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Consider the control problem in standard form

V(t,x) = supJ(t,x;v), J(t,x;v):=E[F(XT)|X{ = x]

velu
To derive the related HJB equation, one uses the DPP
"V(t,x) = sup E[V(r, X)) X} = x]"
vel

Usually not that easy to prove

Heavy measurable selection argument ?

(t,x) — vo(t,x) s.t. J(t,x;v°(t,x)) > V(t,x) —¢

Continuity of the value function ?(t,x) € By, (ti, x;) — v°(t;, x) s.t.
J(t, x; v (ti, xi)) > J(ti, xi; v (ti, x;)) —e > V(ti, xi) — 2e > V(t,x) — 3¢

Our aim is to provide a weak version, much easier to prove.
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° (Q7F7F = (ft)th,IP)). T >0.

e Controls :
Uy, a collection of R9-valued progressively measurable processes.
e Controlled process :
(1,6 v) e S xUy — XT”@ € H?CH(RCI)

with [0, T] x R ¢ S C {(7,€) : 7 € Tp, 77 and ¢ € LY(RY)}.



Reward and Value functions
e Reward function
J(t,x;v) = E [f (X;’X(T))]
defined for controls v in

U = {yeuo: E [|F(X(T))]] < 00 ¥ (£,x) € [0, T]de}.



Reward and Value functions
e Reward function
J(t,x;v) = E[f (X (T))]
defined for controls v in
U = {y €Uy B[F(XV(T)] < o0V (£,x) €0, T] x Rd}.

e Admissibility : a control v € U is t-admissible if it is
independent of F;. We denote by U; the collection of such

processes.



Reward and Value functions
e Reward function
J(t,x;v) = E[f (X (T))]
defined for controls v in
U = {y €Uy B[F(XV(T)] < o0V (£,x) €0, T] x Rd}.

e Admissibility : a control v € U is t-admissible if it is
independent of F;. We denote by U; the collection of such
processes.

e Value function :

V(t,x) == sup J(t,x;v) for (t,x)e[0,T] xR
VGI/{t
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t,x

A2 (Causality) V7 €Uy :v=0on ACF = X{, = X[, on A
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A4 (Consistency with deterministic initial data) V 0 € 7jf 1 :

A1l (Independence) The process X/, is independent of F;.

t .
t,T] -

a. For P-a.ew € Q, 37, € Uy s-t.
E [f (X{(T)) 1Fo] (@) < J(O(w), X{(0)(w); 10)

b. Vt<s<T,0cT!

[t,S]’ i; S US, and V= Vl[OAQ] —|—l71(07-,—] :
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e Aim : Prove the DPP for 7 € 7; 1, (independent on F)

"V(tx) = sup E[V(r X7 )"

e Easy inequality : V/(t,x) < sup,y, E [V(7, X (7))]
Proof :
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The case where J(+;v) is l.s.c. and V' is continuous

e Aim : Prove the DPP for 7 € T[lf T (independent on F)

"V(t,x) = supE [V(T, Xt”X(T))]”
veUt ’

e Easy inequality :

V(t,x) < supE [V(7, X (7))]

e More difficult one :

V(t,X) > VSEUZ/F{) E [V(T7 X;’,X(T))}
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Proof : Fix (t;, x;)i>1 1= (Q x Q) N ([t, T] x RY).
Fori>1, fixr,>0and v € Uy, such that

J(t,x; v+ e > J(t, xi; v > V(t, xi) —e > V(t, x) — 2,

on (tj — rj, tj] X By.(x;) and also on A; := (t; — ri, tj] X Bj, a
partition of [t, T] x RY.
Given v € U, define

VE = l[t,T]V + 1(7—7T] Z ]-A,-(7—7 X;:X(T))Vi :
i>1



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,

E [f (th:i(T)) |FT] = ZJ(T, X;’,X(T); I/i)].A'. (T, XEX(T))
i>1



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,
E [f (th:i(T)) |FT] = ZJ(T, X;’,X(T); I/i)].A'. (T, XEX(T))
i>1

Z Z (V(T7 Xtu,x(T)) - 38) ]'Ai (7-7 XKX(T))

i>1



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,

E [f (th:i(T)) |FT] = ZJ(T, X;’,X(T); I/i)].A'. (T, XEX(T))

> STV, XE (7)) = 3¢) 1a, (7, X2 (7))
i>1

= V(7,X{x(7)) — 3¢



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,

E [f (th:i(T)) |-7:7-} = ZJ(T, X;’,X(T); I/i)].A'. (T, XEX(T))

> STV, XE (7)) = 3¢) 1a, (7, X2 (7))
i>1
= V(7,X{x(7)) — 3¢

and

V(t,x) > J(t,x;v°)



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,
E [f (th:i(T)) |-7:7-} = ZJ(T, X;’,X(T); I/i)].A'. (T, XEX(T))
i>1

Z Z (V(T7 Xtu,x(T)) - 38) ]'Ai (7-7 XKX(T))

i>1
= V(7,X{x(7)) — 3¢

and

V(t,x) > J(t,x;v°)
= E[E[f (X0(T)) 7]



The case where J(+;v) is l.s.c. and V' is continuous

Proof : Then,
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i>1
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Problems

e The lower-semicontinuity of J(; ) is very important in this
proof : It is in general not difficult to obtain.

e The upper-semicontinuity of V is also very important : It is
much more difficult to obtain, especially when controls are not

uniformly bounded (singular control).
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Observation

To derive the PDE in the viscosity sense, try to obtain :

V(t,x) > sup E [V(T, Xt”X(T)]
vEUL ’

but one only needs :

V(t,x) > sup E [4,0(7', X:X(T)]
vEUL

for all smooth function such that (t, x) achieves a minimum of
V — .

© being smooth it should be much easier to prove!!
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lim inf J(t', X' v) > J(t, x;v).
(t'x")=(tx), t'<t
Theorem : Fix {6”, v € U;} C ’T[;T] a family of stopping times.
Then, for any upper-semicontinuous function ¢ such that V > ¢
on [t, T] x RY, we have

where U =

{vel: Elp(0”, X¢,(6")F] < oo orE[p(6”, X/, (0")"] < oo}
Remark : The minimum can be taken to be local if

{(0¥, X{x(0")), v € Ur} is bounded in L. In practice ¢ is taken

to be C12.



The weak DPP
Proof.

<O «Fr «=)»

«E»

v



The weak DPP

Proof. For i > 1, fix r; >0 and /' € Uy, such that
J(t, ;v ) e > J(ti, xi; V') > V(ti, xi)—e > o(ti, xi)—e > p(t, x)—2e,

on A; := (t; — r;, ;] x B;, a partition of [t, T] x RY.



The weak DPP

Proof. For i > 1, fix r; >0 and /' € Uy, such that

J(t,x;v)+e > J(ti, xii V') > V(t, x))—e > o(ti, xi)—e > @(t, x)—2¢,
on A; := (t; — r;, ;] x B;, a partition of [t, T] x RY.

Given v € U, define

o= g+ Len S a8 XU (6
i>1



The weak DPP

Proof. For i > 1, fix r; >0 and /' € Uy, such that

J(t,x;v)+e > J(ti, xii V') > V(t, x))—e > o(ti, xi)—e > @(t, x)—2¢,
on A; := (t; — r;, ;] x B;, a partition of [t, T] x RY.

Given v € U, define

V¢ o= ey + vt ZlA 0", Xex( 0))v
i>1

Then,
E[f (XO(T)IFE] = D J0%, X0,(607):v)1a, (67, X0 (6Y))

i>1



The weak DPP

Proof. For i > 1, fix r; >0 and /' € Uy, such that
J(t, ;v ) e > J(ti, xi; V') > V(ti, xi)—e > o(ti, xi)—e > p(t, x)—2e,

on A; := (t; — r;, ;] x B;, a partition of [t, T] x RY.
Given v € U, define

V¢ o= ey + vt ZlA 0", Xex( 0))v
i>1
Then,
E[f (XO(T)IFE] = D J0%, X0,(607):v)1a, (67, X0 (6Y))
i>1
> ) (007, X (07)) = 3¢) 1a, (07, X (6))

i>1



The weak DPP

Proof. For i > 1, fix r; >0 and /' € Uy, such that
J(t, ;v ) e > J(ti, xi; V') > V(ti, xi)—e > o(ti, xi)—e > p(t, x)—2e,

on A; := (t; — r;, ;] x B;, a partition of [t, T] x RY.
Given v € U, define

V¢ o= ey + vt ZlA 0", Xex( 0))v
i>1
Then,
E[f (XO(T)IFE] = D J0%, X0,(607):v)1a, (67, X0 (6Y))
i>1
> ) (007, X (07)) = 3¢) 1a, (07, X (6))
i>1

= 90(011, X;X(GV)) —3e



The weak DPP

Proof. For i > 1, fix r; >0 and v/ € Uy, such that on
A; := (t; — ri, tj] x B, disjoint sets that cover [t, T] x RY.
Given v € U;, define

Vo= e+ L > 1a,(07, X0 (67)V
i>1
and
V(t,x) > J(t,x;v%)

= E[E[f (X(D) 7]
E [ (67, X2, (6"))] — 3¢ .

v
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The weak DPP

Using test functions makes the proof straightforward :

sup E [p(6”, XP(0"))] < V(t,x) < sup E[V*(0”, X!, (6"))]
veuy veEU:

Remark : If {X{,(0"), v € U;} is bounded in .°°, one can

approximate V, from below by smooth functions and obtain :

sup E [VL (0%, XU (6"))] < V(£,%) < sup E [V*(6%, X' (6"))]
uEMt vEU:
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Example : Framework

e Controlled process
dX(r) = w(X(r),v,)dr+o(X(r),v,)dW,

e |/ = square integrable progressively measurable processes with
values in U c RY

e fisl.s.c with f~ with linear growth, i and o Lipschitz

continuous.
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Example : Verification of the assumptions

Forall (t,x) € [0, T] xRY and v € U; :
A4 (Consistency with deterministic initial data) V 0 € ’T[ﬁ ok
a. For P-aew € Q, 37, €Uy, st

E[F (X0(T)) 170] () < J(B(w), XEL(0)(): )

Proof. Canonical space : W(w) = w. Set Ts(w) := (wr — ws)r>s and

w® = (Wras)r>0.

E [f (X:x(T)) 170] (w)

(w4 T o) (@)
[ £ (6 s T ))) BT ()

(@) 4T () (@) . -
/f <X0(w),Xt‘:x(9§Ew)) (T)(Te(w)(w))) dP(®)

J(0(w), Xex(0)(w); )

where, 7,(®) := V(wg(“’) + Ty (©)) € Up(uy.-
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Example : Verification of the assumptions

For all (t,x) € [0, T] x RY and v € U; :
A4 (Consistency with deterministic initial data) V 6 € T[,f K
b. Vt<s<T,0cT!

[£,s]" U €Us,and 7 :=vljg g + T 1) :

E [f (X7 (T)) |Fo] (w) = J(B(w), X (0)(w); 7) for P —a.e. w € Q.

Proof.

(w4 T o) (@)

E [f (XzX(T)) \fg} (w) = /f <X9(w),xgx(9)(w) (T)(Tg(w)((:)))> dP(&),
and therefore

E [f (X2(T)) |Fo] (w) = / f(xg(gjg;?iw)(w)(T)(TQM(@))) dP(&)
J(O(w), Xex(0)(w); D) -
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Example : Super-solution property

e \Want to prove that Vi, is a viscosity super-solution of

inf (=£“V,)>0
uel
e By using
V(t,x) > sup E [p(6”, X, (6"))]

veuys
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Example : Super-solution property

(to,x0) €0, T) x R s.t. 0 = (Vi — ©)(to, %0) = min( Vs — ¢)
Assume that —LY¢(ty, xp) < 0, for some u € U.

Set @(t,x) 1= ¢(t,x) — |t — to|* — |x — xo|*.

Then, —LY3(t,x) < 0on B, :={|t—to] <r, |x —x0| < r}.
Fix (tn, Xn, V(tn,xn)) — (to, X0, Vi(to, x0))-

Set 0, :==inf{s>1t, : (s, X¢, . (s)) & B} so that

V(tn, Xn) +tp = (ﬁ(tm Xn) S E [‘)5(0”7 XtL,:,xn(en))]
< E (0 XE 1, (0n))] — r*

for some 1y — 0, i.e. V(tn,xn) < E [0(bn, X£ . (0n))] — r*/2.
While V(tn, xa) > E [@(0, X . (0n))] by the weak DPP.
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Extensions

e Optimal control with running gain
e Optimal stopping

e Mixed optimal control/stopping, impulse control, ...



