Weak Dynamic Programming for Viscosity Solutions

B. Bouchard
Ceremade, Univ. Paris-Dauphine, and, Crest, Ensae

May 2009

Joint work with Nizar Touzi, CMAP, Ecole Polytechnique

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

- To derive the related HJB equation, one uses the DPP

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}} \mathbb{E}\left[V\left(\tau, X_{\tau}^{\nu}\right) \mid X_{t}^{\nu}=x\right]^{\prime \prime}
$$

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

- To derive the related HJB equation, one uses the DPP

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}} \mathbb{E}\left[V\left(\tau, X_{\tau}^{\nu}\right) \mid X_{t}^{\nu}=x\right]^{\prime \prime}
$$

- Usually not that easy to prove

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

- To derive the related HJB equation, one uses the DPP

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}} \mathbb{E}\left[V\left(\tau, X_{\tau}^{\nu}\right) \mid X_{t}^{\nu}=x\right]^{\prime \prime}
$$

- Usually not that easy to prove
a Heavy measurable selection argument?

$$
(t, x) \mapsto \nu^{\varepsilon}(t, x) \text { s.t. } J\left(t, x ; \nu^{\varepsilon}(t, x)\right) \geq V(t, x)-\varepsilon
$$

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

- To derive the related HJB equation, one uses the DPP

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}} \mathbb{E}\left[V\left(\tau, X_{\tau}^{\nu}\right) \mid X_{t}^{\nu}=x\right]^{\prime \prime}
$$

- Usually not that easy to prove
a Heavy measurable selection argument?

$$
(t, x) \mapsto \nu^{\varepsilon}(t, x) \text { s.t. } J\left(t, x ; \nu^{\varepsilon}(t, x)\right) \geq V(t, x)-\varepsilon
$$

b Continuity of the value function ? $(t, x) \in B_{r_{i}}\left(t_{i}, x_{i}\right) \mapsto \nu^{\varepsilon}\left(t_{i}, x_{i}\right)$ s.t. $J\left(t, x ; \nu^{\varepsilon}\left(t_{i}, x_{i}\right)\right) \geq J\left(t_{i}, x_{i} ; \nu^{\varepsilon}\left(t_{i}, x_{i}\right)\right)-\varepsilon \geq V\left(t_{i}, x_{i}\right)-2 \varepsilon \geq V(t, x)-3 \varepsilon$

Motivations

- Consider the control problem in standard form

$$
V(t, x):=\sup _{\nu \in \mathcal{U}} J(t, x ; \nu), J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{T}^{\nu}\right) \mid X_{t}^{\nu}=x\right]
$$

- To derive the related HJB equation, one uses the DPP

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}} \mathbb{E}\left[V\left(\tau, X_{\tau}^{\nu}\right) \mid X_{t}^{\nu}=x\right]^{\prime \prime}
$$

- Usually not that easy to prove
a Heavy measurable selection argument?

$$
(t, x) \mapsto \nu^{\varepsilon}(t, x) \text { s.t. } J\left(t, x ; \nu^{\varepsilon}(t, x)\right) \geq V(t, x)-\varepsilon
$$

b Continuity of the value function ? $(t, x) \in B_{r_{i}}\left(t_{i}, x_{i}\right) \mapsto \nu^{\varepsilon}\left(t_{i}, x_{i}\right)$ s.t. $J\left(t, x ; \nu^{\varepsilon}\left(t_{i}, x_{i}\right)\right) \geq J\left(t_{i}, x_{i} ; \nu^{\varepsilon}\left(t_{i}, x_{i}\right)\right)-\varepsilon \geq V\left(t_{i}, x_{i}\right)-2 \varepsilon \geq V(t, x)-3 \varepsilon$

- Our aim is to provide a weak version, much easier to prove.

Framework

- $\left(\Omega, \mathcal{F}, \mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \leq T}, \mathbb{P}\right), T>0$.

Framework

- $\left(\Omega, \mathcal{F}, \mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \leq T}, \mathbb{P}\right), T>0$.
- Controls :
\mathcal{U}_{0}, a collection of \mathbb{R}^{d}-valued progressively measurable processes.

Framework

- $\left(\Omega, \mathcal{F}, \mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \leq T}, \mathbb{P}\right), T>0$.
- Controls :
\mathcal{U}_{0}, a collection of \mathbb{R}^{d}-valued progressively measurable processes.
- Controlled process :

$$
(\tau, \xi ; \nu) \in \mathcal{S} \times \mathcal{U}_{0} \longmapsto X_{\tau, \xi}^{\nu} \in \mathbb{H}_{\mathrm{rcll}}^{0}\left(\mathbb{R}^{d}\right)
$$

with $[0, T] \times \mathbb{R}^{d} \subset \mathcal{S} \subset\left\{(\tau, \xi): \tau \in \mathcal{T}_{[0, T]}\right.$ and $\left.\xi \in \mathbb{L}_{\tau}^{0}\left(\mathbb{R}^{d}\right)\right\}$.

Reward and Value functions

- Reward function

$$
J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]
$$

defined for controls ν in

$$
\mathcal{U}:=\left\{\nu \in \mathcal{U}_{0}: \mathbb{E}\left[\left|f\left(X_{t, x}^{\nu}(T)\right)\right|\right]<\infty \forall(t, x) \in[0, T] \times \mathbb{R}^{d}\right\}
$$

Reward and Value functions

- Reward function

$$
J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]
$$

defined for controls ν in
$\mathcal{U}:=\left\{\nu \in \mathcal{U}_{0}: \mathbb{E}\left[\left|f\left(X_{t, x}^{\nu}(T)\right)\right|\right]<\infty \forall(t, x) \in[0, T] \times \mathbb{R}^{d}\right\}$.

- Admissibility : a control $\nu \in \mathcal{U}$ is t-admissible if it is independent of \mathcal{F}_{t}. We denote by \mathcal{U}_{t} the collection of such processes.

Reward and Value functions

- Reward function

$$
J(t, x ; \nu):=\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]
$$

defined for controls ν in
$\mathcal{U}:=\left\{\nu \in \mathcal{U}_{0}: \mathbb{E}\left[\left|f\left(X_{t, x}^{\nu}(T)\right)\right|\right]<\infty \forall(t, x) \in[0, T] \times \mathbb{R}^{d}\right\}$.

- Admissibility : a control $\nu \in \mathcal{U}$ is t-admissible if it is independent of \mathcal{F}_{t}. We denote by \mathcal{U}_{t} the collection of such processes.
- Value function :

$$
V(t, x):=\sup _{\nu \in \mathcal{U}_{t}} J(t, x ; \nu) \quad \text { for } \quad(t, x) \in[0, T] \times \mathbb{R}^{d}
$$

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.
A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_{t}, \theta \in \mathcal{T}_{[t, T]}^{t}$:

$$
\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_{t}
$$

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.
A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_{t}, \theta \in \mathcal{T}_{[t, T]}^{t}$: $\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_{t}$.
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.
A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_{t}, \theta \in \mathcal{T}_{[t, T]}^{t}$: $\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_{t}$.
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$: a. For \mathbb{P}-a.e $\omega \in \Omega, \exists \tilde{\nu}_{\omega} \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) \leq J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}_{\omega}\right)
$$

Assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.
A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_{t}, \theta \in \mathcal{T}_{[t, T]}^{t}$: $\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_{t}$.
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$: a. For \mathbb{P}-a.e $\omega \in \Omega, \exists \tilde{\nu}_{\omega} \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) \leq J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}_{\omega}\right)
$$

b. $\forall t \leq s \leq T, \theta \in \mathcal{T}_{[t, s]}^{t}, \tilde{\nu} \in \mathcal{U}_{s}$, and $\bar{\nu}:=\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]}:$

$$
\mathbb{E}\left[f\left(X_{t, x}^{\bar{\nu}}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega)=J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}\right) \text { for } \mathbb{P}-\text { a.e. } \omega \in \Omega .
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
" V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
" V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality : $V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
" V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality : $V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]$ Proof :

$$
V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\tau}\right]\right]
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
" V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality : $V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]$ Proof :

$$
V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\tau}\right]\right]
$$

where for some $\tilde{\nu}_{\omega} \in \mathcal{U}_{\tau(\omega)}$

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\tau}\right](\omega) \leq J\left(\tau(\omega), X_{t, x}^{\nu}(\tau)(\omega) ; \tilde{\nu}_{\omega}\right)
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
" V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality : $V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]$ Proof :

$$
V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\tau}\right]\right]
$$

where for some $\tilde{\nu}_{\omega} \in \mathcal{U}_{\tau(\omega)}$

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\tau}\right](\omega) & \leq J\left(\tau(\omega), X_{t, x}^{\nu}(\tau)(\omega) ; \tilde{\nu}_{\omega}\right) \\
& \leq V\left(\tau(\omega), X_{t, x}^{\nu}(\tau)(\omega)\right)
\end{aligned}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality :

$$
V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^{t}$ (independent on \mathcal{F}_{t})

$$
{ }^{\prime \prime} V(t, x)=\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]^{\prime \prime}
$$

- Easy inequality :

$$
V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]
$$

- More difficult one :

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

Proof: Fix $\left(t_{i}, x_{i}\right)_{i \geq 1}:=\left(\mathbb{Q} \times \mathbb{Q}^{d}\right) \cap\left([t, T] \times \mathbb{R}^{d}\right)$.

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

Proof: $\operatorname{Fix}\left(t_{i}, x_{i}\right)_{i \geq 1}:=\left(\mathbb{Q} \times \mathbb{Q}^{d}\right) \cap\left([t, T] \times \mathbb{R}^{d}\right)$.
For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that

$$
J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq V(t, x)-2 \varepsilon,
$$

on $\left(t_{i}-r_{i}, t_{i}\right] \times B_{r_{i}}\left(x_{i}\right)$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

Proof: $\operatorname{Fix}\left(t_{i}, x_{i}\right)_{i \geq 1}:=\left(\mathbb{Q} \times \mathbb{Q}^{d}\right) \cap\left([t, T] \times \mathbb{R}^{d}\right)$.
For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that

$$
J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq V(t, x)-2 \varepsilon,
$$

on $\left(t_{i}-r_{i}, t_{i}\right] \times B_{r_{i}}\left(x_{i}\right)$ and also on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous

Proof: $\operatorname{Fix}\left(t_{i}, x_{i}\right)_{i \geq 1}:=\left(\mathbb{Q} \times \mathbb{Q}^{d}\right) \cap\left([t, T] \times \mathbb{R}^{d}\right)$.
For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that

$$
J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq V(t, x)-2 \varepsilon,
$$

on $\left(t_{i}-r_{i}, t_{i}\right] \times B_{r_{i}}\left(x_{i}\right)$ and also on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{[t, \tau]} \nu+\mathbf{1}_{(\tau, T]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \nu^{i}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right]=\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right)
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right] & =\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& \geq \sum_{i \geq 1}\left(V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right)
\end{aligned}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right] & =\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& \geq \sum_{i \geq 1}\left(V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& =V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon
\end{aligned}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right] & =\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& \geq \sum_{i \geq 1}\left(V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& =V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon
\end{aligned}
$$

and

$$
V(t, x) \geq J\left(t, x ; \nu^{\varepsilon}\right)
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right] & =\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& \geq \sum_{i \geq 1}\left(V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& =V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
V(t, x) & \geq J\left(t, x ; \nu^{\varepsilon}\right) \\
& =\mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right]\right]
\end{aligned}
$$

The case where $J(\cdot ; \nu)$ is I.s.c. and V is continuous
Proof: Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right] & =\sum_{i \geq 1} J\left(\tau, X_{t, x}^{\nu}(\tau) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& \geq \sum_{i \geq 1}\left(V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\tau, X_{t, x}^{\nu}(\tau)\right) \\
& =V\left(\tau, X_{t, x}^{\nu}(\tau)\right)-3 \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
V(t, x) & \geq J\left(t, x ; \nu^{\varepsilon}\right) \\
& =\mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\tau}\right]\right] \\
& \geq \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right)\right]-3 \varepsilon
\end{aligned}
$$

Problems

- The lower-semicontinuity of $J(\cdot ; \nu)$ is very important in this proof

Problems

- The lower-semicontinuity of $J(\cdot ; \nu)$ is very important in this proof: It is in general not difficult to obtain.

Problems

- The lower-semicontinuity of $J(\cdot ; \nu)$ is very important in this proof: It is in general not difficult to obtain.
- The upper-semicontinuity of V is also very important

Problems

- The lower-semicontinuity of $J(\cdot ; \nu)$ is very important in this proof: It is in general not difficult to obtain.
- The upper-semicontinuity of V is also very important: It is much more difficult to obtain, especially when controls are not uniformly bounded (singular control).

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right]\right.
$$

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right]\right.
$$

but one only needs:

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[\varphi\left(\tau, X_{t, x}^{\nu}(\tau)\right]\right.
$$

for all smooth function such that (t, x) achieves a minimum of $V-\varphi$.

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V\left(\tau, X_{t, x}^{\nu}(\tau)\right]\right.
$$

but one only needs :

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[\varphi\left(\tau, X_{t, x}^{\nu}(\tau)\right]\right.
$$

for all smooth function such that (t, x) achieves a minimum of $V-\varphi$.
φ being smooth it should be much easier to prove!!

The weak DPP

Assume that for all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$

$$
\liminf _{\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x), t^{\prime} \leq t} J\left(t^{\prime}, x^{\prime} ; \nu\right) \geq J(t, x ; \nu) .
$$

The weak DPP

Assume that for all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$

$$
\liminf _{\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x), t^{\prime} \leq t} J\left(t^{\prime}, x^{\prime} ; \nu\right) \geq J(t, x ; \nu) .
$$

Theorem : Fix $\left\{\theta^{\nu}, \nu \in \mathcal{U}_{t}\right\} \subset \mathcal{T}_{[t, T]}^{t}$ a family of stopping times. Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^{d}$, we have

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

where $\mathcal{U}_{t}^{\varphi}=$
$\left\{\nu \in \mathcal{U}_{t}: \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{+}\right]<\infty\right.$ or $\left.\mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{-}\right]<\infty\right\}$.

The weak DPP

Assume that for all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$

$$
\liminf _{\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x), t^{\prime} \leq t} J\left(t^{\prime}, x^{\prime} ; \nu\right) \geq J(t, x ; \nu) .
$$

Theorem : Fix $\left\{\theta^{\nu}, \nu \in \mathcal{U}_{t}\right\} \subset \mathcal{T}_{[t, T]}^{t}$ a family of stopping times. Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^{d}$, we have

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

where $\mathcal{U}_{t}^{\varphi}=$
$\left\{\nu \in \mathcal{U}_{t}: \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{+}\right]<\infty\right.$ or $\left.\mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{-}\right]<\infty\right\}$.
Remark: The minimum can be taken to be local if $\left\{\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right), \nu \in \mathcal{U}_{t}\right\}$ is bounded in \mathbb{L}^{∞}.

The weak DPP

Assume that for all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$

$$
\liminf _{\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x), t^{\prime} \leq t} J\left(t^{\prime}, x^{\prime} ; \nu\right) \geq J(t, x ; \nu) .
$$

Theorem : Fix $\left\{\theta^{\nu}, \nu \in \mathcal{U}_{t}\right\} \subset \mathcal{T}_{[t, T]}^{t}$ a family of stopping times. Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^{d}$, we have

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

where $\mathcal{U}_{t}^{\varphi}=$
$\left\{\nu \in \mathcal{U}_{t}: \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{+}\right]<\infty\right.$ or $\left.\mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)^{-}\right]<\infty\right\}$.
Remark: The minimum can be taken to be local if $\left\{\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right), \nu \in \mathcal{U}_{t}\right\}$ is bounded in \mathbb{L}^{∞}. In practice φ is taken to be $C^{1,2}$.

The weak DPP

Proof.

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that $J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi(t, x)-2 \varepsilon$, on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that
$J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi(t, x)-2 \varepsilon$,
on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{\left[t, \theta^{\nu}\right]} \nu+\mathbf{1}_{\left(\theta^{\nu}, T\right]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \nu^{i} .
$$

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that
$J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi(t, x)-2 \varepsilon$,
on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{\left[t, \theta^{\nu}\right]} \nu+\mathbf{1}_{\left(\theta^{\nu}, T\right]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \nu^{i} .
$$

Then,
$\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\theta}^{\nu}\right]=\sum_{i \geq 1} J\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)$

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that $J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi(t, x)-2 \varepsilon$, on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{\left[t, \theta^{\nu}\right]} \nu+\mathbf{1}_{\left(\theta^{\nu}, T\right]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \nu^{i} .
$$

Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\theta}^{\nu}\right] & =\sum_{i \geq 1} J\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \\
& \geq \sum_{i \geq 1}\left(\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)
\end{aligned}
$$

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that
$J\left(t, x ; \nu^{i}\right)+\varepsilon \geq J\left(t_{i}, x_{i} ; \nu^{i}\right) \geq V\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi\left(t_{i}, x_{i}\right)-\varepsilon \geq \varphi(t, x)-2 \varepsilon$,
on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, a partition of $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{\left[t, \theta^{\nu}\right]} \nu+\mathbf{1}_{\left(\theta^{\nu}, T\right]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \nu^{i}
$$

Then,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\theta}^{\nu}\right] & =\sum_{i \geq 1} J\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right) ; \nu^{i}\right) \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \\
& \geq \sum_{i \geq 1}\left(\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)-3 \varepsilon\right) \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \\
& =\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)-3 \varepsilon
\end{aligned}
$$

The weak DPP

Proof. For $i \geq 1$, fix $r_{i}>0$ and $\nu^{i} \in \mathcal{U}_{t_{i}}$ such that on $A_{i}:=\left(t_{i}-r_{i}, t_{i}\right] \times B_{i}$, disjoint sets that cover $[t, T] \times \mathbb{R}^{d}$.
Given $\nu \in \mathcal{U}_{t}$, define

$$
\nu^{\varepsilon}:=\mathbf{1}_{\left[t, \theta^{\nu}\right]} \nu+\mathbf{1}_{\left(\theta^{\nu}, T\right]} \sum_{i \geq 1} \mathbf{1}_{A_{i}}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right) \nu^{i}
$$

and

$$
\begin{aligned}
V(t, x) & \geq J\left(t, x ; \nu^{\varepsilon}\right) \\
& =\mathbb{E}\left[\mathbb{E}\left[f\left(X_{t, x}^{\nu^{\varepsilon}}(T)\right) \mid \mathcal{F}_{\theta}^{\nu}\right]\right] \\
& \geq \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]-3 \varepsilon
\end{aligned}
$$

The weak DPP

Using test functions makes the proof straightforward :

$$
\sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right] \leq V(t, x)
$$

The weak DPP

Using test functions makes the proof straightforward :

$$
\sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right] \leq V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V^{*}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

The weak DPP

Using test functions makes the proof straightforward :
$\sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right] \leq V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V^{*}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]$
Remark: If $\left\{X_{t, x}^{\nu}\left(\theta^{\nu}\right), \nu \in \mathcal{U}_{t}\right\}$ is bounded in \mathbb{L}^{∞}, one can approximate V_{*} from below by smooth functions and obtain :

$$
\sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V_{*}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right] \leq V(t, x) \leq \sup _{\nu \in \mathcal{U}_{t}} \mathbb{E}\left[V^{*}\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

Example: Framework

- Controlled process

$$
d X(r)=\mu\left(X(r), \nu_{r}\right) d r+\sigma\left(X(r), \nu_{r}\right) d W_{r}
$$

Example: Framework

- Controlled process

$$
d X(r)=\mu\left(X(r), \nu_{r}\right) d r+\sigma\left(X(r), \nu_{r}\right) d W_{r}
$$

- $\mathcal{U}=$ square integrable progressively measurable processes with values in $U \subset \mathbb{R}^{d}$

Example: Framework

- Controlled process

$$
d X(r)=\mu\left(X(r), \nu_{r}\right) d r+\sigma\left(X(r), \nu_{r}\right) d W_{r}
$$

- $\mathcal{U}=$ square integrable progressively measurable processes with values in $U \subset \mathbb{R}^{d}$
- f is I.s.c with f^{-}with linear growth, μ and σ Lipschitz continuous.

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:

$$
\begin{aligned}
& \text { L.s.c. }\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x) \Rightarrow X_{t^{\prime}, x^{\prime}}^{\nu}(T) \rightarrow X_{t, x}^{\nu}(T) \text { in } \mathbb{L}^{2} \\
& \quad \Rightarrow \lim \inf \mathbb{E}\left[f\left(X_{t^{\prime}, x^{\prime}}^{\nu}(T)\right)\right] \geq \mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right] .
\end{aligned}
$$

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
L.s.c. $\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x) \Rightarrow X_{t^{\prime}, x^{\prime}}^{\nu}(T) \rightarrow X_{t, x}^{\nu}(T)$ in \mathbb{L}^{2}
$\Rightarrow \liminf \mathbb{E}\left[f\left(X_{t^{\prime}, x^{\prime}}^{\nu}(T)\right)\right] \geq \mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]$.
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
L.s.c. $\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x) \Rightarrow X_{t^{\prime}, x^{\prime}}^{\nu}(T) \rightarrow X_{t, x}^{\nu}(T)$ in \mathbb{L}^{2}
$\Rightarrow \liminf \mathbb{E}\left[f\left(X_{t^{\prime}, x^{\prime}}^{\nu}(T)\right)\right] \geq \mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]$.
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
L.s.c. $\left(t^{\prime}, x^{\prime}\right) \rightarrow(t, x) \Rightarrow X_{t^{\prime}, x^{\prime}}^{\nu}(T) \rightarrow X_{t, x}^{\nu}(T)$ in \mathbb{L}^{2}
$\Rightarrow \lim \inf \mathbb{E}\left[f\left(X_{t^{\prime}, x^{\prime}}^{\nu}(T)\right)\right] \geq \mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right)\right]$.
A1 (Independence) The process $X_{t, x}^{\nu}$ is independent of \mathcal{F}_{t}.
A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_{t}: \nu=\tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^{\nu}=X_{t, x}^{\tilde{\nu}}$ on A.
A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_{t}, \theta \in \mathcal{T}_{[t, T]}^{t}$: $\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_{t}$.

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$: a. For \mathbb{P}-a.e $\omega \in \Omega, \exists \tilde{\nu}_{\omega} \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) \leq J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}_{\omega}\right)
$$

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:
a. For \mathbb{P}-a.e $\omega \in \Omega, \exists \tilde{\nu}_{\omega} \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) \leq J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}_{\omega}\right)
$$

Proof. Canonical space : $W(\omega)=\omega$. Set $\mathbf{T}_{s}(\omega):=\left(\omega_{r}-\omega_{s}\right)_{r \geq s}$ and $\omega^{s}:=\left(\omega_{r \wedge s}\right)_{r \geq 0}$.

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\nu}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) & =\int f\left(X_{\left.\theta(\omega), X_{t, x}^{\nu}+\theta\right)(\omega)}^{\nu\left(\omega^{\theta(\omega)}+\mathbf{T}_{\theta(\omega)}(\omega)\right)}(T)\left(\mathbf{T}_{\theta(\omega)}(\omega)\right)\right) d \mathbb{P}\left(\mathbf{T}_{\theta(\omega)}(\omega)\right) \\
& =\int f\left(X_{\theta(\omega), X_{t}^{\nu}, x}^{\nu(\theta)(\omega)}\left(\omega^{\theta(\omega)}(T)\right)\left(\mathbf{T}_{\theta(\omega)}(\tilde{\omega})\right)\right) d \mathbb{P}(\tilde{\omega}) \\
& =J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}_{\omega}\right)
\end{aligned}
$$

where, $\tilde{\nu}_{\omega}(\tilde{\omega}):=\nu\left(\omega^{\theta(\omega)}+\mathbf{T}_{\theta(\omega)}(\tilde{\omega})\right) \in \mathcal{U}_{\theta(\omega)}$.

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:
b. $\forall t \leq s \leq T, \theta \in \mathcal{T}_{[t, s]}^{t}, \tilde{\nu} \in \mathcal{U}_{s}$, and $\bar{\nu}:=\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]}:$

$$
\mathbb{E}\left[f\left(X_{t, x}^{\bar{\nu}}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega)=J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}\right) \text { for } \mathbb{P}-\text { a.e. } \omega \in \Omega .
$$

Example: Verification of the assumptions

For all $(t, x) \in[0, T] \times \mathbb{R}^{d}$ and $\nu \in \mathcal{U}_{t}$:
A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^{t}$:
b. $\forall t \leq s \leq T, \theta \in \mathcal{T}_{[t, s]}^{t}, \tilde{\nu} \in \mathcal{U}_{s}$, and $\bar{\nu}:=\nu \mathbf{1}_{[0, \theta]}+\tilde{\nu} \mathbf{1}_{(\theta, T]}:$

$$
\mathbb{E}\left[f\left(X_{t, x}^{\bar{\nu}}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega)=J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}\right) \text { for } \mathbb{P}-\text { a.e. } \omega \in \Omega .
$$

Proof.

$$
\mathbb{E}\left[f\left(X_{t, x}^{\bar{\nu}}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega)=\int f\left(X_{\theta(\omega), X_{t, x}^{\tilde{\nu}}+(\theta)(\omega)}^{\tilde{\tilde{\nu}}(\omega)}(T)\left(\mathbf{T}_{\theta(\omega)}(\tilde{\omega})\right)\right) d \mathbb{P}(\tilde{\omega}),
$$

and therefore

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t, x}^{\bar{t}}(T)\right) \mid \mathcal{F}_{\theta}\right](\omega) & =\int f\left(X_{\theta(\omega),{ }_{t}}^{\tilde{\nu}\left(T_{t, x}(\tilde{\omega})\right)}(\omega)(T)\left(\mathbf{T}_{\theta(\omega)}(\tilde{\omega})\right)\right) d \mathbb{P}(\tilde{\omega}) \\
& =J\left(\theta(\omega), X_{t, x}^{\nu}(\theta)(\omega) ; \tilde{\nu}\right) .
\end{aligned}
$$

Example: Super-solution property

- Want to prove that V_{*} is a viscosity super-solution of

$$
\inf _{u \in U}\left(-\mathcal{L}^{u} V_{*}\right) \geq 0
$$

Example: Super-solution property

- Want to prove that V_{*} is a viscosity super-solution of

$$
\inf _{u \in U}\left(-\mathcal{L}^{u} V_{*}\right) \geq 0
$$

- By using

$$
V(t, x) \geq \sup _{\nu \in \mathcal{U}_{t}^{\varphi}} \mathbb{E}\left[\varphi\left(\theta^{\nu}, X_{t, x}^{\nu}\left(\theta^{\nu}\right)\right)\right]
$$

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.
- $\operatorname{Fix}\left(t_{n}, x_{n}, V\left(t_{n}, x_{n}\right)\right) \rightarrow\left(t_{0}, x_{0}, V_{*}\left(t_{0}, x_{0}\right)\right)$.

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.
- $\operatorname{Fix}\left(t_{n}, x_{n}, V\left(t_{n}, x_{n}\right)\right) \rightarrow\left(t_{0}, x_{0}, V_{*}\left(t_{0}, x_{0}\right)\right)$.
- Set $\theta_{n}:=\inf \left\{s \geq t_{n}:\left(s, X_{t_{n}, x_{n}}^{u}(s)\right) \notin B_{r}\right\}$ so that

$$
V\left(t_{n}, x_{n}\right)+\iota_{n}=\tilde{\varphi}\left(t_{n}, x_{n}\right) \leq \mathbb{E}\left[\tilde{\varphi}\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]
$$

for some $\iota_{n} \rightarrow 0$

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.
- Fix $\left(t_{n}, x_{n}, V\left(t_{n}, x_{n}\right)\right) \rightarrow\left(t_{0}, x_{0}, V_{*}\left(t_{0}, x_{0}\right)\right)$.
- Set $\theta_{n}:=\inf \left\{s \geq t_{n}:\left(s, X_{t_{n}, x_{n}}^{u}(s)\right) \notin B_{r}\right\}$ so that

$$
\begin{aligned}
V\left(t_{n}, x_{n}\right)+\iota_{n}=\tilde{\varphi}\left(t_{n}, x_{n}\right) & \leq \mathbb{E}\left[\tilde{\varphi}\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right] \\
& \leq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]-r^{4}
\end{aligned}
$$

for some $\iota_{n} \rightarrow 0$

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.
- Fix $\left(t_{n}, x_{n}, V\left(t_{n}, x_{n}\right)\right) \rightarrow\left(t_{0}, x_{0}, V_{*}\left(t_{0}, x_{0}\right)\right)$.
- Set $\theta_{n}:=\inf \left\{s \geq t_{n}:\left(s, X_{t_{n}, x_{n}}^{u}(s)\right) \notin B_{r}\right\}$ so that

$$
\begin{aligned}
V\left(t_{n}, x_{n}\right)+\iota_{n}=\tilde{\varphi}\left(t_{n}, x_{n}\right) & \leq \mathbb{E}\left[\tilde{\varphi}\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right] \\
& \leq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]-r^{4}
\end{aligned}
$$

for some $\iota_{n} \rightarrow 0$, i.e. $V\left(t_{n}, x_{n}\right) \leq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]-r^{4} / 2$.

Example: Super-solution property

- $\left(t_{0}, x_{0}\right) \in[0, T) \times \mathbb{R}^{d}$ s.t. $0=\left(V_{*}-\varphi\right)\left(t_{0}, x_{0}\right)=\min \left(V_{*}-\varphi\right)$
- Assume that $-\mathcal{L}^{u} \varphi\left(t_{0}, x_{0}\right)<0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x):=\varphi(t, x)-\left|t-t_{0}\right|^{4}-\left|x-x_{0}\right|^{4}$.
- Then, $-\mathcal{L}^{u} \tilde{\varphi}(t, x) \leq 0$ on $B_{r}:=\left\{\left|t-t_{0}\right| \leq r,\left|x-x_{0}\right| \leq r\right\}$.
- Fix $\left(t_{n}, x_{n}, V\left(t_{n}, x_{n}\right)\right) \rightarrow\left(t_{0}, x_{0}, V_{*}\left(t_{0}, x_{0}\right)\right)$.
- Set $\theta_{n}:=\inf \left\{s \geq t_{n}:\left(s, X_{t_{n}, x_{n}}^{u}(s)\right) \notin B_{r}\right\}$ so that

$$
\begin{aligned}
V\left(t_{n}, x_{n}\right)+\iota_{n}=\tilde{\varphi}\left(t_{n}, x_{n}\right) & \leq \mathbb{E}\left[\tilde{\varphi}\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right] \\
& \leq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]-r^{4}
\end{aligned}
$$

for some $\iota_{n} \rightarrow 0$, i.e. $V\left(t_{n}, x_{n}\right) \leq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]-r^{4} / 2$.

- While $V\left(t_{n}, x_{n}\right) \geq \mathbb{E}\left[\varphi\left(\theta_{n}, X_{t_{n}, x_{n}}^{u}\left(\theta_{n}\right)\right)\right]$ by the weak DPP.

Extensions

- Optimal control with running gain

Extensions

- Optimal control with running gain
- Optimal stopping

Extensions

- Optimal control with running gain
- Optimal stopping
- Mixed optimal control/stopping, impulse control, ...

