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Asset price models

Mathematical Finance:

I price dynamics exogenous:
semimartingale models

I stochastic analysis

+ mathematically tractable

+ dynamic model: hedging

+ ‘easy’ to calibrate: volatility

– only suitable for (very) liquid
markets or small investors

Economics:

I prices endogeneous: demand
matches supply

I equilibrium theory

+ undeniably reasonable
explanation for price formation

+ excellent qualitative properties

– difficult to calibrate:
preferences, endowments

– quantitative accuracy?

Our goal:

Bridge the gap between these price formation principles!
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Some Basics

Some Economics: Equilibrium prices

Some Mathematics: An SDE for the utility process

Some Features: No arbitrage & Hedging
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Basic principle: Stay close to Black-Scholes

I Wealth dynamics induced by ‘small’ trades should be given by
the usual stochastic integrals at least to first order:

VT (εQ) = ε

∫ T

0
Qs dS0

s + o(ε) for ε→ 0

I Specify wealth dynamics for ‘any’ predictable trading strategy

I Option prices for small exposures should allow for an
expansion of the form

p(εG ) = ε E0G︸︷︷︸
Black-Scholes price

+
1

2
ε2C (G )︸ ︷︷ ︸

liquidity correction

+o(ε2) for ε→ 0

Main idea:
Use dynamic indifference prices!
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General setting

Financial model

I beliefs and information flow described by stochastic basis
(Ω,FT , (Ft)0≤t≤T ,P)

I marketed claims: European with payoff profiles
ψi ∈ L0(FT ) (i = 1, . . . , I ) possessing all exponential
moments

I utility functions um : R→ R (m = 1, . . . ,M) with bounded
absoulte risk aversion:

0 < c∗ ≤ −
u′′m(x)

u′m(x)
≤ c∗ <∞

; similar to exponential utilities

I initial endowments αm
0 ∈ L0(FT ) (m = 1, . . . ,M) have finite

exponential moments and form a Pareto-optimal allocation



Pareto-optimal allocations

Recall:
α = (αm) ∈ L0(FT ,RM) is Pareto-optimal if Σ = Σmα

m cannot
be re-distributed to form a better allocation α̃ = (α̃m):

Eum(α̃m) ≥ Eum(αm) with ‘>’ for some m ∈ {1, . . . ,M} .

Properties:

I α = (αm) Pareto-optimal iff same marginal indifference price
quotes from all market makers, i.e., we have a universal
marginal pricing measure Q(α) for the market:

dQ(α)

dP
∝ u′m(αm) independent of m

I Pareto-optimal allocations realized through trades among
market makers ; complete OTC-market



A single transaction

I pre-transaction endowment of market makers: α = (αm) with
total endowment Σ =

∑
m α

m

I investor submits an order for q = (q1, . . . , qI ) claims and
receives x in cash

I total endowment of market makers after transaction

Σ̃ = Σ− (x + 〈q, ψ〉)

is redistributed among the market makers to form a new
Pareto optimal allocation of endowments α̃ = (α̃m)

Obvious question:

How exactly to determine the cash transfer x and the new
allocation α̃?



A single transaction

Theorem
There exists a unique cash transfer x and a unique Pareto-optimal
allocation α̃ = (α̃m) of the total endowment Σ̃ = Σ− (x + 〈q, ψ〉)
such that each market maker is as well-off after the transaction as
he was before:

Eum(α̃m) = Eum(αm) (m = 1, . . . ,M) .

Note:
The cash transfer x can be viewed as the market’s indifference
price for the transaction: it is the minimal amount for which the
market makers can accommodate the investor’s order without
anyone of them being worse-off.
; most friendly market environment for our investor!
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Information and price formation

Why don’t market makers improve their utility?

At any moment, the market makers do not make guesses
about or anticipate future trades of the investor.

⇐⇒ Any two strategies coinciding up to time t induce the same
price dynamics up to t.

⇐⇒ The investor can split any order into a sequence of very small
orders each of which is filled at the market’s current marginal
utility indifference price.

⇐⇒ The expected utilities of our market makers do not change.

Comparison to classical Arrow-Debreu setting

I their investor completely reveals his strategy at time 0

I market makers take this into account when forming Pareto
allocation

I and thus gain in terms of utility



The wealth dynamics for simple strategies

When our investor follows a simple strategy

Qt =
∑
n

qn1(tn−1,tn](t) with qn ∈ L0(Ftn−1)

we can proceed inductively to determine the corresponding cash
balance process

Xt =
∑
n

xn1(tn−1,tn](t)

and (conditionally) Pareto-optimal allocations

At =
∑
n

αn1(tn−1,tn](t) .

In particular, we obtain the investor’s terminal wealth mapping:

Q 7→ VT (Q) = 〈QT , ψ〉+ XT =
∑
m

αm
0 −

∑
m

αm
T

Mathematical challenge:

How to consistently pass to general predictable strategies?
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More on Pareto-optimal allocations

We need to keep track of those allocations!

Lemma
The following conditions are equivalent:

1. α = (αm) is Pareto-optimal given Ft with total endowment
Σ =

∑
m α

m.

2. There exist weights Wt = (W m
t ) ∈ L0(Ft ,S ) such that α

solves the social planner’s allocation problem

max
α :

P
m α

m=Σ

∑
m

W m
t E [um(αm) |Ft ] ,

where S = {w ∈ RM
+ |

∑
m wm = 1}.

Moreover, there is actually a 1-1-correspondence between all
Pareto allocations of Σ and weights in S .



The technical key observation

Hence: Sufficient to track the evolution of weight vectors Wt and
of the overall endowment Σt . . .

or more simply, given the current
cumulatively generated position Qt , keep track of the amount of
cash Xt exchanged so far:

Σt = Σ0 − (Xt + 〈Qt , ψ〉) .

But: (Wt ,Xt) changes whenever Qt does: ‘wild’ dynamics!

Fortunately: Given q = Qt , (Wt ,Xt) can be recovered from the
vector of the market makers’ expected utilities u = Ut :

Wt = Wt(u, q), Xt = Xt(u, q)

— and these utilities evolve as martingales:

I no changes because of transactions: indifference pricing
principle

I changes induced by arrival of new information: martingales
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Convex duality

Theorem
The social planner’s utility

rt(w , x , q) = max
α :

P
m α

m=Σ0−(x+〈q,ψ〉)

∑
m

wmE [um(αm) |Ft ]

has the dual

r̃t(u, y , q) = sup
w

inf
x
{〈w , u〉+ xy − rt(w , x , q)}

in the sense that

rt(w , x , q) = inf
u

sup
y
{〈w , u〉+ xy − r̃t(u, y , q)}

and (w , x) is a saddle point for r̃t(u, y , q) if and only if (u, y) is a
saddle point for rt(w , x , q). In this case:

w = ∂u r̃t(u, y , q), x = ∂y r̃t(u, y , q), u = ∂w rt(w , x , q), y = ∂x rt(w , x , q)



An SDE for the utility process

We need to understand the martingale dynamics of expected
utilities.

Assumption

I filtration generated by Brownian motion B

I contingent claims ψ and total initial endowment Σ0 Malliavin
differentiable with bounded Malliavin derivatives

I bounded prudence:
∣∣∣−u′′′m (x)

u′′m(x)

∣∣∣ ≤ K < +∞

Notation:

I A(w , x , q) = Pareto allocation of Σ0 − (x + 〈q, ψ〉) with
weights w

I Ut(w , x , q) = (E [um(Am(w , x , q)) |Ft ])m=1,...,M

I dUt(w , x , q) = Ft(w , x , q) dBt



An SDE for the utility process

Theorem
For every simple strategy Q the induced process of expected
utilities for our market makers solves the SDE

dUt = Gt(Ut ,Qt) dBt , U0 = (Eum(αm
0 ))

where
Gt(u, q) = Ft(Wt(u, q),Xt(u, q), q) .

Note:
This SDE makes sense for any predictable (sufficiently integrable)
strategy Q!



The rest: Stability theory for SDEs

Corollary

For Qn such that
∫ T

0 (Qn
t − Qt)2 dt → 0 in probability, the

corresponding solutions Un converge uniformly in probability to the
solution U corresponding to Q.
In particular, we have a consistent and continuous extension of our
terminal wealth mapping Q 7→ VT (Q) from simple strategies to
predictable, a.s. square-integrable strategies.

Sketch of Proof:

I Use Clark-Ocone-Formula to compute Ft .

I Use assumptions on um and bounds on Malliavin derivatives to
control dependence of G on (u, q).

I Get existence, uniqueness, stability of strong solutions to SDE.



No arbitrage

Theorem
There is no arbitrage opportunity for the large investor among all
predictable strategies.

Sketch of Proof: For the large investor to make a profit, some market
makers have to lose in terms of expected utility.

However, utility processes are local martingales and bounded from above

— thus submartingales!
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Hedging of contingent claims

Problem
Large investor wishes to hedge against a claim H using the assets
ψ available on the market.

I Is it possible at all?

I How much initial capital is needed?

I How to determine the hedging strategy?

Solution
Assume that H has all exponential moments and let ψ = WT .
Then the initial capital the large investor needs to replicate the
option H is given by the market indifference price that would be
quoted for H if this claim was traded at time 0. The hedging
strategy can be computed in terms of the martingale
representations for the utility processes induced by the
corresponding Pareto allocation:

Gt(Ut ,Qt) = It .
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Conclusion

I new model for obtaining endogenous price dynamics of illiquid
assets: market indifference pricing

I nonlinear wealth dynamics accounting for liquidity premia

I consistent and continuous extension from simple to general
predictable strategies via SDE for utility process

I complete market with simple pricing rule: indifference yet
again

I market resilience?! lack of counterparties?

I manipulable claims?
. . .

THANK YOU VERY MUCH!
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