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Suppose that we are given on a filtered probability space an adapted process of interest,
X = (Xt)0≤t≤T , called the signal process, for a deterministic T . The problem is that the
signal cannot be observed directly and all we can see is an adapted observation process
Y = (Yt)0≤t≤T . The filtering is concerned with finding E[f(Xt)|FYt ], where FY is the minimal
filtration generated by Y and satisfying the usual hypotheses, and f is a measurable function.

Remark 1. There is a problem with the definition of the process (E[f(Xt)|FYt ])0≤t≤T as
the conditional expectation E[f(Xt)|FYt ] is only defined a.s. and there are uncountably many
t between 0 and T ! However, there exists a process, let’s denote it with f o, called the FY -
optional projection of f(X), which satisfies f ot = E[f(Xt)|FYt ], for every t (and some more).
Moreover, f o is uniquely defined. Thus, whenever we define a process by (E[Ht|FYt ])0≤t≤T , we
shall always mean, and use, the FY -optional projection of H. The F Y -optional projection

of H will be denoted with Ĥ. See the second volume of Rogers and Williams for more
details. We also suppose the filtration supports two Brownian motions, W and B, such that
d[W,B]t = ρtdt, for some predictable process ρ.

8. The innovations approach to nonlinear filtering

Let’s suppose the observation process is of the form

(8.1) Yt =

∫ t

0

hsds+Wt,

where W is a standard Brownian motion and h is an adapted process such that

(8.2) E
(∫ T

0

h2sds

)
<∞.

The main result of nonlinear filtering theory is the following:

Theorem 8.1. (Fujisaki, Kallianpur and Kunita)
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(1) The process N defined by

(8.3) Nt = Yt −
∫ t

0

ĥsds,

for each t ∈ [0, T ], is an FY -Brownian motion.
(2) If M is an L2-bounded FY -martingale with M0 = 0, then there exists an FY -

predictable process C such that

E
(∫ T

0

C2
sds

)
<∞,

and that

Zt =

∫ t

0

CsdNs.

The F Y -Brownian motion N is called the innovation process in filtering literature.

Proof. Let S be an FY stopping time. Since we only observe Y over the finite interval [0, T ],
S ≤ T , hence bounded. Let N∗T = supt≤T |Nt|. Note that N∗T is dominated by the random
variable

W ∗
T +

∫ T

0

{
|hs|+ |ĥs|

}
ds,

which is square integrable due to (8.2). Thus, NS is also integrable and

E(NS) = E
{
WS +

∫ S

0

(hs − ĥs)ds
}

=

∫ T

0

E
[
(hs − ĥs)1[s≤S]

]
ds = 0,

where we used the optional stopping theorem for E[WS] in order to get the first equality, the

fact that ĥs = E[hs|FYs ] and [s ≤ S] ∈ FYs to arrive at the last equality. This shows N is
an FY -martingale. Since [N,N ]t = t, for every t ∈ [0, T ], this shows N is an FY -Brownian
motion by Lévy’s characterisation. See Rogers and Williams Chapter VI.8 for the proof of
the second part. �

Let the signal process X have the following differential:

(8.4) dXt = αtdt+ ηtdBt,

where α is adapted and η is predictable. We further suppose

E
(∫ T

0

α2
sds

)
<∞,

and

sup
t∈[0,T ]

EX2
t <∞.

Theorem 8.2. Let X and Y be as above. Then we have the following fitering equations:

X̂t = X̂0 +

∫ t

0

α̂sds+

∫ t

0

{
X̂shs − X̂sĥs + η̂sρs

}
dNs.
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Proof. First notice that if C is an adapted process such that

E
∫ T

0

|Cs|ds <∞,

and if Vt =
∫ t
0
Csds, then

(8.5) V̂t −
∫ t

0

Ĉsds is an FY -martingale.

In order to prove this it suffices to prove for any FY -stopping time S ≤ T , EV̂S = E
∫ S
0
Ĉsds.

Indeed,

EV̂S = EVS = E
∫ S

0

Csds

=

∫ T

0

E
[
1[s≤S]Cs

]
ds

=

∫ T

0

E
[
1[s≤S]Ĉs

]
ds

= E
∫ S

0

Ĉsds.

This in turn implies

Mt := X̂t − X̂0 −
∫ t

0

α̂sds,

is an FY martingale with M0 = 0. Moreover, it is an L2-bounded martingale due to the
assumed integrability conditions on α andX. Thus, by Theorem 8.1 there exists a predictable
process φ such that

Mt =

∫ t

0

φsdNs.

Next, we shall calculate the martingale M explicitly. In order to do this we will calculate
the optional projection of XY in two different ways. Using integration by parts

XtYt =

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X, Y ]t

=

∫ t

0

{Xshs + Ysαs + ηsρs} ds+ F -martingale.

Therefore, using (8.5)

(8.6) X̂tYt = X̂tYt =

∫ t

0

{
X̂shs + Ysα̂s + η̂sρs

}
ds+ FY -martingale.



4 MARTINGALE PROBLEMS

The other way is the following:

X̂tYt =

∫ t

0

X̂tdYs +

∫ t

0

YsdX̂s + [X̂, Y ]t

=

∫ t

0

X̂t

{
dNs + ĥsds

}
+

∫ t

0

Ys {dMs + α̂sds}+ [M,N ]t

=

∫ t

0

{
X̂sĥs + Ysα̂s + φs

}
ds+ FY -martingale(8.7)

(8.6) and (8.7) together imply∫ t

0

{
X̂sĥs + Ysα̂s + φs

}
ds−

∫ t

0

{
X̂shs + Ysα̂s + η̂sρs

}
ds

is an FY -martingale, thus, must be zero being, of finite variation. This implies

φs = X̂shs − X̂sĥs + η̂sρs,

for each s. This proves the desired filtering equation. �

Example 8.1. (A change-detection filter.) Let T be a random variable taking values in
(0,∞) with a probability density function φ and tail probability g(t) := P(T > t). Let B be
a Brownian motion independent of T and define

Yt =

∫ t

0

Asds+Bt,

where At = 1[T>t]. We are interested in Â. Consider the stochastic exponential

Lt := exp

(
−
∫ t

0

AsdBs −
1

2

∫ t

0

A2
sds

)
.

Assume E[exp(T )] < ∞. Novikov’s condition now implies L is a uniformly integrable P-
martingale. Define Q ∼ P by setting dQ

dP = L∞. Then Y is a Brownian motion under Q by
Girsanov’s theorem. Moreover, it is independent from T . Note that

dP
dQ

= L−1∞ ,

and that L−1 is a Q-martingale. Now,

E[1[t<T ]|FYt ] =
EQ[1[t<T ]L

−1
∞ |FYt ]

EQ[L−1∞ |FYt ]

=
EQ[1[t<T ]L

−1
t |FYt ]

EQ[L−1t |FYt ]

= CEQ[1[t<T ] exp(Yt −
1

2
t)|FYt ]

= C exp(Yt −
1

2
t)Q(T > t),
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where C = (EQ[L−1t |FYt ])−1 and in the last line we used that T is independent from Y under
Q. Next, we show Q(T > u) = P(T > u) for all u > 0. Indeed,

Q(T > u) = E[1[T>u]L∞]

= E[1[T>u]Lu]

= E[1[T>u] exp(−Bu −
1

2
u)]

= P(T > u)E[exp(−Bu −
1

2
u)] = P(T > u),

since (exp(−Bu − 1
2
u)) is a martingale independent of T under P. On the other hand,

E[1[t≥T ]|FYt ] = CEQ[1[t≥T ]L
−1
∞ |FYt ]

= CEQ[1[t≥T ]L
−1
t |FYt ]

= CEQ[1[t≥T ] exp(YT −
1

2
T )|FYt ]

= C

∫ t

0

exp(Yu −
1

2
u)φ(u)du,

since T is independent from Y and the Q-distribution of T is same as its P-distribution from
above. We must have

1 = C

(∫ t

0

exp(Yu −
1

2
u)φ(u)du+ exp(Yt −

1

2
t)g(t)

)
.

Let Zt = exp(−Yt + 1
2
t)
∫ t
0

exp(Yu − 1
2
u)φ(u)du so that

C =
exp(−Yt + 1

2
t)

Zt + g(t)
.

Recall that

Ât = P(T > t|FYt ] = C exp(Yt −
1

2
t)Q(T > t) =

g(t)

Zt + g(t)

Now let F̂ = 1− Â and define Ȳ by Ȳ0 = 0 and dȲt = F̂tdt− dNt so that Ȳt = t− Yt. Under
this change of variable

Zt = exp(Ȳt −
1

2
t)

∫ t

0

exp(−Ȳu +
1

2
u)φ(u)du.

Using integration by parts on Z we obtain the Zakai equation

dZt = ZtdȲt + φ(t)dt.

An application of Itô’s formula on the function f(t, x) := x
g(t)+x

and the process Z yields

dF̂t = −F̂t(1− F̂t)dNt + (1− F̂t)
φ(t)

g(t)
dt.

Since F̂ = 1− Â we also have

dÂt = Ât(1− Ât)dNt − Ât
φ(t)

g(t)
dt.
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9. The Markov case

Observe that we have not made any Markov assumption on X or Y . We will now take a
look at this special case and obtain equations that determine the conditional distribution of
X.

Let’s suppose X is a diffusion with generator L:

L =
1

2
σ2(x)

d2

dx2
+ b(x)

d

dx
.

We will also suppose that B and W are independent for simplicity and hs = h(Xs) and

E
[∫ T

0

h2s ds

]
<∞.

Then, using the already obtained formulas we obtain the following

Theorem 9.1. Let f ∈ C2
K and define πtf = E[f(Xt)|FYt ]. Then,

πtf = π0f +

∫ t

0

πsLf ds+

∫ t

0

{πshf − πshπsf} dNs.

The equation in the above theorem is called Kushner-Stratonovic equations or simply
filtering equations.

Exercise 9.1. Suppose that W and B are not independent but d[W,B]t = ρ(Xt, Yt)dt for
some measurable function ρ(x, y) which is bounded when x belongs to a bounded interval.
Obtain the filtering equations in this setting.

Exercise 9.2. Extend the filtering equations to a multidimensional setting.

10. Kalman-Bucy filter

Kalman-Bucy filter is a celebrated example of filtering which finds widespread use in real-
world problems. We assume the signal process satisfies and Ornstein-Uhlenbeck SDE:

Xt = X0 +Bt +

∫ t

0

aXsds,

where X0 is a normal random variable, and the observation process is given by

Yt = Wt +

∫ t

0

cXsds.

We assume W and B are independent so that ρ ≡ 0. Since the bivariate process (X, Y ) is
Gaussian, the conditional distribution of X given Y is also Gaussian. The mean is given by

X̂ which is given by

X̂t = EX0 +

∫ t

0

aX̂sds+ c

∫ t

0

{
X̂2
s − (X̂s)

2
}
dNs

by Theorem 8.2. Let vt := E[(Xt− X̂t)
2|FYt ] be the conditional variance of Xt given FYt . I.e.

vt = X̂2
t − (X̂t)

2. Next, let’s find the filtering equation for X̂2
t . Again, using Itô’s formula

and Theorem 8.2

X̂2
t = EX2

0 +

∫ t

0

(1 + 2aX̂2
s)ds+ c

∫ t

0

{
X̂3
s − X̂2

s X̂s

}
dNs.
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Recall that for Z ∼ N(µ, σ2), EZ3 = µ(µ2 + 3σ2). Thus, since Xt is conditionally Gaussian,

X̂3
s − X̂2

s X̂s = X̂s

(
X̂2
s + 3vs − X̂2

s

)
= 2vsX̂s.

Thus,

dvt = d(X̂2
t − X̂2

t )

= 2cvtX̂tdNt + (1 + 2aX̂2
t )dt− 2X̂t(cvtdNt + aX̂tdt)− c2v2t dt

= (1 + 2avt − c2v2t )dt,
so that v solves an ordinary differential equation. This differential equation has a solution.
If β > 0 and −γ < 0 are two roots of the quadratic 1 + 2ax − c2x2, and if λ = c2(β + γ),
then

vt =
δβeλt − γ
δeλt + 1

, where

δ =
σ2 + γ

β − σ2
,

and σ2 = var(X0). Note that v(∞) = β.
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