Let

J0 = 0 and ZPi = (Pτi , Ji), i = 0, 1, ...,(3.6)

and

g(i+1)(u,C) =
∂P(τi+1 ≤ u, ZPi+1 ∈ C | FZ

P

τi )

∂u
, u ∈ [τi, T ),(3.7)

where C = (C1, C2), C1 ∈ B(R) and C2 ∈ B(R).

Note that (τi, Z
P
i ) is an R2-marked point process. In the sequel we will denote by FZPi the σ-algebra

σ{(τj , ZPj ), 0 ≤ j ≤ i} completed by the P-null sets.

Lemma 3.1. Assume that u ∈ [τi, T ), i = 0, 1, ..., C = (C1, C2), C1 ∈ B(R) and C2 ∈ B(R). Then

conditional distribution for the marked point process (τi, Z
P
i ) given FZPi is equal to

P(τi+1 ≤ u, ZPi+1 ∈ C | FZ
P

i ) =

 F7(u, τi, Bτi , C) if Sτi = sl
F8(u, τi, Bτi , C) if Sτi = sm
F9(u, τi, Bτi , C) if Sτi = sh,

where F7, F8 and F9 are as defined in (A.8).

Proof. See the Appendix. �
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Lemma 3.2. Assume that u ∈ [τi, T ), i = 0, 1, ..., C = (C1, C2), C1 ∈ B(R) and C2 ∈ B(R). Then
we have

g(i+1)(u,C) =

 F10(u, τi, Bτi , C) if Sτi = sl
F11(u, τi, Bτi , C) if Sτi = sm
F12(u, τi, Bτi , C) if Sτi = sh,

where expressions for F10, F11 and F12 are defined in (A.9), (A.10), and (A.11), respectively. In
particular, F10, F11 and F12 satisfy

F10(u, t, y,R2) = e−λZ(u−t)φ1(u, t, y) + λZe
−λZ(u−t)Φ1(u, t, y)

+

∫ u−t

0
λZe

−λZr
[∫ hl(t+r)

−∞
q1(x; r, t, y)F10(u, t+ r, x,R2)dx

]
dr

F11(u, t, y,R2) = e−λZ(u−t)φm(u, t, y) + λZe
−λZ(u−t)

F12(u, t, y,R2) = e−λZ(u−t)φ2(u, t, y) + λZe
−λZ(u−t)Φ2(u, t, Bt)

+

∫ u−t

0
λZe

−λZr
[∫ ∞

hh(t+r)
q2(x; t, y, r)F12(u, t+ r, x,R2)dx

]
dr,

and

φm(u, t, y) = −∂Dm(u, t, y)

∂u
,

and φ1, φ2, D1, D2, Dm, q1 and q2 are as defined in (A.2), (A.7) and Remark 5.

Proof. See the Appendix. �

In view of above results we are now ready to obtain the canonical decomposition of the stock price
process.

Corollary 3.1. The canonical decomposition of P is given by

Pt = P0 +Mt +At, M0 = 0, A0 = 0,

where

Mt =

∫ t

0
θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi −
∫ t

0
θ3(s, τNs , BτNs )ds

is a local martingale,

At =

∫ t

0
θ1(s, Ps)ds+

∫ t

0
θ3(s, τNs , BτNs )ds

is a predictable process with finite variation for θ1 and θ2 defined by (3.3) and (3.4), respectively.
Moreover,

θ3(s, τNs , BτNs ) =



F13(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F13(τNs+y,τNs ,BτNs

)dy
if SτNs = sl

F14(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F14(τNs+y,τNs ,BτNs

)dy
if SτNs = sm

F15(s,τNs ,BτNs
)

1−
∫ s−τNs
0 F15(τNs+y,τNs ,BτNs

)dy
if SτNs = sh,
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with

F13(u, t, y) = e−λZ(u−t)Jh(u)φ1(u, t, y) + λZe
−λZ(u−t)

[∫ hh(u)

hl(u)
q1(x;u− t, t, y)

(
plhJ

lh(u, x)

+ plmJ
lm(u, x)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ hl(t+r)

−∞
q1(x; r, t, y)F13(u, t+ r, x)dx

]
dr,

F14(u, t, y) = e−λZ(u−t)
[
Jh(u)φm,1(u, t, y) + J l(u)φm,2(u, t, y)

]
+ λZe

−λZ(u−t)
[∫ hh(u)

hl(u)
qm(x;u− t, t, y)

(
pmhJ

mh(u, x) + pmlJ
ml(u, x)

)
dx
]
,

F15(u, t, y) = e−λZ(u−t)J l(u)φ2(u, t, y) + λZe
−λZ(u−t)

[∫ hh(u)

hl(u)
q2(x;u− t, t, y)

(
phlJ

hl(u, x)

+ phmJ
hm(u, x)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ ∞

hh(t+r)
q2(x; r, t, y)F15(u, t+ r, x)dx

]
dr,

and J i and J ij are as defined by (3.1). Recall that qm(x; r, t, y) is the density of Br on the set[
hl(t+ s)− y < Bs < hh(t+ s)− y,∀s ∈ [0, r]

]
.

Proof. Applying Theorem T7 in Chapter VIII of [7] to the counting process NZ
t (C) defined by

NZ
t (C) =

∑
i≥1

I(ZPi ∈ C)I(τi ≤ t),

we conclude that the process
∫ t

0 ls(C)ds with

ls(C) =
g(i+1)(s, C)

1−
∫ s−τi

0 g(i+1)(τi + y,R2)dy
for s ∈ [τi, τi+1), i = 0, 1 . . . ,

is the compensator of NZ(C).

In view of Lemma 3.2, we have

ls(C) =


F13(τi,Bτi ,s,C)

1−
∫ s−τi
0 F13(τi,Bτi ,τi+y,R2)dy

if Sτi = sl
F14(τi,Bτi ,s,C)

1−
∫ s−τi
0 F14(τi,Bτi ,τi+y,R2)dy

if Sτi = sm
F15(τi,Bτi ,s,C)

1−
∫ s−τi
0 F15(τi,Bτi ,τi+y,R2)dy

if Sτi = sh.

Now, Theorem 3.2 and Theorem T8 in Chapter VIII of [7] yield that

Mt =

∫ t

0
θ2(s, Ps)dBs +

Nt∑
i=1

∆Pτi −
∫ t

0

∫
R2

z2ls(dz)ds

and

At =

∫ t

0
θ1(s, Ps)ds+

∫ t

0

∫
R2

z2ls(dz)ds,

where z = (z1, z2) ∈ R2. The result now follows since∫
R2

z2ls(dz) = θ3(s, τNs , BτNs ).

�
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4. Numerical studies

Numerical techniques to find conditional probabilities discussed in the previous section will be
demonstrated via the example of the time of the next jump. Conditional probabilities for the
type of the next jump and the size of the next jump can be computed applying similar numerical
algorithms.
The function F4 can be approximated by finding F16, which solves

F16(ti, ym, tn1) = e−λZ(tn1−ti)
(

1−D1(tn1 , ti, ym)
)

+ ∆1 ×
n1∑

j=i+1

λZe
−λZ(tj−ti) ×

[(
1−D1(tj , ti, ym)

)
+

+

kj∑
l=1

P
(
yl−1 − ym < Btj−ti ≤ yl − ym | Bs < hh(ti + s), ∀s ∈ [0, tj − ti]

)
F16(tj , yl, tn1) + Φ1(tj , ti, ym)

]
,

(4.1)

with the boundary condition

F16(tn1 , ym, tn1) = 0 for m = 0, 1, ..., kn1 ,

kj = max
(

0 ≤ l ≤ n2 : yl ≤ hl(tj)
)
, j = 1, 2, ..., n1.

In above, we take a mesh with uniform spacing given

ti = t+ i∆1, i = 0, 1, ..., n1, and ym = C1 +m∆2,m = 0, 1, ..., n2,

with

∆1 =
u− t
n1

, n1 ∈ N, and ∆2 =
C2 − C1

n2
, n2 ∈ N.

Constants C1 and C2 are taken such that

P( min
s∈[0,u−t]

Bs ≤ C1) = P( max
s∈[0,u−t]

Bs ≥ −C1) = 2Φ
( C1√

u− t

)
= ε(4.2)

for some small ε > 0 and

C2 ≥ max
s∈[0,u−t]

hh(t+ s).

The value F16 can be calculated applying backward induction to i = 1, ..., n1. Also note that F6

can be computed via procedure similar to the one applied for F4, therefore, the details are omitted.

4.1. A numerical algorithm to calculate Brownian motion hitting probabilities and
densities for two-sided curved boundaries. Let

τ = inf
(
t ≥ 0 : Bt = f(t) or Bt = g(t)

)
,

deterministic functions f and g are in the class C2
(

[0, u]
)

and satisfy f(t) < g(t), ∀t ∈ [0, u], and

a constant K is such that f(u) ≤ K ≤ g(u).
According to [36],

P
(
τ > u,Bu ≤ K

)
= v1(0, 0)

and

P
(
τ < u,Bτ = f(τ)

)
= v2(0, 0),
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where, for 0 < t < u and f(t) < x < g(t), functions v1(t, x) and v2(t, x) solve the backward linear
heat equation

∂vi
∂t

+
1

2

∂2vi
∂x2

= 0, i = 1, 2,

with corresponding boundary conditions

v1(t, f(t)) = 0, v1(t, g(t)) = 0, v1(u, x) = I
(
x ≤ K

)
and

v2(t, f(t)) = 1, v2(t, g(t)) = 0, v2(u, x) = 0.

To find v1(0, 0) and v2(0, 0), one can use 3-sigma and rectangle rules approximating function h from
(2.1) with

γ1x− wD ×∆×
∑n

i=1 Φ
(
x−Kie−r(T−t)

Σ(t)

)
1√

2πσ2
κ

e
− (Ki−κ)2

2σ2
κ − γ2

γ3
(4.3)

where Ki = (κ − 3σκ) + (i − 1)∆ + ∆
2 and ∆ = (κ+3σκ)−(κ−3σκ)

n = 6σκ
n , i = 0, 1, ..., n − 1, n ∈ N,

and then apply Crank-Nicolson finite difference method which is used for numerically solving the
heat equation (see, e.g., [37] and [39]). Recall that rectangle rule approximates the value of a
definite integral by finding the areas of rectangles with heights equal to corresponding values of the
integrand.
To compute

P
(
τ > u,K1 ≤ Bu ≤ K2

)
, u ∈ [0, T ],

it can be used that

P
(
τ > u,K1 ≤ Bu ≤ K2

)
= P

(
τ > u,Bu ≤ K2

)
− P

(
τ > u,Bu ≤ K1

)
.(4.4)

Based on these results applied for K = g(u) and Brownian motions B and −B, the values of Dm,
Dm,1 and Dm,2 can be derived. Values of qm, φm, φm,1 and φm,2 can be calculated according to

rectangle rule: we can approximate the value of a density function q(x) with F (x+η)−F (x)
η , where

F (x) denotes its corresponding cumulative distribution function and η > 0 is a small number.
Recall that Dm,1, Dm,2, φm,1 and φm,2 are as defined in (A.5).
As an alternative to PDE approach, other numerical methods could be considered (e.g. approxima-
tion by piecewise linear boundaries (see, e.g., [27] and [32]) or Volterra integral equations approach
(see, e.g., [11])).

4.2. A numerical technique to calculate Brownian motion hitting probabilities and
densities for one-sided curved boundaries. Let

τ = inf
(
t ≥ 0 : Bt = g(t)

)
,

deterministic function g is in the class C2
(

[0, u]
)

and satisfies g(0) > 0, and constant K is such

that K ≤ g(u).
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Since

P
(
Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
= P

(
C < Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
+ P

(
min
t∈[0,u]

Bt ≤ C, Bt < g(t),∀t ∈ [0, u], and Bu ≤ K
)

≤ P
(
C < Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
+ P

(
min
t∈[0,u]

Bt ≤ C
)

= P
(
C < Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
+ P

(
max
t∈[0,u]

Bt ≥ −C
)

and

P
(
Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
≥ P

(
C < Bt < g(t),∀t ∈ [0, u], and Bu ≤ K

)
for all C < 0, P

(
Bt < g(t), ∀t ∈ [0, u], and Bu ≤ K

)
can be approximated with

P
(
C1 < Bt < g(t), ∀t ∈ [0, u], and Bu ≤ K

)
,(4.5)

where a constant C1 is defined in (4.2). Probability (4.5) can be evaluated according to the PDE
approach discussed in Section 4.1.
Based on these results applied for Brownian motions B and −B, probabilities Φ1, Φ2, D1, D2, Dl

and Du can be found. To calculate densities q1, q2, φ1, φ2, φl and φu, a rectangle rule can be used.
As in the two-sided boundary case, as an alternative to PDE approach, other numerical methods
can be applied as well (e.g. approximation by piecewise linear functions (see, e.g., [28] and [38]) or
Volterra integral equations approach (see, e.g., [12] and [31])).

4.3. Plots. In view of above methods we can obtain the approximate conditional distribution for
the time of the next jump. The set of parameters used to obtain the plots contained in Figures 3-5
is as follows: r = 0.0001, t = 95, T = 100, α1 = 0.2, σκ = 1, κ = 100, γ1 = 3, γ2 = 40, γ3 = 1,
wD = 20, λZ = 0.1. Given these parameters the dynamics of low and high level boundaries, hl and
hh, is illustrated in Figure 3.

Figure 4 plots the conditional probabilities for time to the next jump when the current state of the
economy is at the low level while Figure 5 plots the corresponding probabilities for the middle level
economy.
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Figure 3. Low and high level boundaries calculated for some set of parameters:
r = 0.0001, t = 95, T = 100, α1 = 0.2, σκ = 1, κ = 100, γ1 = 3, γ2 = 40, γ3 = 1,
wD = 20.



A SIMPLE MODEL FOR MARKET BOOMS AND CRASHES 17

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time to the next jump

C
o

n
d

it
io

n
a

l 
p

ro
b

a
b

ili
ty

 

 

B
t
=245

B
t
=250

B
t
=252

Figure 4. Conditional probability for the time of the next jump given St = sl:
r = 0.0001, t = 95, T = 100, α1 = 0.2, σκ = 1, κ = 100, γ1 = 3, γ2 = 40, γ3 = 1,
wD = 20, λZ = 0.1.
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Figure 5. Conditional probability for the time of the next jump given St = sm:
r = 0.0001, t = 95, T = 100, α1 = 0.2, σκ = 1, κ = 100, γ1 = 3, γ2 = 40, γ3 = 1,
wD = 20, λZ = 0.1.
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Appendix A. Proofs not contained in the main text

Proof of Theorem 2.1. This theorem will be proved in several steps.

Step 1 First, it will be shown that there exist some δ1 ∈ (0, T ) and ∆1 > 0 such that

hh(t)− hl(t) ≥ ∆1, ∀t ∈ (T − δ1, T ).

According to (2.5) and (2.6),

A1 = lim
t↑T

p1(t) = κ−
√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

)
and

A2 = lim
t↑T

p2(t) = κ+

√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

)
,
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which means that A1 < A2.
Then

lim
t↑T

∫ ∞
−∞

Φ
(Ke−r(T−t) − p1(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
−∞

Φ
(

lim
t↑T

Ke−r(T−t) − p1(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
A1

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

and

lim
t↑T

∫ ∞
−∞

Φ
(Ke−r(T−t) − p2(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
−∞

Φ
(

lim
t↑T

Ke−r(T−t) − p2(t)

Σ(t)

) 1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK

=

∫ ∞
A2

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK.

Hence,

lim
t↑T

(
hh(t)− hl(t)

)
=

1

γ3

(
wD

∫ A2

A1

1√
2πσ2

κ

e
− (K−κ)2

2σ2
κ dK − 2γ1

√
−2σ2

κ ln
( γ1

wD

√
2πσ2

κ

))
=

2

γ3

(
γ1

√
2πσ2

κe
z2

2

∫ z

0

1√
2π
e−

y2

2 dy − γ1σκz
)

=: f(z),

where

z =

√
−2 ln

( γ1

wD

√
2πσ2

κ

)
> 0.

Since f(0) = 0 and f ′(z) =
2γ1

√
2πσ2

κze
z2

2
∫ z
0

1√
2π
e−

y2

2 dy

γ3
is positive for z > 0 and 0 for z = 0,

we obtain that

lim
t↑T

(
hh(t)− hl(t)

)
> 0.

Finally, one can take, e.g., ∆1 = 1
2 limt↑T

(
hh(t)− hl(t)

)
and use the definition of the limit.

Step 2 Second, it will be proved that there exists some ∆2 > 0 such that

hh(t)− hl(t) ≥ ∆2, ∀t ∈ [0, T − δ1].

Assume that t ∈ [0, T − δ1]. Then (2.5) and (2.6) imply that

p2(t)− p1(t) = 2

√
−2(σ2

κe
−r(T−t) + Σ2(t)) ln

( γ1

wD

√
2π(σ2

κe
−2r(T−t) + Σ2(t))

)
≥ 2

√
−2(σ2

κe
−rT + α2

1

1− e−2rδ1

2r
) ln
( γ1

wD

√
2π(

α2
1

2r
+ (σ2

κ −
α2

1

2r
)e−2rT )

)
=: δ2 > 0,

which means that, for all y ∈ [− δ2
2 ,

δ2
2 ],

p1(t) ≤ κe−r(T−t) + y ≤ p2(t)
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and, hence,

hh(t) ≥ h(t, κe−r(T−t) + y) ≥ hl(t).(A.1)

Furthermore,

hx(t, κe−r(T−t) + y) =
1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2r(T−t) + Σ2(t)

)e− y2

2(σ2
κe
−r(T−t)+Σ2(t))

)

≤ 1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2rT + Σ2(0)

)e− y2

2(σ2
κe
−rT+α2

1
1−e−2rδ1

2r )

)

Assumption 1 guarantees that there exists some positive δ3 ≤ δ2
2 such that

hx(t, κe−r(T−t) − δ3) = hx(t, κe−r(T−t) + δ3)

≤ 1

γ3

(
γ1 −

wD√
2π
(
σ2
κe
−2rT + Σ2(0)

)e− δ23
2(σ2

κe
−rT+Σ2(T−δ1))

)
=: −δ4 < 0.

Moreover,

hxx(t, x) =
wD(x− κe−r(T−t))

γ3

√
2π(σ2

κe
−2r(T−t) + Σ2(t))(σ2

κe
−r(T−t) + Σ2(t))

e
− (κe−r(T−t)−x)2

2(σ2
κe
−r(T−t)+Σ2(t)) ,

that is, function hx(t, x) is a decreasing function of x for x ≤ κe−r(T−t) and an increasing

function of x for x ≥ κe−r(T−t). This means that, for x ∈ [κe−r(T−t) − δ3, κe
−r(T−t) + δ3],

hx(t, x) ≤ max
(
hx(t, κe−r(T−t) − δ3), hx(t, κe−r(T−t) + δ3)

)
≤ −δ4.

Thus, by the mean value theorem and in view of (A.1),

hh(t)− hl(t) ≥ h(t, κe−r(T−t) − δ3)− h(t, κe−r(T−t) + δ3) ≥ 2δ3δ4 > 0.

Step 3 Finally, it will be shown that there exists some ∆ > 0 such that

hh(t)− hl(t) ≥ ∆, ∀t ∈ [0, T ).

Indeed, one can take ∆ = min(∆1,∆2), and the result follows.

�

Proof of Theorem 3.3. The proof of this theorem will be done in several steps. Denote by τ the
remaining time to the first arrival after t in the sunspot process Z. Recall that τ is independent
of FPt and Z is a Poisson process with intensity λZ . Hence, τ has an exponential distribution with
parameter λZ . Let

FP,τt = σ{(Ps, 0 ≤ s ≤ t), τ}.
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Step 1 Calculation of the conditional probability on the set [St = sl]: By the law of iterated
expectations,

EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FPt

)
= EP

(
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ ≥ u− t

]
EP
(
I
[
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
τNt+1 < t+ τ, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
+ EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > h2(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
.

The first term in this decomposition corresponds to the scenario that there are no shock
arrivals on [t, u) at all and, hence, Brownian motion hits the boundary hh on (t, u). The
new state of the state process is equal to sh and the jump size is Ju(τNt+1).

The second term corresponds to the scenario that the first shock arrival time is t + τ < u
and Brownian motion hits the boundary hh on (t, t+τ). As in the first scenario, the process
switches to sh, the jump size is equal to Jh(τNt+1).

According to the third scenario, the first shock arrival time is t + τ < u, the Brownian
motion value stays smaller than the value of the boundary hh on (t, t+ τ) and at the time
of the shock Bt+τ ≤ hl(t+ τ). As a consequence, there is no jump at time t+ τ .

The fourth scenario is the same as the third one with the only difference that Bt+τ >
hl(t+ τ). Therefore, the price jumps at time t+ τ . With probability plh, the new state of
the state process is sh and the jump size is J lh(t+ τ,Bt+τ ). With probability 1− plh, the
new state of the state process is sm and the jump size is J lm(t+ τ,Bt+τ ).

In view of the independence of τ and FPt , the first and second terms are equal to

e−λZ(u−t)
∫ u

t
I(sh ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy

and

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(sh ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy
]
dr,

where

φ1(u, t, y) = −∂D1(u, t, y)

∂u
, D1(u, t, y) = P

(
Bs < hh(t+ s)− y,∀s ∈ [0, u− t]

)
.(A.2)
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The third term is equal to

EP
(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ hl(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
EP
(
I
[
Bt+τ ≤ hl(t+ τ), (Bs < hh(s), ∀s ∈ [t, t+ τ))

]
I
(
τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

)
| FPt+τ

)
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ ≤ hl(t+ τ), (Bs < hh(s),∀s ∈ [t, t+ τ))

]
F1(t+ τ,Bt+τ , u, C1, C2) | FP,τt

)
| FPt

)
=

∫ u−t

0
λZe

−λZr
[∫ hl(t+r)

−∞
q1(x; r, t, Bt)F1(t+ r, x, u, C1, C2)dx

]
dr,

where q1(x; r, t, y) is the density of Br on the set
[
Bs < hh(t+ s)− y,∀s ∈ [0, r]

]
, and the

fourth term is equal to

EP
(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > hl(t+ τ), t+ τ ≤ τNt+1 < u, SτNt+1 ∈ C1, JNt+1 ∈ C2

]
| FP,τt

)
| FPt

)
= EP

(
I
[
τ < u− t

]
EP
(
I
[
Bt+τ > hl(t+ τ), (Bs < hh(s), ∀s ∈ [t, t+ τ))

]
I
(
SτNt+1 ∈ C1, JNt+1 ∈ C2

)
| FP,τt

)
| FPt

)
=

∫ u−t

0
λZe

−λZr
[∫ hh(t+r)

hl(t+r)
q1(x; r, t, Bt)

(
plhI(sh ∈ C1, J

lh(t+ r, x) ∈ C2)

+ plmI(sm ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr.

Combining all the terms, we get that

F1(t, Bt, u, C1, C2) = e−λZ(u−t)
∫ u

t
I(sh ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(sh ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ hl(t+r)

−∞
q1(x; r, t, Bt)F1(t+ r, x, u, C1, C2)dx

+

∫ hh(t+r)

hl(t+r)
q1(x; r, t, Bt)

(
plhI(sh ∈ C1, J

lh(t+ r, x) ∈ C2)

+ plmI(sm ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr.(A.3)

Step 2 Calculation of conditional probability on the set [St = sm]: According to the first scenario,
there are no shock arrivals on [t, u) at all and, hence, Brownian motion hits one of the two
boundaries hh or hl on (t, u). If it hits hh earlier than hl, then the new state of the state
process is sh and the jump size is equal to Jh(t+τNt+1). If it hits hl earlier than hh, then the
new state of the state process is sl and the jump size is equal to J l(t+ τNt+1). According to
the second scenario, the first shock arrival time is t+ τ < u and Brownian motion hits one
of the two boundaries hh or hl on (t, t+ τ), then the new state of the state process and the
jump size are determined by the same mechanism as in the first scenario. Finally, according
to the third scenario, the first shock arrival time is t + τ < u and Brownian motion stays
between both boundaries hh and hl on [t, t + τ ]. With probability pmh, the new state of
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the state process is sh and the jump size is Jmh(t + τ,Bt+τ ). With probability 1 − pmh,
the new state of the state process is sl and the jump size is Jml(t + τ,Bt+τ ). Taking this
decomposition, we obtain the formula for F2:

F2(t, Bt, u, C1, C2)

= e−λZ(u−t)
∫ u

t

[
I(sh ∈ C1, J

h(y) ∈ C2)φm,1(y, t, Bt) + I(sl ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t

[
I(sh ∈ C1, J

h(y) ∈ C2)φm,1(y, t, Bt) + I(sl ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ hh(t+r)

hl(t+r)
qm(x; r, t, Bt)

(
pmhI(sh ∈ C1, J

mh(t+ r, x) ∈ C2)

+ pmlI(sl ∈ C1, J
ml(t+ r, x) ∈ C2)

)
dx
]
dr,

(A.4)

where qm(x; r, t, y) is the density of Br on the set
[
hl(t+ s)− y < Bs < hh(t+ s)− y,∀s ∈

[0, r]
]

and

φm,1(u, t, y) =
∂Dm,1(u, t, y)

∂u
, Dm,1(u, t, y) = P

(
τ(t, y) ≤ u− t, Bτ(t,y) = hh(t+ τ(t, y))− y

)
,

φm,2(u, t, y) =
∂Dm,2(u, t, y)

∂u
, Dm,2(u, t, y) = P

(
τ(t, y) ≤ u− t, Bτ(t,y) = hl(t+ τ(t, y))− y

)
,

τ(t, y) = inf{s ≥ 0 : Bs = hl(t+ s)− y or Bs = hh(t+ s)− y}.(A.5)

Step 3 Calculation of conditional probability on the set [St = sh]: The conditional probability on
the set [St = sh] satisfies

F3(t, Bt, u, C1, C2) = e−λZ(u−t)
∫ u

t
I(sl ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(sl ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ ∞
hh(t+r)

q2(x; r, t, Bt)F3(t+ r, x, u, C1, C2)dx

+

∫ hh(t+r)

hl(t+r)
q2(x; r, t, Bt)

(
phlI(sl ∈ C1, J

hl(t+ r, x) ∈ C2)

+ phmI(sm ∈ C1, J
hm(t+ r, x) ∈ C2)

)
dx
]
dr,(A.6)

where q2(x; r, t, y) is the density of Br on the set
[
Bs > hl(t+ s)− y,∀s ∈ [0, r]

]
and

φ2(u, t, y) = −∂D2(u, t, y)

∂u
, D2(u, t, y) = P

(
Bs > hl(t+ s)− y,∀s ∈ [0, u− t]

)
.(A.7)

The calculation procedure is patterned after Step 2.

�
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Proof of Lemma 3.1. Calculations pattern after Theorem 3.3 and yield the following:

F7(u, t, Bt, C) = e−λZ(u−t)
∫ u

t
I(ph(y, hh(y)) ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(ph(y, hh(y)) ∈ C1, J

h(y) ∈ C2)φ1(y, t, Bt)dy

+

∫ hl(t+r)

−∞
q1(x; r, t, Bt)F7(u, t+ r, x, C)dx

+

∫ hh(t+r)

hl(t+r)
q1(x; r, t, Bt)

(
plhI(ph(t+ r, x) ∈ C1, J

lh(t+ r, x) ∈ C2)

+ plmI(pm(t+ r, x) ∈ C1, J
lm(t+ r, x) ∈ C2)

)
dx
]
dr,

F8(u, t, Bt, C) = e−λZ(u−t)
∫ u

t

[
I(ph(y, hh(y)) ∈ C1, J

h(y) ∈ C2)φm,1(y, t, Bt)

(A.8)

+ I(pl(y, hl(y)) ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t

[
I(ph(y, hh(y)) ∈ C1, J

h(y) ∈ C2)φm,1(y, t, Bt)

+ I(pl(y, hl(y)) ∈ C1, J
l(y) ∈ C2)φm,2(y, t, Bt)

]
dy

+

∫ hh(t+r)

hl(t+r)

(
pmhI(ph(t+ r, x) ∈ C1, J

mh(t+ r, x) ∈ C2)

+ pmlI(pl(t+ r, x) ∈ C1, J
ml(t+ r, x) ∈ C2)

)
qm(x; r, t, Bt)dx

]
dr,

F9(u, t, Bt, C) = e−λZ(u−t)
∫ u

t
I(pl(y, hl(y)) ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ u−t

0
λZe

−λZr
[∫ t+r

t
I(pl(y, hl(y)) ∈ C1, J

l(y) ∈ C2)φ2(y, t, Bt)dy

+

∫ ∞
hh(t+r)

q2(x; t, Bt, r)F9(u, t+ r, x, C)dx

+

∫ hh(t+r)

hl(t+r)
q2(x; t, Bt, r)

(
phlI(pl(t+ r, x) ∈ C1, J

hl(t+ r, x) ∈ C2)

+ phmI(pm(t+ r, x) ∈ C1, J
hm(t+ r, x) ∈ C2)

)
dx
]
dr.

In above representation, J i and J ij are as defined in (3.1) and φm,1 and φm,2 are as defined in (A.5).

Recall that qm(x; r, t, y) is the density of Br on the set
[
hl(t + s) − y < Bs < hh(t + s) − y,∀s ∈

[0, r]
]
. �
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Proof of Lemma 3.2. Applying Leibniz’s rule for differentiating integrals to F7, F8 and F9, we
obtain F10(u, t, Bt, C) satisfies

F10(u, t, Bt, C) = e−λZ(u−t)I(ph(u, hh(u)) ∈ C1, J
h(u) ∈ C2)φ1(u, t, Bt)

+ λZe
−λZ(u−t)

[∫ hh(u)

hl(u)
q1(x;u− t, t, Bt)

(
plhI(ph(u, x) ∈ C1, J

lh(u, x) ∈ C2)

+ plmI(pm(u, x) ∈ C1, J
lm(u, x) ∈ C2)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ hl(t+r)

−∞
q1(x; r, t, Bt)F10(u, t+ r, x, C)dx

]
dr,(A.9)

F11(u, t, Bt, C) = e−λZ(u−t)
[
I(ph(u, hh(u)) ∈ C1, J

h(u) ∈ C2)φm,1(u, t, Bt)

+ I(pl(u, hl(u)) ∈ C1), J l(u) ∈ C2)φm,2(u, t, Bt)
]

+ λZe
−λZ(u−t)

[∫ hh(u)

hl(u)
qm(x;u− t, t, Bt)

(
pmhI(ph(u, x) ∈ C1, J

mh(u, x) ∈ C2)

+ pmlI(pl(u, x) ∈ C1, J
ml(u, x) ∈ C2)

)
dx
]

(A.10)

and F12(u, t, Bt, C) satisfies

F12(u, t, Bt, C) = e−λZ(u−t)I(pl(u, hl(u)) ∈ C1, J
l(u) ∈ C2)φ2(u, t, Bt)

+ λZe
−λZ(u−t)

[∫ hh(u)

hl(u)
q2(x; t, Bt, u− t)

(
phlI(pl(u, x) ∈ C1, J

hl(u, x) ∈ C2)

+ phmI(pm(u, x) ∈ C1, J
hm(u, x) ∈ C2)

)
dx
]

+

∫ u−t

0
λZe

−λZr
[∫ ∞

hh(t+r)
q2(x; t, Bt, r)F12(u, t+ r, x, C)dx

]
dr.(A.11)

In particular, for C = R2, indicator functions in (A.9), (A.10), and (A.11) are equal to 1, and the

result for g(i+1)(u,R2) follows. �
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