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Suppose that we are given on a filtered probability space an adapted process of interest,
X = (Xi)o<i<r, called the signal process, for a deterministic 7. The problem is that the
signal cannot be observed directly and all we can see is an adapted observation process
Y = (Y;)o<i<r- The filtering is concerned with finding E[f(X;)|F} |, where FY is the minimal
filtration generated by Y and satisfying the usual hypotheses, and f is a measurable function.

Remark 1. There is a problem with the definition of the process (E[f(X;)|F)])o<t<r as
the conditional expectation E[f(X;)|F)] is only defined a.s. and there are uncountably many
t between 0 and T! However, there exists a process, let’s denote it with f°, called the FY -
optional projection of f(X), which satisfies f? = E[f(X;)|FY], for every t (and some more).
Moreover, f° is uniquely defined. Thus, whenever we define a process by (E[Hy|FY )o<i<r, we
shall always mean, and use,Athe FY -optional projection of H. The FY -optional projection
of H will be denoted with H. See the second volume of Rogers and Williams for more
details. We also suppose the filtration supports two Brownian motions, W and B, such that
d[W, B]; = pidt, for some predictable process p.

8. THE INNOVATIONS APPROACH TO NONLINEAR FILTERING

Let’s suppose the observation process is of the form

t
(8.1) Yt:/ heds + Wi,
0

where W is a standard Brownian motion and h is an adapted process such that

(8.2) E (/OT hgds) < 00.

The main result of nonlinear filtering theory is the following:

Theorem 8.1. (Fujisaki, Kallianpur and Kunita)
1
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(1) The process N defined by

t

(8.3) N, =Y, — / hods,
0

for each t € [0,T), is an FY -Brownian motion.

(2) If M is an L*-bounded FY -martingale with My = 0, then there exists an FY -
predictable process C' such that

T
E(/ C’fds) < 00,
0

t
Zt - / CSdNS.
0

and that

The FY-Brownian motion N is called the innovation process in filtering literature.

Proof. Let S be an F¥ stopping time. Since we only observe Y over the finite interval [0, 77,
S < T, hence bounded. Let Nj = sup,.p |N;|. Note that N7 is dominated by the random

variable .
W;:+/ {Ind + 1]} ds,
0

which is square integrable due to (8.2). Thus, Ng is also integrable and

~

E(Ng) = ]E{WSJr/OS(hS—hS)ds}

— /OTIE [(hs — ﬁs)l[sgsd ds =0,

where we used the optional stopping theorem for E[Ws] in order to get the first equality, the

fact that hy = E[hs|FY] and [s < S] € FY to arrive at the last equality. This shows N is
an FY-martingale. Since [N, N]; = t, for every t € [0, 7], this shows N is an F¥-Brownian
motion by Lévy’s characterisation. See Rogers and Williams Chapter VI.8 for the proof of
the second part. [l

Let the signal process X have the following differential:
(84) dXt = Oétdt + ntdBt,
where « is adapted and 7 is predictable. We further suppose

T
E(/ a?ds) < 00,
0

sup EX} < oo.
t€[0,T]

and

Theorem 8.2. Let X and Y be as above. Then we have the following fitering equations:

t t
Xt:Xo—i—/ &sder/ {Xshs—xshs+@}dzvs.
0 0
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Proof. First notice that if C' is an adapted process such that
T
E / |Cs|ds < o0,
0
and if V; = [ Cyds, then
AN t ~
(8.5) V, — / Cyds is an FY-martingale.
0

In order to prove this it suffices to prove for any FY-stopping time S < T, EVg = E fOS Cds.
Indeed,

S
EVs =EVy = ]E/ Cids
0
T
= / E [1[SSS]CS:| ds
0
T ~
= / E |:1[SSS} s:| ds
0

S/\
= ]E/ C.ds.
0

t
Mt = Xt — XO — / ast,
0

This in turn implies

is an FY martingale with My = 0. Moreover, it is an L?-bounded martingale due to the
assumed integrability conditions on aw and X. Thus, by Theorem 8.1 there exists a predictable
process ¢ such that

t
Mt - / ¢SdN5.
0

Next, we shall calculate the martingale M explicitly. In order to do this we will calculate
the optional projection of XY in two different ways. Using integration by parts

t t
XY, = / X.dY, +/ Y,dX, + [X, Y],
0 0
t
= / {Xshs + Ysas + nsps ds + F-martingale.
0
Therefore, using (8.5)

t —_—
(8.6) XY, = X,Y, = / {Xshs + Yia, + @} ds + FY-martingale.
0
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The other way is the following:
t t
XY, = / XidYs + / Yid X + [ X, Y]
0 0
t N t
_ / X, {dNS v hsds} n / Y, {dM, + @,ds} + [M, N,
0 0
t
(8.7) = / {Xshs +Y,a, + gbs} ds + FY-martingale
0
(8.6) and (8.7) together imply
t t
/ {Xshs Y., + qbs} ds — / {Xshs N n:ﬁs} ds
0 0
is an FY-martingale, thus, must be zero being, of finite variation. This implies
¢s :@_Xs/]{s'}_@u

for each s. This proves the desired filtering equation. O

Example 8.1. (A change-detection filter.) Let T' be a random variable taking values in
(0,00) with a probability density function ¢ and tail probability g(t) :== P(T > t). Let B be
a Brownian motion independent of T and define

t
Vi— [ AdssB,
0
where Ay = 1ir~y. We are interested in A. Consider the stochastic exponential

t t
Ly :=exp|— [ A, dB,— 1 A%ds | .
2 S
0 0

Assume Elexp(T')] < oo. Nowikov’s condition now implies L is a uniformly integrable P-
martingale. Define Q ~ P by setting ®2 = L. Then'Y is a Brownian motion under Q by

dP
Girsanov’s theorem. Moreover, it is independent from T'. Note that
di) =11
dQ o

and that L' is a Q-martingale. Now,

B L | 7]
EQ[LFY]
E% 1o L' | 7]
EQ[L; | Y]

Ellper|F] =

1
= CE[1jperyexp(Y; — SO ]

= Cexp(Y; — %t)Q(T > 1),
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where C = (EQ[L;'|FY])~! and in the last line we used that T is independent from'Y under
Q. Next, we show Q(T > u) =P(T > u) for all u > 0. Indeed,

@(T > u) = ]E[]-[T>u]Loo]
1
= E[ljpsy exp(—B, — éu)]

— BT > wE[exp(—Ba — ~u)] = P(T' > u),

2
since (exp(—By, — 1u)) is a martingale independent of T under P. On the other hand,
Ellizn|F] = CEUlen LR

= CElpsn L FY]
1
= CE[lp>ryexp(Yr — éT)’]'—tY]

1

= C/o eXp(Yu—§u)¢(u)du,

since T is independent from'Y and the Q-distribution of T is same as its P-distribution from
above. We must have

1=C (/Ot exp(Y, — %u)gb(u)du +exp(Y; — %t)g(t)) :

Let Z; = exp(=Y; + 3t) fg exp(Y, — su)p(u)du so that

_exp(=Y; + 31)

C
Zy +g(t)

Recall that

. ey L _ 90
A =P(T > i|F]] = Cexp(Ys = SO)QT > t) = Zi+ 90

Nowlet F=1— A and define Y by Yy =0 and dY; = ﬁtdt —dN, so that Y; =t —Y;. Under
this change of variable

2 2

Using integration by parts on Z we obtain the Zakai equation

dZ; = Z,dY; + ¢(t)dt.

Zy = exp(Y; — 1zf) /t exp(=Y, + 1u)qzﬁ(u)du
0

An application of Ité’s formula on the function f(t,x) = g(t)ﬁ and the process Z yields
~ ~ ~ ~ o(t
dF, = —F(1 — F})dN; + (1 — Ft)%dt.
g
Since F'=1— A we also have
¢(t)

d;{\t = A\t(]- - A\t)dNt - A\tﬁdt
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9. THE MARKOV CASE

Observe that we have not made any Markov assumption on X or Y. We will now take a

look at this special case and obtain equations that determine the conditional distribution of
X.
Let’s suppose X is a diffusion with generator L:

1, . d d
L= 50 (x)@ + b(x)%

We will also suppose that B and W are independent for simplicity and hs = h(X,) and

T
E{/ hgds} < o0.
0

Then, using the already obtained formulas we obtain the following

Theorem 9.1. Let f € C% and define m,f = E[f(X;)|F)]. Then,

t

7th:7rof+/ 7T$Lfd8—|—/t{ﬂ'shf—ﬂ'shﬂ'sf}dNS.
0 0

The equation in the above theorem is called Kushner-Stratonovic equations or simply
filtering equations.

Exercise 9.1. Suppose that W and B are not independent but d[W, B]; = p(X, Y;)dt for
some measurable function p(x,y) which is bounded when x belongs to a bounded interval.
Obtain the filtering equations in this setting.

Exercise 9.2. Eztend the filtering equations to a multidimensional setting.

10. KALMAN-BUCY FILTER

Kalman-Bucy filter is a celebrated example of filtering which finds widespread use in real-
world problems. We assume the signal process satisfies and Ornstein-Uhlenbeck SDE:

t
Xy =Xo+ B+ / aXds,
0
where X is a normal random variable, and the observation process is given by
t
Y, =W, +/ cXds.
0

We assume W and B are independent so that p = 0. Since the bivariate process (X,Y) is
Gaussian, the conditional distribution of X given Y is also Gaussian. The mean is given by
X which is given by

t t
X, = EX, + / aXds + c/ {Xg - (XS)Q} dN,
0 0

by Theorem 8.2. Let v, := E[(X; — X;)2|FY] be the conditional variance of X, given Y. Le.

v = X? — ()/(\'t)Q. Next, let’s find the filtering equation for X?. Again, using It6’s formula
and Theorem 8.2

o t o t N
X2=EXZ + / (1+ 2aX2,)ds + c/ {X§ - XS?XS} dN,.
0 0
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Recall that for Z ~ N(u,0?), EZ? = u(u?® 4+ 30?). Thus, since X; is conditionally Gaussian,

—~

X3 X2X, = X, (5(\2 + 3, — )?2) = 20, X,.
Thus,
dv, = d(X?—X?)
= 2cvt)A(tht +(1+ 2a)/(:2)dt — QXt(cvtht + a)A(tdt) — vidt
= (14 2av; — vi)dt,

so that v solves an ordinary differential equation. This differential equation has a solution.
If 3> 0 and —y < 0 are two roots of the quadratic 1 + 2ax — c*z?%, and if A = ¢*(8 + 7),
then

JeM 417
5 - ot7
B—o2

and 02 = var(Xj). Note that v(co) = 3.
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