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Umut Çetin∗ Michel Verschuere†

October 21, 2009

Abstract

We propose a model for trading in emission allowances in the EU Emission Trading
Scheme (ETS). Exploiting an arbitrage relationship we derive the spot prices of car-
bon allowances given a forward contract whose price is exogenous to the model. The
modeling is done under the assumption of no banking of carbon allowances (which is
valid during the Phase I of Kyoto protocol), however, we also discuss how the model
can be extended when banking of permits is available. We employ results from filtering
theory to derive the spot prices of permits and suggest hedging formulas using a local
risk minimisation approach. We also consider the effect of intermediate announcements
regarding the net position of the ETS zone on the prices and show that the jumps in
the prices can be attributed to information release on the net position of the zone. We
also provide a brief numerical simulation for the price processes of carbon allowances
using our model to show the resemblance to the actual data.

Keywords: CO2 emission allowances, EU ETS, incomplete information, stochastic
filtering, minimal martingale measure.

1 Introduction

Global warming and its dangerous consequences have gained increased public attention in
recent years. There is now broad scientific consensus that greenhouse gas emissions related
to human activities are responsible for the increase in atmospheric temperatures recorded
since the middle of the nineteenth century. Sustained economic growth since the industrial
revolution has gone hand in hand with an increased burning of fossil fuels such as coal, oil
and gas in a chemical process that releases carbon dioxide (CO2), one of the most abundant
greenhouse gases. Various scientific studies have pointed at the severe economic burden of
global warming for future generations if rising concentrations of CO2 and other greenhouse
gases are not curbed within the next twenty to thirty years, see [6] for a recent account.
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The Kyoto protocol was opened for signature at the 1997 conference in Kyoto, Japan and
assigns mandatory emission limits for greenhouse gases to signatory nations. These nations
must reduce their emissions for carbon dioxide and five other gases in 2008-2012 by 5% with
respect to 1990 levels in order to comply with the protocol. Signatory nations that do not
meet these targets will be penalized, but emission rights, called ‘allowances’, may otherwise
be traded bilaterally in a process referred to as ‘carbon trading’.

The European Commission launched the European Climate Change Programme (ECCP)
in June 2000 with the objective to identify, develop and implement the essential elements of
an EU strategy to implement the Kyoto Protocol. All 25 EU countries simultaneously ratified
the Kyoto Protocol on 31 May 2002. The European Union Emission Trading Scheme (EU
ETS) is a significant part of the ECCP and currently constitutes the largest emissions trading
scheme in the world. It is widely regarded as a trial phase for the eventual Kyoto period
(2008-2012) during which carbon emission allowances will become a traded commodity on an
even larger, global scale. To participate in the ETS, EU member states must first submit a
National Allocation Plan (NAP) for approval to the European Commission. Selected carbon
intensive installations such as steel manufacturers, power stations of above 20 MW capacity,
cement factories, etc. receive free emission allowances under the terms of this NAP, enabling
them to emit greenhouse gases up to the assigned tonnage.

Installations can bilaterally trade emission allowances under the EU ETS, in order to
offset any excess or shortage of carbon emission permits compared to the NAP issuance.
About 12.000 installations within the Union are covered by the EU ETS in a first phase (2005-
2007), representing almost 50% of total carbon emissions. The EU ETS enables selected
industries to reduce carbon emissions in a cost effective manner, i.e. carbon emissions come
at a cost but installations can opt for either reducing actual carbon emissions or buying
additional allowances, for instance in case upgrading of the installation would turn out more
expensive. The NAP only imposes a cap on the total actual carbon emissions per member
state.

Actual trading in EU ETS emission allowances began January 1st, 2005. By the end of
the same year, almost 400 million tonnes of carbon equivalent had been traded, representing
a turnover in excess of EUR 7 billion. The impact of the release of sensitive information
regarding the ETS net position in carbon emission allowances can be dramatic, as was
illustrated in April 2006. First phase EU ETS carbon, in the form of the allowance expiring
in December 2007, written Dec-07, had reached EUR 30 per tonne at their high in April
2006. Prices subsequently plumetted to below EUR 10 per tonne in a few days beginning
May 2006 (see Figure 1) after EU figures on actual 2005 emission levels suggested emission
caps to selected industries had been too generous to have a significant impact on emission
practice. Emission caps for the second phase (2008-2012) are currently under review because
of this apparent generosity of NAP levels in the first phase.

Every installation included in the EU ETS has to surrender carbon allowances at the
end of April of every calendar year in order to cover its emissions during the preceding
year. In case the installation is not able to surrender enough allowances a penalty of EUR
100 (EUR 40 for Phase I) for each tonne of excess emission is to be paid. Payment of
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the excess emission penalty, however, does not release the installation from the obligation
to surrender the number of allowances equal to those excess emissions. The company is
required to provide these allowances when surrendering the carbon allowances in relation to
the following calendar year. The essential difference between Phase I and II lies in the fact
that the banking of allowances is not permitted during Phase I and, thus, the allowances
expires at their stated maturity, while the allowances issued during Phase II can be banked
by the installations for future use. The mechanism described above provides a direct link
between the spot and forward prices of carbon allowances. To see this consider, e.g., the
so-called Dec-07 and Dec-08 contracts that had been traded in the EU ETS during 2007.
Dec-07 contract expires at the end of December 2007 and can be used to cover emissions
during 2007. On the other hand Dec-08 contract has maturity December 2008 and can only
be used to cover emissions during the calendar year of 2008. Since these two contracts are
traded during Phase I in which banking is not allowed Dec-07 contracts cannot be used to
cover emissions in 2008. Therefore, the prices of Dec-07 contracts can be viewed as the spot
price for carbon allowances during 2007 and the Dec-08 contracts can be viewed as a forward
contract. Prices of Dec-07 contracts at the end Dec-07 will be zero if the EU zone is net
long EU ETS allowances in 2007. Indeed, since the zone is net long there are some firms
holding carbon allowances that they do not need. We may assume there are at least two
such firms since the number of installations in the scheme is large enough. The competition
among these firms will drive the price of the Dec-07 allowances to 0. On the other hand,
if the zone is net short then Dec-07 contracts will not be worthless and their price will be
equal to the price of Dec-08 contract plus the penalty due to the aforementioned regulations
on the surrendering of the allowances. the Industries can then opt for borrowing their short
ETS position into the next phase at a fixed cost of EUR 40 per tonne.

A similar arbitrage relationship between the spot and forward prices of carbon exists in
Phase II. However, the situation is a little more complicated due to banking. In particular the
price of the spot will not be zero even if the zone is net long since the current allowances can
be used later to cover emissions. We discuss how the model can be extended to incorporate
banking of the permits in Section 7. Banking is also permitted between phase II and phase III
(2013-2017), but as the mechanism beyond the 2012 Kyoto deadline is still largely unknown,
we will not address the consequences of this additional optionality for now.

In this paper, we provide a framework to study the spot prices of carbon allowances
traded in EU ETS. Using the above no-arbitrage principle between the spot and forward
prices of carbon allowances we shall derive the pricing formulas for the carbon allowances by
assuming an exogenous price process for the forward contract. We study the pricing using a
local risk minimising criteria under two settings where the market’s net position is common
knowledge and is not. This approach also enables us to come up with the optimal hedging
strategy for the spot contract. In this incomplete information setting we use techniques
from stochastic filtering theory in order to model the market’s estimate for the net position.
Moreover, our approach enables us to calculate the probability of net long position.

The relationship between the probability of market being long and the prices of EUA
contracts has also been observed in [1]. Their observation is based on their intuition and
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Figure 1: EUA price history between June 7th, 2005 and May 5th, 2007

they do not intend to do a rigorous mathematical analysis. Moreover, to the best of our
knowledge, an in-depth quantitative analysis of the pricing and hedging issues in EU ETS is
yet to be done. Paolella and Taschini [8] makes an econometric analysis of EU ETS market.
Seifert, et al. [11] and Fehr and Hinz [2] study the spot carbon prices in equilibrium. Seifert,
et al. avoid the natural complications of an equilibrium analysis by assuming every market
participant risk-neutral or the existence of a representative agent with a logarithmic utility,
thereby reducing the problem to the problem of a central planner who aims to maximize the
total profit of all agents. Fehr and Hinz study an equilibrium among N market participants.
Although the setting is more realistic, the model only gives a characterization of spot prices
but does not produce explicit solutions. In this paper we avoid the equilibrium approach
to spot prices but use aforementioned arbitrage relationship to come up with an explicit
semimartingale represenation for the carbon spot prices.

The outline of the paper is as follows. Section 2 introduces the underlying model for
the pricing of carbon credits. Section 3 studies the pricing and hedging of carbon credits
under the complete information on the market’s net position while Section 4 studies the
same problem under, more realistic, incomplete information setting. Section 5 discusses the
effects of intermediate announcements of the net position over the spot prices. Section 6
presents a numerical study and Section 7 concludes. In the appendix we provide a glossary
of terms and abbreviations used in the paper for the convenience of the reader.
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2 Model

We start with a filtered probability space, (Ω,F , (Ft)t≥0,P), satisfying usual conditions. All
stochastic processes in what follows will be defined on and adapted to this space. We consider
a market for the trading of the EUAs (carbon allowances traded in the EU ETS scheme) as
described in the introduction. For simplicity, we assume there are two EUAs traded in the
market: EUA for the current year, denoted with EUA0, and EUA for the next year, denoted
with EUA1. An example could be the market for Dec-07 and Dec-08 contracts traded in EU
ETS 2007. We suppose the price process, S, for the EUA1 contract is a continuous process
satisfying

dSt = Stµ(t, St, θt)dt+ Stσ(t, St, θt)dWt, (2.1)

with S0 = s. Here, θ is a Markov chain, which we shall describe shortly, modelling the net
position of the market, and W is a Brownian motion independent of θ. Thus, we assume
(θ, S) is a vector Markov process. In order to have transparent results we simplify the
modelling of S by assuming

σ(t, s, x) = σ and µ(t, s, x) = µ+ αθ, (2.2)

for some constants σ, µ and α, for all t, s, and x.
As seen, the drift term depends on the position of the market. The process θ is supposed

to be a càdlàg Markov chain in continuous time taking values in E := {−1, 1}. The modelling
idea is that θt = 1 (resp. θt = −1) corresponds to market being long (resp. short) at time
t. The heuristics behind this choice relate to the fact that interest in the current year EUA
contract decreases as the zone proves long allowances, implying that market participants
’roll’ their position one year forward which, in its turn, affects the price for the allowance
for delivery in the next year. Therefore, the corresponding drift term when market is long
is µ+α while the drift equals µ−α when the market is short. The assumption that θ takes
only two values is for simplicity and our theory can be extended to the case when E is any
finite set, although some extra effort in calculations will be needed. When E has more than
two elements, the states of the Markov chain can be considered as an indicator of how long
or short the overall position of the market is.

As explained in Introduction, in the case of excess emissions, the payment of the penalty
does not remove the obligation to deliver permits, which means undelivered permits still have
to be handed in the next calendar year. Hence, in the case of permit shortage, one would
expect an upwards shift in the demand for the EUA1 contracts. In view of this observation
we typically expect α to be negative.

We suppose the Markov chain θ stays in state i for an exponential amount of time with
parameter λ(i). More precisely, if R is a 2× 2 matrix of transition probabilities with entries
Rt(i, j) := P(θt = j|θ0 = i) and Q is the generator matrix defined by

Q =

(
−λ(1) λ(1)
λ(2) −λ(2)

)
,
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then the transition probabilities solves the forward equation

R′t = RtQ, R0 = I, (2.3)

where I is the identity matrix and R′t(i, j) = d
dt
Rt(i, j). We denote the initial distribution

for θ with p. The following result is well-known (see e.g. [4])

Lemma 2.1 Let θ be the right-continuous Markov chain taking values in E with the initial
distribution p and the generator matrix Q. Then,

θt = θ0 − 2

∫ t

0

θsλ(θs)ds+Nt, (2.4)

for each t, where N is a martingale. Moreover, the decomposition θ = θ0 +N + A where N
is a martingale and A is a predictable process with N0 = A0 = 0 is unique.

The following assumption is to simplify the computations and the exposition. We stress here
that our approach still works without the next assumption.

Assumption 2.1 λ(1) = λ(2) = λ.

Now we turn to the pricing of EUA0 contracts. Under the assumption of no banking of
permits these contracts will be worthless if market ends up long at their respective expiry
date, which we denote with T . If the market is instead short at time T, then these contracts
can be turned into an EUA1 contract by paying a penalty K. Letting P denote the price
process of EUA0 contracts, this implies we have the following relation between S and P at
time T

PT =

{
ST +K, if θT ≤ 0;

0, otherwise,
(2.5)

so that EUA0 can be considered as an option on EUA1. In the next two sections we will
discuss the local risk minimisation approach to the pricing and hedging in EU ETS market.

3 Pricing and hedging under complete information

The model introduced above for the prices of carbon allowances is typically incomplete. This
is because the price process S depends on two sources of uncertainity, W and θ, while θ is
not tradable. As we are in an incomplete setting, there is usually an interval of arbitrage-
free prices, and depending on the chosen approach one could come up with different prices
and hedging strategies for the same derivative. In this paper we will use the so-called local-
risk minimisation approach and for background reading we refer to Schweizer [10], Fölmer
and Schweizer [3], and Monat and Stricker [7]. We suppose the traders have access to full
information about the market so that they have the filtration F := (Ft)0≤t≤T . Following [3]
we define the optimal hedging strategy for a given contingent claim as follows.
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Definition 3.1 Let C ∈ L2(Ω,FT ,P) be a contingent claim. A predictable trading strategy
ξC is said to be optimal if there exists a square integrable F-martingale, LC, orthogonal to
W such that

C = c+

∫ T

0

ξtdSt + LCT . (3.6)

A second look at the decomposition in (3.6) reveals that
∫ T

0
ξtdSt corresponds to the part of

the risk that is hedgable. LCT on the other hand corresponds to the intrinsic risk associated
with the contingent claim that is not hedgable. Existence of (3.6) is intimately linked to the
so-called minimal martingale measure.

Definition 3.2 Let X be a continuous semimartingale with the canonical decomposition
X = X0 +M +A with M a martingale and A is adapted, continuous and of finite variation.
A probability measure P̂ ∼ P is called minimal martingale measure if X follows a martingale
under P̂, P̂ = P on F0 and any square integrable martingale orthogonal to M remains a
martingale under P̂.

The minimal martingale measure is uniquely determined (see, e.g., [3]) and in our case is
defined by

dP̂
dP

= exp

(
−
∫ T

0

µ+ αθs
σ

dWs −
1

2

∫ T

0

(
µ+ αθs

σ

)2

ds

)
. (3.7)

Note that

Gt := exp

(
−
∫ t

0

µ+ αθs
σ

dWs −
1

2

∫ t

0

(
µ+ αθs

σ

)2

ds

)
defines a square integrable martingale.

The following theorem is from [3].

Theorem 3.1 (Theorem 3.14 in [3]) Let C ∈ L2(Ω,FT ,P) and let P̂ be the unique min-
imal martingale measure for S given by (3.7). Then there exists a unique ξC such that

Vt = Ê[C] +

∫ t

0

ξCs dSs + LCt ,

where LC is an F-martingale orthogonal to W and Vt := Ê[C|Ft].

In view of the above theorem we conclude that ξC defined by the Radon-Nikodym derivative

ξCt :=
d〈V, S〉
d〈S〉

is the optimal strategy in the sense of Definition 3.1. The following definition gives the price
of a contingent claim under complete information.
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Definition 3.3 Let C ∈ L2(Ω,FT ,P) be a contingent claim and let P̂ be the unique minimal
martingale measure for S given by (3.7). The fair price PC

t at time t for C is given by

PC
t := Ê[C|Ft].

For the problem under consideration C = (ST+K)1{θT =−1} = ST +K
2

(1−θT ). In the remaining
of this section we calculate the price and hedging strategy for EUA0 contracts. In view of
Lemma 2.1, θ = θ0+N+A where N is a martingale and A is a predictable process defined by
At = −2λ

∫ t
0
θsds. Since θ and W are independent, it follows that N and W are orthogonal

martingales under P; thus, N remains a martingale under P̂ and is orthogonal to S. Since S
is square integrable under P̂,

Ê
[∫ T

0

A2
sd〈S〉s

]
<∞,

so that
∫ ·

0
AsdSs∧T is a square integrable martingale. Therefore, letting Êt[·] denote Ê[·|Ft],

Pt = Êt

[
ST +K

2
(1− θ0 −NT )− ST +K

2
AT

]
=

St +K

2
(1− θ0 −Nt)− Êt

[
ST +K

2
AT

]
. (3.8)

The only term that needs to be calculated is the expectation in (3.8). For this we will use
the explicit form for A.

Proposition 3.1 Let

Mt := θt exp(−2λ(T − t)), t ∈ [0, T ].

Then M is a P̂-martingale and

Êt

[
ST +K

2
AT

]
= θt

St +K

2
exp(−2λ(T − t))− (θ0 +Nt)

St +K

2
.

Proof. Let

Yt = θt
St +K

2
exp(−2λ(T − t))− (θ0 +Nt)

St +K

2
.

Since YT = ST +K
2

AT it suffices to show Y is P̂-martingale. Since N is a P̂-martingale

orthogonal to S it follows that (θ0 +N)(S +K)/2 is a P̂-martingale. Moreover,

θt exp(−2λ(T − t)) = θ0 exp(−2λT ) +

∫ t

0

exp(−2λ(T − s)dθs +

∫ t

0

2λθs exp(−2λ(T − s))ds

= θ0 exp(−2λT ) +

∫ t

0

exp(−2λ(T − s)dNs

since dAt = −2λθtdt. This implies (Mt)0≤t≤T is a martingale orthogonal to S so that
(θt

St+K
2

exp(−2λ(T − t)))0≤t≤T is a martingale, too. �
Summing up the above calculations we have the following result:
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Theorem 3.2 The fair price for EUA0 contracts is given by

Pt = (St +K)
1− θt exp(−2λ(T − t))

2
.

The optimal hedging strategy, ξ0 associated with EUA0 contracts is given by

ξ0
t :=

1−Mt

2
,

for each t ∈ [0, T ].

Proof. Expression for the price follows from (3.8) and Proposition 3.1. To find the
hedging strategy it suffices to find the integral representation for P , which equals

Pt = (S0 +K)(1− θ0 exp(−2λT )/2) +

∫ t

0

1−Ms

2
dSs −

∫ t

0

(Ss +K)dMs,

for each t ∈ [0, T ]. �
In other words, part of the risk at time t, corresponding the term

∫ t
0

1−Ms

2
dSs, associated

to the claim CT can be hedged if one follows the locally-risk minimising strategy which consist
of holding (1−M)/2 shares of the traded underlying, whose price process is given by S.

4 Pricing under incomplete information

The EU ETS market participants typically do not observe θ continuosly. In this section we
study the pricing of EUA0 contracts under incomplete information. We suppose the only
information available to the market is the usual right-continous and complete augmentation
of S, denoted with FS and the one-time announcement of the true value of θ at time T . If
G denotes the filtration modelling the information structure of the market, then

Gt =

{
FSt , for t < T ;
FST ∨ σ(θT ), for t = T.

Let θ denote the optional projection of θ to FS which gives θt = E[θt|FSt ], for each t ≥ 0. We
now apply the aforementioned local-risk minimisation approach to the pricing and hedging
of EUA0 under incomplete information, i.e. when the available information is modelled by
G.

Theorem 4.1 Define W by

W t =

∫ t

0

dSs − (µ+ αθs)Ssds

σSs
,

and Z by Zt = 1[t=T ](θT −θT ) for each t ≥ 0. Then, W and Z are orthogonal G-martingales.
Moreover, W is a G-Brownian motion.
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Proof. It follows from standard filtering theory, see, e.g., [5], that W is an FS-Brownian
motion. Observe that W stays a martingale when FS is enlarged with σ(θT ) at time T . This
is simply because E[W T |Gt] = E[W T |FSt ] = W t, for each t < T . This shows that W is a
G-Brownian motion as well by Lévy’s characterisation of Brownian motion. To show Z is a
G-martingale observe that, for t < T , E[ZT |Gt] = E[ZT |FSt ] = E[E[ZT |FST ]|Ft] = 0 = Zt. Z
and W are orthogonal since [W,Z] = 0. �

Using standard filtering theory (see Theorem 8.1 in [5]) and the fact that θ2 = 1, we have

dθt = −2λθtdt+
α

σ
(1− θt

2
)dW t, (4.9)

with θ0 = 2p− 1. Note that under the smaller filtration, G, P̂ will no longer be the minimal
martingale measure for S. However, there is still a unique minimal martingale measure,
denoted with P∗, associated with S with respect to G.

Definition 4.1 The fair price of the EUA0 contracts at time t under incomplete information
is defined to be

P t := E∗[(ST +K)(1− θT )/2|Gt],

where E∗ is the expectation operator under P∗.

Note that

Pt = E∗[(ST +K)(1− θT )/2|Gt] = E∗[(ST +K)(1− θT )/2|Gt]− E∗[(ST +K)ZT/2|Gt]

= E∗[(ST +K)(1− θT )/2|Gt]− (St +K)
Zt
2
. (4.10)

Theorem 4.2 Under P∗, (S, θ) is a vector Markov process. Moreover,

dSt = σStdW
∗
t , S0 = s; (4.11)

dθt = −
(

2λθt +
α

σ2
(1− θt

2
)(µ+ αθt)

)
dt+

α

σ
(1− θt

2
)dW ∗

t , θ0 = 2p− 1, (4.12)

where W ∗ is a (G,P∗)-Brownian motion and p = P[θ0 = 1].

Proof. It suffices to show (S, θ) satisfies (4.11) and (4.12), which will in turn imply (S, θ)
is Markov. That S satisfies (4.11) follows from the definition of P∗. Then,

dθt = −2λθtdt+
α

σ
(1− θt

2
)dW t

= −
(

2λθt +
α

σ2
(1− θt

2
)(µ+ αθt)

)
dt+

α

σ2

1− θt
2

St
dSt.

�
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Theorem 4.3 Let h : R+×R+× [−1, 1] 7→ R be the solution to the boundary value problem

ht(t, x, y) + Lh(t, x, y) = 0,

h(T, x, y) =
x+K

2
(1− y),

where

Lh(t, x, y) :=
1

2
σ2x2hxx(t, x, y) +

1

2

α2

σ2
(1− y2)2hyy(t, x, y) + αx(1− y2)hxy(t, x, y)

−hy(t, x, y)
(

2λy +
α

σ2
(1− y2)(µ+ αy)

)
.

Then

P t = h(t, St, θt)− Zt
St +K

2
.

Moreover, the optimal strategy under incomplete information associated to EUA0 contracts
is given by the process ξ = (ξt)0≤t≤T where

ξt := hx(t, St, θt) +
α

σ2

1− θ2

t

St
hy(t, St, θt),

for each t ∈ [0, T ].

Proof. Note that h(T, ST , θT ) = ST +K
2

(1−θT ). Thus, it remains to show
(
h(t, St, θt)

)
0≤t≤T

is a G-martingale. Using Itô’s formula

h(t, St, θt) = h(0, S0, θ0) +

∫ t

0

{
hx(s, Ss, θs) +

α

σ2

1− θ2

s

Ss
hy(s, Ss, θs)

}
dSs

+

∫ t

0

ht(s, Ss, θs) + Lh(s, Ss, θs)ds

= h(0, S0, θ0) +

∫ t

0

{
hx(s, Ss, θs) +

α

σ2

1− θ2

s

Ss
hy(s, Ss, θs)

}
dSs.

Moreover, the integrand in the last integral is the optimal strategy. �
The above methodology also enables us to price and hedge contingent claims on θ such as

digital options. Suppose there exists a digital option which pays EUR 1 if the market is short
at time T . If D is the fair price process of this digital option then Dt = E∗[(1 − θT )/2|Gt]
due to earlier arguments. Thus, Dt = E∗[(1− θT )/2|Gt]−Zt/2. Proceeding along the similar
lines for the pricing of EUA0 contracts we have the following result.

Theorem 4.4 Consider a digital option which pays EUR 1 if the market is short at time
T . The fair price process, D, of this option is given by

Dt = h(t, θt)−
Zt
2
,
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where h is the solution to

ht(t, y) + Lh(t, y) = 0,

h(T, y) =
1− y

2
,

and

Lh(t, y) :=
1

2

α2

σ2
(1− y2)2hyy(t, x, y)− hy(t, x, y)

(
2λy +

α

σ2
(1− y2)(µ+ αy)

)
.

Moreover, the optimal strategy under incomplete information associated to the digital option
is given by ξD = (ξDt )0≤t≤T where

ξDt :=
α

σ2

1− θ2

t

St
hy(t, θt),

for each t ∈ [0, T ].

As we mentioned in introduction, we can calculate the probabilities associated to the
market’s position. Let πi(t) := P[θt = i|Gt] for each i ∈ {−1, 1}. Clearly, θt = π1(t)−π−1(t) =
2π1(t)− 1. Since

dθt = −2λθtdt+
α

σ
(1− θt

2
)dW t,

a little algebra now yields

π1(t) = p+

∫ t

0

λ (1− 2π1(s)) ds+

∫ t

0

π1(s)
2α(1− π1(s))

σ
dW s. (4.13)

5 The effect of intermediate announcements

In reality, there are instants at which intermediate announcements regarding the zone’s net
position are made. Every year, the European union aggregates submitted emission data and
compares this to the quantity of allowances surrendered. The processing of emissions data
for the entire zone usually takes a couple of months time, and announcements on the zone’s
net position are not released until mid April every year. Until that time, spot trading in the
contract for delivery in the past year still takes place. As the EU so announces net results
every year, we must look a bit deeper into the effects of intermediate announcements on
net positions. Intuitively, one expects intermediate announcements to affect prices on more
than one occasion, where the impact can be as dramatic as what happened with Dec-07
prices early May 2006. This event was also induced by intermediate announcements, then
regarding the net position for the emission year 2005. The long position then implied zero
value for Dec-05 allowances, but prices for Dec-07 were also affected, the difference being
that its price remained positive, as risk regarding the net positions for 2007 persisted. In
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the remainder of this section, we will study the impact of such intermediate announceents
in the framework of our model.

To be more concrete, suppose at some t0 < T the true position of the zone is revealed
to the market. To ease the calculations we further assume that there will be no further
announcements before time T . As it will be seen from the following calculations, this as-
sumption does not effectively restrict the model since the formulas can be readily extended
to the case with multiple announcements. Note that we still keep the incomplete information
setting described in Section 4. Let, for r ≤ t,

ωij(t, r) := P(θt = i|FSt , θr = j), for i, j in E.

Then, it follows from Theorem 9.4 in [5] and that ωij(t, r) + ω−ij(t, r) = 1 that

ωij(t, r) = δ(i, j) +

∫ t

r

λ(1− 2ωij(s, r))ds+

∫ t

s

ωij(s, r)
α(i− k)(1− ωij(s, r))

σ
dW s,

where {k} = E\{i}.
Now, we redefine θ so that θt = E[θt|FSt , θt0 ] for t > t0. Since θ takes values in E, we

have that θt = 2ω1θt0
(t, t0)− 1, for t > t0. This implies that the dynamics of θ changes to

θt = θt0 − 2

∫ t

t0

λθsds+
α

σ
(1− θs

2
)dW s, (5.14)

for t ≥ t0. Note that for t < t0 the expression for θ is still given by (4.9). This implies that,
typically, there will be a jump in θ at time t0 since θt0− will be different than θt0 as long as
0 < P(θt = 1) < 1 for all t.

An attractive feature of the expression (5.14) is that it is the unique solution to the SDE
defined by (4.9) but with the initial condition θt0 = θt0 . This is of course no surprise given
the Markovian structure of our model. An immediate consequence of this is that for t ≥ t0

Pt = h(t, St, θt)− Zt
St +K

2
,

where h is the function that is defined in Theorem 4.3, and Zt = 1[t=T ](θT − θT ) as before.

Now, let θ̃t := E[θt|FSt ], for t ≤ t0. Then, for t < t0

Pt = E∗[h(t0, St0 , θt0)|Gt]
= E∗[h(t0, St0 , θt0)− h(t0, St0 , θ̃t0)|Gt] + E∗[h(t0, St0 , θ̃t0)|Gt]
= Zh

t + h(t, St, θ̃t),

where
Zh
t = E∗[h(t0, St0 , θt0)− h(t0, St0 , θ̃t0)|Gt], (5.15)

for t ≤ t0
1 Summing up the above calculations we have the following theorem.

1Note that E∗ is the expectation operator under the minimal martingale measure in this new setting,
which will typically be different than the minimal martingale measure P∗ from the previous section.
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Theorem 5.1 Suppose that the true state of θ is revealed at time t0 < T . The fair price of
EUA0 contracts is given by

Pt =

{
h(t, St, θt)− Zt St+K

2
, for t ≥ t0,

Zh
t + h(t, St, θ̃t), for t < t0,

where h is the function defined in Theorem 4.3 and Zh is as defined in (5.15). P has a jump
at t0 and the jump size equals

∆Pt0 = h(t0, St0 , θt0)− h(t0, St0 , θ̃t0)− Zh
t0
.

Proof. The equation for P follows from the definition of the fair price of EUA0 contracts.
In order to see the second assertion, first note that Gt = FSt for t < T . Since all FS-
martingales are continuous, it follows that (Zh

t )0≤t≤t0 is a continuous FS-martingale. Thus,

Pt0− = h(t0, St0 , θ̃t0) + Zh
t0
,

since h and θ0 are continuous. �
Notice that E∗[∆Pt0|Gt] = 0 for all t ≤ t0. However, ∆Pt0 is typically nonzero unless θt0

is deterministic.

6 Numerical study

In this section, we will will investigate the stylized facts of our model as apparent from a
simulation run. We will pick a random path of EUA1 price process based on the dynamics
in (2.1), after which we can calculate the fair price process for the EUA0 contract given the
evolution of EUA1 prices by numerically solving the boundary value problem in Theorem
(4.3). The fact that the EUA0 price is essentially expressed in terms of the conditional
expectation in Definition (4.1) provides us with a means to avoid the resolution of the
complex PDE. It implies that calculation of the carbon spot price can also be calculated
in a Monte Carlo routine, which is technically simpler and less prone to issues of numerical
instability of grid solutions.

For this purpose we first need to simulate a path for the process θ modelling the net
position of the market. The parameters used in order to produce the following graphs are
given in the table below.

Parameter Value
α −0.5
σ 1
λ 2
K 40
µ 0.4
S0 20.00
θ0 −1
p 0.5
T 240
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We set T = 240 and divide this period into 240 trading dates of equal length. Figure 2
shows the simulated path for the position θ (gray) of the zone. We next proceed to simulate a
path for EUA1 prices from equation (2.1). Note that we have compensated the value chosen
for α = −0.5 by taking µ = 0.4. This is important, as the drift can otherwise become very
large, resulting in EUA1 prices running out of range. The resulting simulation for EUA1
prices is plotted as the green curve in Figure 3. The next task is to estimate θ̄ out of the
filtering equations in (4.11) and (4.12). To commence this, we start from the starter value
θ̄(0) = 2p−1, here equal to zero. At every time t, we compute θ̄ as a conditional expectation
across 1000 Monte Carlo steps, simulating paths post time-t and averaging over the payoff
for EUA0 prices at maturity.

We opted for a scenario where the true state of the market is revealed after 192 time steps,
or 4/5 of the interval. This event is marked by the plots for θ and θ̄ in Figure 2 coinciding as
θ̄ ‘jumps’ onto θ = +1, highlighting an apparent long position for the market as soon as the
intermediate announcement is released. Figure 2 shows the path for θ (green) versus that
for θ̄ (black) for the parameter choices at hand. After the ‘jump’ in the θ̄ path, the market
perception of the true state reverts back towards zero. This is due to the observed increase
in EUA1 prices. Note that due to the negative relationship with the sign of the net position
and the drift of the EUA1 prices, the observed upward drift in EUA1 prices will lead the
market to think that the net position might be changing from long to short. On the other
hand , the terminal value for θ equals +1 after 240 time steps, implying that the market
eventually ended up long in this simulation. As a result, we observe prices for EUA0 (black)
collapse to zero at the end of the trading period, as shown in Figure 3.

The effect of the intermediate announcement of an apparent long position after 192 steps
is that EUA0 prices strongly decrease compared to the EUA1 driving force behind them
at that point in time. The paths for both EUA0 and EUA1 prices are shown in Figure 3.
The intermediate announcement of a long position after 192 time steps is marked by a sharp
decline in EUA0 prices, compared to the prevailing price levels for EUA0. Beyond this point,
EUA1 prices rally, and the EUA0 contract partly mimics this behaviour due to the change
in the market’s perception of the unobserved net position as explained in the last paragraph.
However, at maturity, the zone ends up long, implying EUA0 prices dropping to zero after
240 steps.

The relationship between EUA0 and EUA1 prices from the simulation performed is re-
markably similar to the historical evolution of the Dec-07 and Dec-08 prices in Figure 1,
where an intermediate announcement in April 2006 (after about 220 time steps) regarding
the (long) ETS position led to a dramatic collapse in carbon prices. The resemblance could
be improved by extending the set of admissible states for θ from just two elements. Recall
that the slow but steady decline of DEC07 prices to level 0 was largely due to the fact that
the information release in April 2006 revealed that NAP levels were so generous that there
is almost no possibility for the zone to end up short at the end of the year. Obviously, it is
not possible to measure how long or short the zone is by a θ process with only two states.
Therefore, a better fit to the data could be more easily achived by introducing more states
to the model. However, we still want to limit ourselves to a model with two states which
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Figure 2: True θ (gray) and corresponding θ̄ path (black) for a long market scenario

is good enough to highlight the ability of our model to capture the main features of carbon
prices, and in order to stay consistent with the simple exposition of the theory outlined in
the previous sections. Moreover, it is also worth to mention that as the carbon market is
still not mature the price behaviour is not always caused by rational actions in an efficient
financial market, thereby making the capture of certain price movements impossible by a
consistent and rigorous model.

7 Concluding remarks and extensions

We discussed the pricing and hedging of EUA contracts traded within the EU ETS scheme
when banking of permits are not allowed. The key idea of our model is to make the drift
component of EUA1s dependent on the net position of the market at large. This combined
with the no-arbitrage relation between EUA0 gave us the setting where we can infer the
long probabilities from EUA1 prices and calculate arbitrage free prices for EUA0 contracts.
Since the setting is incomplete by nature there exists an interval for arbitrage-free prices
and we have chosen one price based on a local risk minimising criteria. As seen in Section
3 one can come up with explicit formulas for pricing and hedging under the assumption
that the market’s net position is common knowledge among the market participants. Under
the more realistic setting where the market does not observe the net position directly the
price of EUA0 contracts and associated hedging portfolios can be obtained by solving a
boundary value problem. The analytical solution for the PDE cannot be obtained, however,
a numerical solution for the price via Monte Carlo simulation can be computed easily and
fast.
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Figure 3: Simulated EUA price history for a long market scenario

According to the latest EU Directive [9] banking of carbon permits is allowed during
and after the second phase of Kyoto protocol. Our approach can be modified to incorporate
this optionality of the current carbon trading as well. In order to price correctly the EUA0
contracts, we need to first determine what the appropriate condition relating the spot and
forward contracts at time T should be. When the banking is in effect, the unused permits
will no longer be worthless after the year in which they were issued since they can be used
later to cover the the excess emissions. This implies that although the identity ST +K = PT
holds when θT = −1, PT > 0 when θT = +1. This will make the pricing of EUA0 contracts
complicated since now the pricing of such contracts will depend on the utility functions of
the agents holding EUA0 contracts and the probability of them needing these permits at
a future date. Indeed they will have to determine a price at which they will be indifferent
between selling it now to other agents who will need these contracts to cover their positions
or keeping these permits for possible future use, either by themselves or others. In order to
simplify the matters one may assume that there exists a representative agent representing
the overall traders and this agent is risk neutral, i.e. has an objective to maximise expected
profit. Let’s also suppose that there are only 2 periods to trade, one being [0, T ] and other
[T, 2T ]. This is only to ease exposition and the extension to a multiperiod setting will be
straightforward. Thus, the indifference price of EUA0 contracts for the representative agent
is given by

PT =

{
ST +K, if θT = −1,
E[1[θ2T =−1]S2T |ST , θT = 1] if θT = 1.

In order to find E[1[θ2T =−1]S2T |ST , θT ] we need to find the joint distribution of (θ2T , S2T )
given (θT , ST ). However, this joint distribution can be easily found using the well-known
Kolmogorov’s equations given the Markov property of (θ, S). Once E[1[θ2T =−1]S2T |ST , θT ]

17



the method explained in earlier sections can now be utilised to calculate price process of
EUA0 contracts.

Another possible improvement for the model would be to allow nonsymmetric changes
in drift, in the sense that news regarding short positions reduce the drift more strongly than
continued conviction on the overdimensioning of NAP volumes. Note that when θ takes only
two values the linearity assumption is without loss of generality once we assume that the
drift is only a function of θ. Thus, in order to include such non-symmetric changes in drift
one should model θ by a Markov chain with more than two states. This would as well give
chances for a better calibration of the model using the market data.
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A Glossary

EU ETS The European Union Emission Trading Scheme (EU ETS) is the largest multi-
national emissions trading scheme in the world. The ETS covers over 12.000 instal-
lations in energy and industrial sectors, representing nearly half of the EU carbon
dioxide (CO2) emissions. Operators of installations covered by the ETS within the EU
must monitor and annually report on their CO2 emissions and are obliged to return
an amount of emission allowances sufficient to cover their annual emissions.

First & second phase In the beginning of each phase allowances are issued for multi-year
periods at once. The first ETS phase extended from 2005 until 2007 and the second
phase from 2008 until 2012.

NAP Within each of the phases, operators obtain a number of free allowances under the
terms of the National Allocation Plan (NAP). The extent in which these free allowances
cover the actual needs of the operator varies across the participant industrial sectors.
Any remaining allowances needed must be covered in the open market where EU CO2

allowances (EUA’s) are traded.

EUA The European Union Allowance (EUA) for CO2 is the main vehicle enabling operators
still short allowances after NAP issuance to cover their actual carbon dioxide emissions.
Contracts entailing the delivery of EUA at various future instants are traded under
the ETS. The maturity for a standardized contract is December. For instance, the
contract called ’Dec-08’ delivers the allowance for one tonne of CO2 into the buyers’
ETS account in December 2008. Trading and price formation of these allowances
happens Over The Counter (OTC) or via an exchange such as the European Climate
Exchange (ECX).

EUA0 & EUA1 In our paper, EUA0 represents the price of the EUA contract for the
allowance delivering in the current year. The contract delivering an allowance in the
subsequent year is denoted by EUA1. Examples treated in this paper are the case
where EUA0 refers to the Dec-07 contract delivering in the first phase, while EUA1
depicts the Dec-08 contract delivering in the second phase (no banking from one year
to another is permitted in this case).
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