FILTERED AZEMA MARTINGALES

UMUT CETIN

ABSTRACT. We study the optional projection of a standard Brownian motion on the natural filtra-
tion of certain kinds of observation processes. The observation process, Y, is defined as a solution
of a stochastic differential equation such that it reveals some (possibly noisy) information about
the signs of the Brownian motion when Y hits 0. As such, the associated optional projections are
related to Azéma’s martingales which are obtained by projecting the Brownian motion onto the
filtration generated by observing its signs.

1. INTRODUCTION

Let (2, F, (Ft)t>0,P) be a filtered probability space satisfying the usual conditions and W be a
standard Brownian motion with Wy = 0 and adapted to (F;)i>0. Define G := o(sgn(Ws); s < t),
where )

sen(z) = { 1, ifz>0;
-1, ifz <0,
and let (G;);>0 be the augmentation of G with the P-null sets. Azéma’s martingale is obtained by
projecting W onto G. We will denote the (G, P)-optional projection of W with p. This martingale
first appeared in [1] and was further studied in a series of papers such as [2], [6] and [12]. Our
presentation follows [13].

By construction Azéma’s martingale is closely related to the excursions of Brownian motion away

from 0. In fact, if we set

(1.1) v :=sup{s < t: W, =0},
then (see, e.g. [13])
(1.2) e = E[W|G] = sgn(Wt)gW m—

Thus, Azéma’s martingale is the best estimate, in a mean-square sense, for the value of a Brownian
motion when one only observes its zeroes and the signs of its excursions.

The above interpretation of p was used by [4] to model the default probabilities of a firm under
incomplete information. Assuming cash balances follow a Brownian motion, [4] defines the default
time for the firm as the first time that its cash balances have remained negative for a certain amount
of time and doubled in absolute value. On the other hand, the market’s only information regarding
the cash balances is whether the firm is in financial distress, i.e. the cash balance is negative, or
not. This information set thus corresponds to G in above notation. Using certain properties of
Azéma’s martingale and some results from excursion theory the authors explicitly compute the
G-predictable compensator of the default indicator process. The use of Azéma’s martingale in
Mathematical Finance Theory is not limited to default risk. It is also the key process in models
for Parisian barrier options (see [5]).

Motivation of this paper comes from the following question: What happens to the optional
projection of Brownian motion when we observe its signs, possibly with some noise, at the zeroes of
another process which we can observe continuously? Clearly, the answer to this question depends
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2 FILTERED AZEMA MARTINGALES

on how one defines the observation process. The most common approach in applications is to model
the observation process as a solution of a stochastic differential equation. In this paper we will look
at two different types of stochastic differential equations for the observation process.

The first formulation that we will consider corresponds to the case when one imperfectly ob-
serves the signs of Brownian motion at the zeroes of an observation process. Here imperfection
corresponds to the case when the true signal is contaminated with some noise. In view of the
standard nonlinear filtering theory one can model the observation process as a (weak) solution to
the following stochastic differential equation (SDE):

t
(1.3) Y =B+ a/ sen(Wy, (vy) ds
0

where a € R, B is a standard Brownian motion independent of W, and
(1.4) gt(Y) :==sup{s <t:Y; =0}.

In Section 2 we study the existence and uniqueness of (weak) solutions of (1.3) and the projection of
W onto the natural filtration of the solution. The methods employed are standard techniques from
nonlinear filtering theory. On the other hand, the existence of a strong solution to (1.3) remains as
an interesting open problem.

Another possibility for modeling the observation process is to introduce the knowledge on the
sign of W through the local times of Y whose support is contained in the zero set of Y. In this
case the corresponding SDE is the following:

t
(1.5) Y, = B + a/ sgn(Ws)dLs,
0

where L is the symmetric local time (see Exercise VI.1.25 in [14] for a definition) of Y at 0. We
will see in Section 3 that the solution to the above equation is closely related to the skew Brownian
motion which we recall next.

Theorem 1.1. (Harrison and Shepp [8]) There is a unique strong solution, called skew Brownian
motion, to

(1.6) Xt = By + aLi(X),
where L(X) is the symmetric local time of X at the level 0 if and only if |of < 1.

First appearances of skew Brownian motion in the literature goes back to as early as [9] and [15].
Formally it is obtained by changing the sign of a Brownian motion in every excursion depending
on the value of an independent Bernoulli random variable. A related SDE introduced by Sophie
Weinryb is

X, =B, + /Ota(s)dLS(X),

whose pathwise uniqueness is established in [16] when « is a deterministic function taking values
in [—1, 1] (see [7] for a recent work on the existence of solutions and related issues) .

The reader is referred to the recent survey in [10] where one can find a discussion of different
constructions of skew Brownian motion and its properties. In Section 3 we will prove that there
exists a unique strong solution to (1.5) and see how it is connected to the solutions of (1.6). This
connection will be helpful in the characterisaton of the natural filtration of the solution of (1.5)
and the associated projection of W, which is our main concern. We will see that this projection
changes only by jumps which may only occur at the end of an excursion interval of a skew Brownian
motion.
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2. FILTERED AZEMA MARTINGALE OF THE FIRST KIND

Observe that the drift coefficient of the SDE in (1.3) is path dependent and, thus, the classical
results on the existence and uniqueness of strong solutions of SDEs do not apply. However, since
sgn function is bounded, one can easily construct a weak solution to this equation on any interval
[0,7]. Indeed, if  and W are two independent Brownian motions in some probability space, one
can define a change of measure via the martingale

¢ 1
exp <a/0 sgn(Wy, ())dBs — 2a2t>

and under the new measure /3 solves (1.3) while W stays a Brownian motion. The same Girsanov
transform also implies that the law of any weak solution (W,Y) of (1.3) is the same. Let FY¥ be
the smallest filtration satisfying the usual conditions and containing the filtration generated by Y.
In the remainder of this section we will fix a weak solution to (1.3) and compute the corresponding
conditional probabilities for this pair. However, the weak uniqueness of the solutions imply that
the conditional laws of W on FY computed in this section! do not depend on the choice of the
weak solution.

In the computations performed in this and the subsequent section we will often make use of the
balayage formula as given in the next lemma.

Lemma 2.1. (Theorem V1.4.2 in [14]) If K is a locally bounded F -predictable process, (K, (yv)Yt)i>0
18 a continuous semimartingale and satisfies

t
ng(Y)Yt:/O Ky (rd¥s.

As a first application of the balayage formula, we will now see that sgn(Wg( B(a)))B(“) is a weak

solution of (1.3) where B(®) is defined by B,ga) = B;+at. Indeed, if we set Y; = sgn(Wgt(B(a)))Bt(a),
then balayage formula implies

dY; = sgn(Wy, p(e))dB: + asgn(W,, g )dt.

Moreover, fo sgn(Wgt( B(a>))dBt is a standard Brownian motion independent of WW. The claim follows

since by construction g(Y) = g(B®). Thus, by the uniqueness of weak solutions, we obtain
d
(21) Y = SgH(Wg(B(a)))B(a).

In other words, Y is obtained by changing the sign of a Brownian motion with drift via the sign of
an independent Brownian motion sampled at the beginning of the current excursion (away from 0)
of the drifting Brownian motion. As such, the resulting process in a sense is in the same spirit of a
skew Brownian motion described in (1.6), which will be relevant to the filtered Azéma martingale
of the second kind discussed in the next section.

An immediate consequence of the aforementioned equality in law is the following

Proposition 2.1. Let (Y, W) be the unique weak solution of (1.3). Then,
i) limy o0 [Yi]| = 00 and P(Yoo = 00) = P(Yo = —00) = 3.
ii) P(sup{t:Y; =0} <o0)=1.

Proof. 1) follows from the fact that |Bt(a)| — 00 as t — oo and that W is independent of B(®).
Similarly, since B (@) transient, there is a last time that it hits 0. Since the zeroes of Y are the same
as those of B(®), the result follows. O

1One should be careful in computing the conditional laws of random variables measurable with respect to Foo
since the martingale used for the change of measure is not uniformly integrable.
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The above result is another manifestation of that the law of Y is equivalent to the law of a
Brownian motion only if they are stopped at a finite stopping time. Indeed, if the law of Y were
equivalent to the Wiener measure, the zero set of ¥ would be unbounded with probability 1. This
discrepancy also confirms that the martingale used to obtain the measure change is not uniformly
integrable.

Remark 1. If we set Z; = sgn(Wy,(vy)Y: and thereby note that g(Z) = g(Y'), we obtain via balayage
formula

t
(2.2) Zy = / sgn(Wy, (z))dBs + at.
0
Let’s consider the analogous SDE without drift, i.e.
t
(2.3) Zy = / sgn(Wy, (7)) dBs.
0

Then, there is a unique strong solution to this equation. Indeed, in view of the balayage formula,

sgn(Wy,(z))Zt = By. Thus, the zeroes of Z are the zeroes of B and we have Zy = sgn(W,(p)) Bt.

On the other hand, similar arguments do not seem to work for (2.2). It is an open question
whether this equation admits a strong solution.

We next obtain the semimartingale decomposition of Y with respect to its own filtration.

Proposition 2.2. Let (Y, W) be the unique weak solution of (1.3). Then,
i) E[sgn(Wy,v))|F'] = tanh(aYy);
i) Y has the following decomposition in its own filtration:

t
Y, =BY + a/ tanh(aYs) ds,
0

where BY is an FY -Brownian motion.

Proof. Note that ii) follows immediately from i) in view of the standard results on filtering, see,
e.g. Theorem 8.1 in [11]. To see why i) holds take a constant 7" > ¢ and consider the measure
Q ~ P under which (Yj).c(o,r) is a Brownian motion independent of (Ws)c(o,r) where Pr is the
restriction of P to Fp. Then, it follows from Girsanov’s theorem that

EQ [sgn(Wgt(y)) exp (a fg sgn(W, (v))dYs — %a%)

fgf}

E[Sgn(Wgt(Y))“Fg/] -
EQ {exp (a fot sgn(We, (v))dYs — %a%) ‘}-tY]

EQ [sgn(Wgt(y)) exp (a Sgn(Wgt(Y))}/t) ‘]:ty]
EQ [exp (asgn(W,(v))Y:) | FY]
sinh(aYy)

where the second equality follows from Lemma 2.1 and the last equality is due to the independence
of W and Y (up to time 7) under Q along with the facts that g;(Y") is F} -measurable and the
probability that Wy > 0 is 1/2 for any s. O

Using the same technique as in the proof of the above proposition, we can obtain the conditional
law of W.

Theorem 2.1. Let p(t,y — ) be the transition density of a standard Brownian motion and set

(2.4) o) = [ " p(Ly)dy.

—0o0
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i) The FY -conditional law of W; has a density, which is given by

iy ( - gt(Y) x) et 4 o (_ gt(Y) :17) e—aYe
(t—g:(Y)) t(t—g:(Y))
P(W; € dz|F)] = p(t dz.
( t E x‘ft ] p( 7$) COSh(a}/;f) €z
ii) The conditional moments of W are given by
20! (000" T
sy = | v (5 Jm= 2k

\% (2g:(Y))*"2 tanh(aV;), if n =2k + 1.

In particular,

29t(Y)

E[Wi|F'] = tanh(aY;).

Proof. Let f: R — R be a bounded measurable function. Then,
E® [f(W;) exp (asgn(Wy,(v))Ye) | 7]
cosh(aY?)

where Q is the measure defined in the proof of Proposition 2.2. Moreover, the numerator in the
above fraction equals

(2.5) /OO dxf(:v)p(t,m)EQ [exp (a sgn(Wgt(y))Y}) ‘]—'ty, W, = x]

—0o0

E[f(Wy)|F)] =

due to the independence of W and Y under QQ. On the other hand, for any s < ¢ the distribution
of Wy conditional on W; = x is Gaussian with mean ;l: and variance ( 5) . Thus,

W1+ a:>0>—q)< (t—8)>.

Utilising once more the independence of Y and W, we see that (2.5) equals

> gt(Y) v, 9:(Y) —aY,
/Oodxf(x)P(t,x) {@ < t(t—gt(Y))x> et L P (— t(t—gt(Y))x> e Y}.

This completes the proof of the density.

The conditional moments can be calculated by integrating this density, which is a lengthy task.
However, since for any A € R exp(AW; — %Azt) is a martingale independent of Y, and in particular
of g:(Y), one has

u(A) = EQ [exp()\Wt)exp (a sgn(Wgt(y))Yt) ‘fty]

1
— [EQ@ [exp (/\Wgt(y) + 5)\2(15 — gt(Y))> exp (a sgn(Wgt(y))Yt) .7-?/]

= exp 1AQ(t— g(Y)) ) { et Ooe’\xp(gt(Y),x)dx—i—e_o‘Yt ' (g (V),z)dx p .
(5 ) /

—00

(W >0’Wt—.%' (

Since we can differentiate with respect to A under the integral sign, we have

d™u v 00 oy 0
i t/ a"p(ge(Y), ) dv + e t/ z"p(g(Y), x) dx.
dA A=0 0 —00

Moreover, one has

oo n (2k)! k- .
/ o L (20" ntl, { Tarr (@)F, i n = 2k,
0

k! ok k+i e
\/%2@ 2, ifn=2k+1.
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Thus, due to the symmetry of p, we obtain

d"u | 2cosh(aY) fli'];)’lﬂ( (Y))E, if n = 2k,
dA™ | \_ 2sinh(aY}) jLngt(Y)kJr% if n=2k+1.

0

In view of the above theorem we may define the filtered Azéma martingale of the first kind by

i = 2gt( )tanh(aY}) Observe that, since tanh(0) = 0 and g;(Y) changes value only when Y
hits 0, [1 is a continuous martingale in contrast to the discontinuous Azéma martingale, p.

Although the Brownian motion W is clearly not independent of Y, observing Y does not tell us
anything new regarding the process (). We will only prove 7, is independent of Y. The analogous
statement can be proven for any ; along the same lines.

Proposition 2.3. 71 is independent of FY .
Proof. Let t <1 and consider
EY [ () exp (asgn(Wy,v))Y2) | 7]

for some bounded measurable real function f, where Q is as constructed in the proof of Proposition
2.2 for some T > 1. Observe that

Vg, (v)<n BV [exp (asgn(Wy, () Ye) [ 7 1] = T, (v) <) cosh(aY?)
since conditional on 71, (Wt)te[() +] 18 a Brownian bridge (see Exercise XI1.3.8 in [14]) and therefore
QWy, vy > 0[ge(Y),m) = 1 on the set [g,(Y) < 71]. Moreover,

1[gt(Y)>71]E [exp (asgn(W,,v))Y) ‘ftyﬁl] = 1{g,(v)>y cosh(aYy),

as well since g;(Y') < 1 and therefore sgn(W,(y)) is independent of 41 (see, e.g. Lemme 1 in [2]).

Since [g¢(Y) = 1] is a Q-null set due to their independence and the continuity of the distribution
of 71, we deduce that

EY [f () exp (asgn(Wy,;))Y2) [ 77] = cosh(aY)E2[f(1)] = cosh(aY)E[f (1)),
which in turn implies E[f(71)|F}] = E[f(y1)] for any f.

To show the independence for ¢t > 1, note that it suffices to consider
1, )>1E® [f (1) exp (asgn(Wy,v))Y:) [ ]
since when 1y, (y)<1) the problem is reduced to the previous case. Notice by the Markov property
of W that, given Wy, v and sgn(W,,) are independent for any « > 1. Thus, on [g:(Y") > 1]

EQ [f(71) exp (asgn(Wy,(v) Vi) [, Wi] = E%[f(1)|WA]EY [exp (asgn(W,,y))Y:) |7, W)

= B expl(a))® <g<Vva>—1>

Q exp(—ay)d |-
FE=[f (1) [Wh] exp( Y)‘I’( gt(Y)—1>’

where ® is the function defined in (2.4). Therefore, on [g;(Y) > 1]

%] v
f(m) exp(aY:)® (gt(Y)—1> ‘}—t ]

f(m) exp(—aY;)® <_Wl_1> ‘}-t}/] ‘

E2 [f(m1) exp (asgn(Wy,v))Y2) |[ 7] = E°

+E¢
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On the other hand, the conditional law of W; given v; = s is (see Exercise XI1.3.8 in [14])

=1 e v’ dx
——exp | ———~ .
21— ) P\ 721 —9)
Using this density, one can directly show that
oM
9(Y)—1

S L
g(Y) -1
15, 0r)>1E@ [f(m) exp (asgn(W,, ) Y2) | 7] = 1, ()>1) cosh(a V) EQ[£ (1)),

Hence, we arrive at
which yields the claimed independence. O

EY v1,9:(Y)| = E2 7, 9¢(Y)

Since /i is adapted to FY by definition, we deduce that the filtered Azéma martingale of the first
kind is independent of . This is in stark contrast to Azéma’s martingale, u, which is a function of
the process 7.

3. FILTERED AZEMA MARTINGALE OF THE SECOND KIND
We now return to study the solutions of equation (1.5) and the associated projection of W.
Recall that the equation (1.5) is the following SDE:
t
(3.1) Y, = B + a/ sgn(Ws)dLs(Y),
0
where L(Y) is the symmetric local time of Y at 0. The right local time of Y at 0 will be denoted
with £(Y). We will write L and ¢ instead of L(Y") and ¢(Y"), respectively, when no confusion arises.
Proposition 3.1. Suppose that |o| < 1.

i) There is a unique weak solution to (3.1). Moreover, Y sgn(Wyy)) 4 X, where X is a skew

g
Brownian motion which solves (1.6).

ii) |Y] is a reflecting Brownian motion. The symmetric and nonsymmetric local times, £ and
L, respectively, of Y at 0 are related by

t
b= / (14 asgn(Ws)) dLs.
0

Proof. Suppose X is the skew Brownian motion that solves (1.6). As observed in Introduction,
this SDE has a unique solution. Next let Y; = sgn(Wgt( X))Xt. Observe that Y is a continuous
semimartingale in view of Lemma 2.1 and [X, X|; = [Y,Y]; = ¢t. Moreover, L(X) = L(Y). Indeed,
(see Exercise VI.1.25 in [14])

1 1t
Li(X) = lim /0 1)jx,|<c)(8)ds = lim 2/0 Ljjy;|<e](8)ds = Le(Y).

e—0 2¢ e—0 2¢
Thus, Y satisfies

' t
Y, = /0 sgn (W, (x))dBs + a /0 sgn (W, (x))dLs(X)
t
= /Bt + OZ/ Sgn(Ws)dLS(X)
0

¢
= 5t+a/0 sgn(Ws)dLs(Y),

where 3 = [, sen(Wy, (x))dBs, the first equality is due to Lemma 2.1 and the second is due to
the fact that support of the measure dL(X) is contained in the zero set of X. This shows that
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sgn(W,,(x))X; is a weak solution to (3.1). By working backwards one can also see that sgn(Wyy)Y
is a weak solution to (1.6). Since there is a one-to-one correspondence between Y and sgn(Wyy))Y,
we obtain the uniqueness in law of the solutions to (3.1) from the analogous property of the solutions
to (1.6). Again, since the solutions to (1.6) are unique in law, we also have sgn(Wy))Y < x.
Therefore, |Y| = | X|. Since |X| is a reflecting Brownian motion (see, e.g., Lemma 2.1 in [3]), so is
Y.

To find the relationship between ¢ and L, first observe that

t
b — Eg_ = 2a/ sgn(Wy)dLs
0

by Theorem VI.1.7 in [14]. Moreover, Exercise VI.1.25 in [14] yields

bl

Ly 5

Thus,

t
0 :/ (1 + asgn(Wy)) dLs.
0
U

The equation (3.1) in fact has a unique strong solution. We need the following lemma for the
proof.

Lemma 3.1. Suppose X = M + A* for i =1,2 where Xé =0, M is a continuous local martingale
and A" is continuous and of finite variation for each i.

i) If X' >0, then L(X") = [, 1jxi_qdX} and L(X") = $0(X").
i) 2L(X7") = L(X?) + [y 1jxizgdXL.
i) L(X'V X?) = [( 1x2<qdLs(XY) + [3 1ixi1<qdLs(X?).
Proof. i) By Tanaka’s formula for the symmetric local times (see Exercise VI.1.25 in [14]), we
obtain

(3.2) axj’ = {21[X;->0} + 1[Xg:0]} dX] + 5dL(X").

However, since X 'S ¢ we immediately deduce from the above that

t
L(X), :/ 1ixi—qdXL.
0

The second assertion follows from Exercise VI.1.16 in [14].
ii) In view of the results from part i) and (3.2)

AL(X™) = Sl ({21[XZ>0} + 1xiq) | X + 5dLi(X ))

since [ 1pxizgdLs(X?) = 0.
iii) Let S = X'V X2 and observe that since S = X! + (X? — X1)* by Tanaka formula
Sy = dM; + 1(x2- x1)dA7 + 12y dAL,
since /(X2 — X') = 0 due to the fact that X? — X! is continuous and of finite variation.

Thus, S = M + C where C is continuous and of finite variation. By part ii)

t
Lt(S):2Lt(S+)—/ 15, —0)dSs.
0
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Then, by part i) and Exercise VI.1.21 in [14], we obtain

dLy(S) = Lx2<qdb(X') + 11 qdle(X?) — <1[X1 0,x2<0] T 1ix2= 0X1<0]> dSy
) dc

= 1[Xt2§0]d€t(X1)+1[th<0]d£t(X) (1[X1 0,.x2<0] T Lix2=0,x1<0]

d
= Lpxpc {0 = Lol } o+ Lo {d(X) — Lixzgyd4? |
= 1pxe<qdLe(X1) + 1xgqdLe(X?),

where the second line is due to Theorem VI.1.7 from [14] and the last line follows from the

same theorem and Exercise VI.1.25 in [14].
t

Theorem 3.1. Pathwise uniqueness holds for (3.1). Consequently, there is a unique strong solu-
tion. Moreover, sgn(Wg(y))Y 18 a skew Brownian motion independent of W.

Proof. Suppose there are two solutions, Y and Y2. Then,
dY'VY?), = dB;+ asgn(Wi)dLi(Y"') + 1py2oynd(Y? = Y1),
= dB; + asgn(Wy)dL(Y") + s yaysgn(Wy) {dLy(Y?) — dL(Y")}
+ dB; + asgn(Wy)dLy(Y') + alys gsen(Wy)dLy(Y?) — alys gsgn(We)dLy(Y)
= dBt + alngo]sgn(Wt)st(Yl) + Oé].[ytl<0]SgH(Wt)st(Y2)
= dB;+ asgn(W;)dL, (Y v Y?).
Thus, Y' v Y2 is also a solution to (3.1). However, since weak uniqueness holds for (3.1), we
conclude that Y1 = Y?2. Since weak existence and pathwise uniqueness implies the existence and
uniqueness of the strong solutions by the celebrated Yamada-Watanabe theorem, the second claim
follows.

In order to see the claimed independence, let X = sgn(W,

9(v))Y . As observed earlier, due to the
balayage formula,

Xt = Bt + aLl(X)

where 8 is a Brownian motion defined by fo sgn(W,, (v)) dBs. By Theorem 1.1, X is adapted to
the natural filtration of 5. However, 3 is independent of W since [W, 5] = 0. O

The theorem above tells us in particular that the zero set of Y is that of a skew Brownian
motion which is independent of W. This will greatly simplify our computations when we consider
the FY-optional projection of W, where FY is the usual augmentation of the natural filtration of
Y and Y is the unique strong solution of (3.1).

For any t > 0 define the stopping time

dy(Y) = inf{u > t:Y, =0}.
Then, we have the following

Proposition 3.2. For any t > 0, sgn(Wy,(v)) is FY -measurable. Similarly, sgn(Wa,(vy) is .7:2[;—
measurable.

Proof. We will first show that sgn (W,

g (v)) 18 FY -measurable. Since ¢ is F¥ -adapted, we have that

t
/ (14 asgn(W,))dL, € FY
0
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by Proposition 3.1. Moreover, since £ is FY -optional and L is FY -adapted and increasing, the
FY -optional projection of fo nsdls, for any bounded FY -optional 7, is given by

/ Ns (1 + a%sgn(W)s) dLs,
0
where °sgn(W) stands for the FY -optional projection of sgn(W). Thus, we have
/ Ns(%sgn(W)s — sgn(Ws))dLs = 0
0

for any bounded FY -optional . Thus, °sgn(W)s = sgn(W,) if s belongs to the support of dL. On
the other hand, by Proposition 3.1, |Y| is a reflecting Brownian motion. Therefore, the support of
dL is ‘exactly’ the zero set of Y (see Proposition VI.2.5 in [14]). Since Y,y = 0 we deduce that

sen(Wy,(v)) € Fy,(v) since °sgn(W)y, vy € Fy,(v)- This also implies that
Y
(3.3) Ly, 20580 (W, (v)) = l[YﬁéO]fi

where X is a skew Brownian motion adapted to FY in view of Theorem 3.1.
Next, consider the sequence of following stopping times:

1
T = inf{u > d; : |Y,| = 5}

Clearly, T} is decreasing in n and lim,,_,o 77" = d;. Then, by (3.3)
Yin

tim inf sgn (W, ) = liminf o

Next, we will show that liminf, . sgn(Wy_,.(v)) = sgn(Wy,), P—a.s.. To this end, first observe
t

that if u,, | u then sgn(W,, ) — sgn(W,) unless W,, = 0 by the continuity of v and the shape of

the sgn function. Also note that since the mapping ¢ + g¢(Y") is right continuous, lim_, g7y (Y) =

g4,(Y) = d;. However, d; is independent of W since it is an FX-stopping time in view of Theorem

3.1. Thus, P(Wy, = 0) = 0, which in turn yields that

Yo

sgn(Wy,) = linrr_léréf sgn(Wy .. (v)) = liminf € Fy

ngl n—oo Ttn

by the right-continuity of the filtration F¥ and the fact that X is 7 -adapted. Since the filtration
is completed by the P-null sets, we therefore conclude sgn(Wy,) € ]-"(Z . O

The above result shows that by observing Y we learn the sign of W at the end of every excursion
interval of Y (or alternatively of X). Let’s denote the FY -optional projection of W by 7. We call
this martingale the filtered Azéma martingale of the second kind.

Corollary 3.1. 7y = sgn(Wy,(v))\/g:(Y).

Proof. Let X = sgn(W(y))Y and recall that G is the usual augmentation of the natural filtration
of sgn(W). Then, in view of Proposition 3.2 and Theorem 3.1, we obtain F} C FX V Ggu(v)-
To ease the exposition let’s denote ¢;(Y) with g;. Since X is independent of the filtration G and

9:(Y) = g:(X),

(3.4 E(W\FY] = Elug, | 7] = sgn(Wg»\/?E Vo= |71,

where « is as in (1.1). On the other hand, Exercise XII.3.8 in [14] and the scaling properties of

standard Brownian motions together imply that, for any w, the process (M is a Brow-

Vi )sE[O,l]

nian bridge independent of ~,. Since sgn(Ws,,) = sgn(v\l;s% ), this yields that ~, is independent
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of sgn(W,) whenever r < ~,. Moreover, Lemme 1 in [2] further implies that sgn(W,) is inde-
pendent of v,. Combining these two observations allows us to deduce that 74, is independent of
o(sgn(Wy,), gs; s < t) since (gs)s>0 is independent of W by Theorem 3.1. (Recall once again that
that P(v,4, = g¢) = 0 in view of the independence of W and g.) Therefore, (3.4) can be rewritten as

EW|F)] = sgn(Wgo\/zEW ] = sen(Wy )i

since g; has the arcsine law. O

The result above means that ¥ is a pure jump martingale which is constant on [gy,t]. Therefore,
it is a martingale which can jump only at the end of the excursion interval (g;(Y),d;(Y)]! Also
observe that it is equally likely that this martingale will jump or stay constant when the excursion of
Y away from 0 comes to an end. The presence of a martingale with jumps in particular implies that
the optional and predictable o-algebras associated to FY are different. Recall, however, that the
martingales adapted to the filtration of the filtered Azéma martingale of the first kind is continuous
implying the equivalence of the associated predictable and optional o-algebras (see Corollary IV.5.7
in [14]).

We can also find the F} -conditional law of W; as a straightforward corollary to Proposition 4
in [2] and the independence of 7,y from FY as observed in the proof above.

Corollary 3.2. Let F : R — R be a bounded measurable function. Fiz at > 0 and define
[0, ] xR =R by f(s,2) =[5 F(y)p(t—s,y—x)dy where p is the transition density of standard
Brownian motion. Let

h(s,x) :/Osf(sjgm/m)\/%\/Sflrx/?7 dr.
Then,
BFOV)IZ = [ 1 (00, s0m(0Wy ) ) e
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