

Problem Set #7

ST441

1. The infinitesimal generator, A , of a δ -dimensional squared Bessel process for $\delta > 0$ is given by

$$Af = 2x \frac{d^2}{dx^2} f + \delta \frac{d}{dx} f.$$

Let T_y denote the first hitting time of y . Find $E^x [e^{-\lambda T_y}]$ for all $x, y \in [0, \infty)$ and $\lambda > 0$.

2. Extend the Kushner-Stratonovich equations in the lecture notes to the setting when $d[W, B]_t = \rho(X_t, Y_t)dt$ for some bounded measurable ρ .
3. Extend the Kushner-Stratonovich equations to a multidimensional setting.
4. Let X be the unobserved signal given by

$$X_t = X_0 + \int_0^t \sigma(s) dW_s, \quad \forall t \in [0, 1],$$

where X_0 is a normal random variable with mean zero and variance $s(0)$, and σ is a continuous and deterministic function such that

$$\int_0^1 \sigma^2(s) ds < \infty.$$

There also exists an observation process Y given by

$$Y_t = B_t + \int_0^t \frac{X_s - Y_s}{f(s)} ds,$$

where f is a deterministic continuous function. Suppose B and W are independent Brownian motions.

a) Find the equation for \hat{X} given the observation process Y .

b) Let $v(t) := \mathbb{E}[(X_t - \hat{X}_t)^2 | \mathcal{F}_t^Y]$ where \mathcal{F}^Y is the filtration generated by Y and $\hat{X}_t = \mathbb{E}[X_t | \mathcal{F}_t^Y]$. Show that v solves the differential equation

$$f^2(t)v'(t) + v^2(t) = \sigma^2(t)f^2(t).$$

(Hint: If $Z \sim N(\mu, \sigma^2)$ then $\mathbb{E}Z^3 = \mu(\mu^2 + 3\sigma^2)$.)

c) Let $s(t) := s(0) + \int_0^t \sigma^2(s)ds$. Suppose $f(t) = s(t) - t$. Using the differential equation above show that, given \mathcal{F}_t^Y , X_t is a normal random variable with mean \hat{X}_t and variance $s(t) - t$. Also show that \hat{X} is a Brownian motion.