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In the last sections we have seen how to construct a Markov process starting from a
transition function. However, there are not many explicitly known transition functions and
this would have limited the usefulness of the theory as we wouldn’t be able to construct
a large family of examples that can be used in applications. Fortunately, there is a way
out. In physical or economic applications, the models are not always constructed using
the probability distribution of the process but rather how the process moves from point to
another. For Feller processes, this will be grasped by the so called infinitesimal generators.

Definition 4.1. Let (Pt) be Fellerian and define the operator A : C 7→ C by

Af = lim
t→∞

1

t
(Ptf − f).

The domain of A is denoted with D(A) and it contains the functions f ∈ C for which the
above limit exists and belongs to C. The operator A as defined is said to be the infinitesimal
generator of (Pt).

By the very definition of the Markov property, if f ∈ C
E[f(Xt+h)− f(Xt)|Ft] = Phf(Xt)− f(Xt).

Thus, if f ∈ D(A) we may write

E[f(Xt+h)− f(Xt)|Ft] = hAf(Xt) + o(h).

Proposition 4.1. Let (Pt) be Fellerian and A its generator.

(1) If f ∈ C then
∫ t
0
Psf ds ∈ D(A) and

Ptf − f = A

∫ t

0

Psf ds.

(2) If f ∈ D(A) and t ≥ 0, then Ptf ∈ D(A) and

d

dt
Ptf = APtf = PtAf.

(3) If f ∈ D(A) and t ≥ 0, then

Ptf − f =

∫ t

0

APsf ds =

∫ t

0

PsAf ds.
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Proof. (1) Observe that

1

h
(Ph − I)

∫ t

0

Psf ds =
1

h

∫ t

0

(Ps+hf − Psf) ds

=
1

h

(∫ t+h

h

Psf ds−
∫ t

0

Psf ds

)
=

1

h

(∫ t+h

t

Psf ds−
∫ h

0

Psf ds

)
Since s 7→ Ps is continuous, we have that the above converges to Ptf − f ∈ C as
h→ 0. This proves that

∫ t
0
Psf ds ∈ D(A) and that A

∫ t
0
Psf ds = Ptf − f .

(2) Ptf ∈ D(A) can be shown as above. In particular

APtf = lim
h↓0

Pt+hf − Ptf
h

= lim
h↓0

Pt(
Phf − f

h
) = PtAf,

by Theorem 3.1. This shows that t 7→ Ptf has a right derivative which is equal to
PtAf . Moreover, the above also implies that APtf = PtAf . In order to find the left
derivative, consider

lim
h↓0

Pt−hf − Ptf
−h

= lim
h↓0

Ptf − Pt−hf
h

= lim
h↓0

Pt−h
Phf − f

h
= PtAf

by, again, Theorem 3.1.
(3) This is left as an exercise.

�

Corollary 4.1. If A is the infinitesimal generator of a Feller semigroup (Pt), then D(A) is
dense in C and A is a closed operator.

Proof. Since

f = lim
t↓0

∫ t
0
Psf ds

t
,

and
∫ t
0
Psf ds ∈ D(A) by the previous proposition, we have that D(A) is dense in C. To

show that A is closed let (fn) ⊂ D(A) and fn → f , Afn → g in C. However, Ptfn − fn =∫ t
0
PsAfn ds implies that

Ptf − f =

∫ t

0

Psg ds

by letting n tend to ∞. Dividing both sides of above by t and letting t ↓ 0, we obtain
Af = g. �

We will now connect A with the (Uα)α>0, the resolvent of the semigroup (Pt) as defined
in Chapter 2. We recall here that for any bounded linear operator A on C, the resolvent set
ρ(A) of A consists of α ∈ R such that the operator α−A is one-to-one, onto and (α−A)−1

is a bounded operator on C.
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Proposition 4.2. Let (Pt) be Fellerian with generator A. Then, (0,∞) ⊂ ρ(A) and for any
α > 0 and f ∈ C:

(α− A)−1f = Uαf

(
=

∫ ∞
0

e−αtPtf dt

)
.

Proof. Let α > 0. We have seen in the last chapter that Uα is a bounded operator with
norm ‖Uα‖ = 1

α
. For any f ∈ C

1

h
(Ph − I)Uαf =

1

h

∫ ∞
0

e−αt(Pt+hf − Ptf) dt

=
1

h

(
eαh
∫ ∞
h

e−αtPtf dt−
∫ ∞
0

e−αtPtf dt

)
=

eαh − 1

h

∫ ∞
0

e−αtPtf dt−
eαh

h

∫ h

0

e−αtPtf dt.

Thus, by letting h ↓ 0, we see that Uαf ∈ D(A) and AUαf = αUαf − f . That is,

(4.1) (α− A)Uαf = f, f ∈ C.
This shows in particular that α− A is onto. In addition, if f ∈ D(A), then we have

UαAf =

∫ ∞
0

e−αtPtAf dt =

∫ ∞
0

Ae−αtPtf dt

= A

∫ ∞
0

e−αtPtf dt = AUαf.

So for f ∈ D(A)

Uα(α− A)f = αUαf − AUαf = αUαf + f − αUαf = f.

This shows that α− A is one-to-one. Thus, its inverse exists and is given by, via (4.1),

(α− A)−1 = Uα.

Since α was arbitrary, we have that (0,∞) ⊂ ρ(A). �

Proposition 4.3. The infinitesimal generator of a Fellerian semigroup has the following
positive maximum principle: if f ∈ D(A) and if x0 is such that 0 ≤ f(x0) = sup{f(x) : x ∈
E}, then

Af(x0) ≤ 0.

Proof. We have Af(x0) = limt↓0
Ptf(x0)−f(x0)

t
. Since

Ptf(x0)− f(x0) ≤ f(x0)(Pt(x0, E)− 1) ≤ 0,

we have the result. �

A natural question at this point is the following: When can we say a linear operator A
on C is the infinitesimal generator of a Fellerian semigroup? The celebrated Hille-Yosida
Theorem gives the answer. The proof of this theorem can be found in Ethier and Kurtz[?].

Theorem 4.1. A linear operator A on C is closable and its closure is the infinitesimal
generator of a Fellerian semigroup if and only if

a) D(A) is dense in C.
b) A satisfies the positive maximum principle.



4 INFINITESIMAL GENERATORS

c) For some α > 0, α− A is dense in C.

The significance of the generators is also manifested in the following theorem where (Xt,Ft)
is a Feller process with transition function (Pt).

Theorem 4.2. If f ∈ D(A) then the process

M f
t = f(Xt)− f(X0)−

∫ t

0

Af(Xs) ds

is a (P x,F0
t )-martingale for any x ∈ E.

Proof. Since f and Af are bounded, M f is integrable. Moreover,

Ex
[
M f

t

∣∣F0
s

]
= M f

s + Ex

[
f(Xt)− f(Xs)−

∫ t

s

Af(Xr) dr

∣∣∣∣F0
s

]
= M f

s + EXs

[
f(Xt−s)− f(X0)−

∫ t−s

0

Af(Xr) dr

]
= M f

s + Pt−sf(Xs)− f(Xs)−
∫ t−s

0

PrAf(Xs) dr

= M f
s

by Proposition 4.1. �

Conversely, we have the

Theorem 4.3. If f ∈ C and there exists a function g ∈ C such that

f(Xt)− f(X0)−
∫ t

0

g(Xs) ds

is a (P x,F0
t )-martingale for every x ∈ E, then f ∈ D(A) and Af = g.

Proof. By taking expectation with respect to P x we have

Ptf(x)− f(x)−
∫ t

0

Psg(x) ds = 0.

Thus, ∥∥∥∥Ptf − ft
− g
∥∥∥∥ =

∥∥∥∥1

t

∫ t

0

(Psg − g) ds

∥∥∥∥ ≤ 1

t

∫ t

0

‖Psg − g‖ ds,

which goes to 0 as t→ 0. �

Given a t.f. there are actually a few cases when A and D(A) are completely known. In
general, one has to be content with the subspaces of D(A).

Exercise 4.1. Let C2 be the subspace of twice continuously differentiable functions in C
whose first and second derivatives also belong to C. Let X be the linear Brownian motion.
Show that if f ∈ C, then for any α > 0, Uαf ∈ C2 and αUαf − f = 1

2
(Uαf)

′′
.

Proposition 4.4. Let X be the linear Brownian motion. Then, D(A) = C2 and Af = 1
2
f

′′
.
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Proof. From Proposition 4.2 we know that D(A) = Uα(C) for any α > 0, and that AUαf =
αUαf − f . In view of the exercise above, we have that if f ∈ C, Uαf ∈ C2 and AUαf =
1
2
(Uαf)

′′
. This shows that D(A) ⊂ C2.

Conversely, if g ∈ C2, define a function f by

f = αg − 1

2
g

′′
.

Observe that g−Uαf ∈ C and satisfies the ODE y
′′−2αy = 0, whose only solution in C is 0.

Thus, g = Uαf , i.e. g ∈ D(A). This completes the proof of that D(A) = C2 and Ag = 1
2
g

′′

for any g ∈ D(A) since one can always find an f ∈ C such that g = Uαf . �

Remark 1. For Brownian motion in higher dimensions, it can still be shown that Af = 1
2
∆f

where ∆ is the Laplacian and f ∈ C2. However, we do not have that D(A) = C2.

Recall that in view of Proposition 4.1 we have that

d

dt
Ptf =

1

2
(Ptf)

′′
,

when P is the t.f. for the linear Brownian motion. The above implies for any f ∈ C

g(t, x) =

∫
R
p(t, x, y)f(y) dy,

where p is the transition density of the linear Brownian motion, solves the heat equation

ut =
1

2
uxx.

However, this is just a restatement of the fact that p(t, x, y) is the fundamental solution of
the heat eqaution.

Exercise 4.2. Let X be a Feller process with t.f. (Pt) and its generator A, and c a positive
Borel function.

(1) Prove that one can define a homogeneous t.f. Qt by setting

Qt(x,A) = Ex

[
1A(Xt) exp

(
−
∫ t

0

c(XS) ds

)]
.

This t.f. corresponds to the killing of the trajectories of X at the rate c(X).
(2) If f ∈ D(A) and c is continuous, prove that

lim
t↓0

Qtf − f
t

= Af − cf,

i.e. the generator of (Qt) is given by A− c.
Exercise 4.3. Let A be an operator on C(R) defined by

Af(x) =
1

2
a(x)f ′′(x) + b(x)f ′(x)

for some continuous functions a and b such that a ≥ 0. Show that there exists a Feller
process with this generator.

Recall that we have seen in Theorem 4 that if f ∈ D(A) then f(Xt) −
∫ t
0
Af(Xs) ds is a

martingale. However, this property is valid for a more general class of functions that are not
necessarily continuous, or more enerally not in the domain of A. The following definition is
relevant in this respect:



6 INFINITESIMAL GENERATORS

Definition 4.2. If X is a Markov process, then a Borel measurable function f is said
to belong to the domain DA of the extended infinitesimal generator if there exists a Borel
measurable function g such that a.s.

∫ t
0
|g(Xs)| ds <∞, for every t, and(

f(Xt)− f(x)−
∫ t

0

g(Xs) ds

)
t≥0

is a (P x,F0
t )-martingale for any x ∈ E.

5. Diffusion processes

In this section we will restrict our attention to a special class of real valued Markov
processes, which we will call diffusions, and see their first connection to the solutions of
stochastic differential equations. We assume that E = Rd, a is matrix field on Rd and b is a
vector field on Rd such that

i) the maps x 7→ a(x) and x 7→ b(x) are Borel measurable and locally bounded,
ii) for each x the matrix a(x) is symmetric and nonnegative, i.e. for every λ ∈ Rd∑

i,j

aijλiλj ≥ 0.

With such a pair (a, b) we associate the linear operator

L =
1

2

d∑
i,j=1

aij(·)
∂2

∂xi∂xj
+

d∑
i=1

bi(·)
∂

∂xi
.

Definition 5.1. A Markov process X is said to be a diffusion process with generator L if

i) it has continuous paths,
ii) for any x ∈ Rd and any f ∈ C∞K (Rd),

Ex[f(Xt)] = f(x) + Ex

[∫ t

0

Lf(Xs) ds

]
.

In above C∞K (Rd) is the class of infinitely differentiable functions on Rd with a compact
support. In the sequel we will shortly write C∞K . In this case we further say that X has the
diffusion coefficient a and drift b.

We emphasize here that the assumption of continuity of paths in particular implies that
the process has infinite lifetime, i.e. ζ = inf{t > 0 : Xt = ∆} =∞.

Remark 2. Note that we could also define time-inhomogeneous diffusions by letting

Ls =
1

2

d∑
i,j=1

aij(s, ·)
∂2

∂xi∂xj
+

d∑
i=1

bi(s, ·)
∂

∂xi
,

for time dependent a and b. In this case the we should expect the diffusion process X to
satisfy

Ex
s [f(Xu)] = f(x) + Ex

s

[∫ u

s

Ltf(Xt) dt

]
,

for any s and f ∈ C∞K where Ex
s is the expectation with respect to the probability measure P x

s

defined by the inhomogeneous transition function, Ps,t of X. However, in the sequel we will
mostly restrict our attention to homogeneous diffusions.
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For any f ∈ C2
K we define:

M f
t := f(Xt)− f(X0)−

∫ t

0

Lf(Xs) ds.

The process M f is continuous and locally bounded.

Proposition 5.1. The condition ii) in Definition 5.1 is equivalent to each of the following:

iii) For any f ∈ C∞K M f is a martingale for any P x;
iv) For any f ∈ C2, M f is a local martingale for any P x.

Proof. This is left as an exercise. �

In view of the above proposition we see that any function in C2
K is in the domain of the

extended generator of X. Moroever, if X is Feller, C2
K ⊂ D(A).
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