Problem Set #4 ST441

- 1. Let \mathbb{C}^2 be the subspace of twice continuously differentiable functions in \mathbb{C} whose first and second derivatives also belong to \mathbb{C} . Let X be the linear Brownian motion. Show that if $f \in \mathbb{C}$, then for any $\alpha > 0$, $U^{\alpha}f \in \mathbb{C}^2$ and $\alpha U^{\alpha}f - f = \frac{1}{2}(U^{\alpha}f)''$.
- 2. Let B be a scalar Brownian motion and X = |B|. Show that X is a Feller process. Find its transition function, infinitesimal generator and determine the domain of its infinitesimal generator.
- 3. Determine the infinitesimal generator of a Poisson process with parameter λ .
- 4. Let X be a Feller process with t.f. (P_t) and its generator A, and c a positive Borel function.
 - (a) Prove that one can define a homogeneous t.f. Q_t by setting

$$Q_t(x,A) = E^x \left[\mathbf{1}_A(X_t) \exp\left(-\int_0^t c(X_s) \, ds\right) \right]$$

This t.f. corresponds to the killing of the trajectories of X at the rate c(X).

(b) If $f \in \mathscr{D}(A)$ and c is continuous and bounded, prove that

$$\lim_{t \downarrow 0} \frac{Q_t f - f}{t} = Af - cf,$$

i.e. the generator of (Q_t) is given by A - c.

5. Let A be an operator on $\mathbb{C}(\mathbb{R})$ defined by

$$Af(x) = \frac{1}{2}a(x)f''(x) + b(x)f'(x)$$

for some continuous functions a and b such that $a \ge 0$. Show that there exists a Feller process with this generator. (Hint: Apply Hille-Yosida Theorem.)