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Motivations

• Consider the control problem in standard form

V (t, x) := sup
ν∈U

J(t, x ; ν) , J(t, x ; ν) := E [f (X ν
T )|X ν

t = x ]

• To derive the related HJB equation, one uses the DPP

′′V (t, x) = sup
ν∈U

E [V (τ,X ν
τ )|X ν

t = x ]′′

• Usually not that easy to prove

a Heavy measurable selection argument ?
(t, x) 7→ νε(t, x) s.t. J(t, x ; νε(t, x)) ≥ V (t, x)− ε

b Continuity of the value function ?(t, x) ∈ Bri (ti , xi ) 7→ νε(ti , xi ) s.t.

J(t, x ; νε(ti , xi )) ≥ J(ti , xi ; ν
ε(ti , xi ))− ε ≥ V (ti , xi )− 2ε ≥ V (t, x)− 3ε

• Our aim is to provide a weak version, much easier to prove.
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Framework

• (Ω,F ,F := (Ft)t≤T ,P), T > 0.

• Controls :

U0, a collection of Rd -valued progressively measurable processes.

• Controlled process :

(τ, ξ; ν) ∈ S × U0 7−→ X ν
τ,ξ ∈ H0

rcll(Rd )

with [0,T ]× Rd ⊂ S ⊂
{

(τ, ξ) : τ ∈ T[0,T ] and ξ ∈ L0
τ (Rd )

}
.
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Reward and Value functions

• Reward function

J(t, x ; ν) := E
[
f
(
X ν

t,x(T )
)]

defined for controls ν in

U :=
{
ν ∈ U0 : E

[
|f (X ν

t,x(T ))|
]
<∞ ∀ (t, x) ∈ [0,T ]× Rd

}
.

• Admissibility : a control ν ∈ U is t-admissible if it is
independent of Ft . We denote by Ut the collection of such
processes.

• Value function :

V (t, x) := sup
ν∈Ut

J(t, x ; ν) for (t, x) ∈ [0,T ]× Rd .
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Assumptions
For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

A1 (Independence) The process X ν
t,x is independent of Ft .

A2 (Causality) ∀ ν̃ ∈ Ut : ν = ν̃ on A ⊂ F ⇒ X ν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) ∀ ν̃ ∈ Ut , θ ∈ T t
[t,T ] :

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .

A4 (Consistency with deterministic initial data) ∀ θ ∈ T t
[t,T ] :

a. For P-a.e ω ∈ Ω, ∃ ν̃ω ∈ Uθ(ω) s.t.

E
[
f
(
X ν

t,x(T )
)
|Fθ
]

(ω) ≤ J(θ(ω),X ν
t,x(θ)(ω); ν̃ω)

b. ∀ t ≤ s ≤ T , θ ∈ T t
[t,s], ν̃ ∈ Us , and ν̄ := ν1[0,θ] + ν̃1(θ,T ] :

E
[
f
(
X ν̄

t,x(T )
)
|Fθ
]

(ω) = J(θ(ω),X ν
t,x(θ)(ω); ν̃) for P− a.e. ω ∈ Ω.
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The case where J(·; ν) is l.s.c. and V is continuous

• Aim : Prove the DPP for τ ∈ T t
[t,T ] (independent on Ft)

′′V (t, x) = sup
ν∈Ut

E
[
V (τ,X ν

t,x(τ))
]′′

• Easy inequality : V (t, x) ≤ supν∈Ut E
[
V (τ,X ν

t,x(τ))
]

Proof :

V (t, x) = sup
ν∈Ut

E
[
E
[
f (X ν

t,x(T ))|Fτ
]]

where for some ν̃ω ∈ Uτ(ω)

E
[
f (X ν
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The case where J(·; ν) is l.s.c. and V is continuous

Proof : Fix (ti , xi )i≥1 := (Q×Qd ) ∩ ([t,T ]× Rd ).

For i ≥ 1, fix ri > 0 and ν i ∈ Uti such that

J(t, x ; ν i ) + ε ≥ J(ti , xi ; ν
i ) ≥ V (ti , xi )− ε ≥ V (t, x)− 2ε,

on (ti − ri , ti ]× Bri (xi ) and also on Ai := (ti − ri , ti ]× Bi , a
partition of [t,T ]× Rd .
Given ν ∈ Ut , define

νε := 1[t,τ ]ν + 1(τ,T ]

∑
i≥1

1Ai (τ,X
ν
t,x(τ))ν i .
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Problems

• The lower-semicontinuity of J(·; ν) is very important in this
proof

: It is in general not difficult to obtain.

• The upper-semicontinuity of V is also very important

: It is
much more difficult to obtain, especially when controls are not
uniformly bounded (singular control).
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Observation

To derive the PDE in the viscosity sense, try to obtain :

V (t, x) ≥ sup
ν∈Ut

E
[
V (τ,X ν

t,x(τ)
]

but one only needs :

V (t, x) ≥ sup
ν∈Ut

E
[
ϕ(τ,X ν

t,x(τ)
]

for all smooth function such that (t, x) achieves a minimum of
V − ϕ.
ϕ being smooth it should be much easier to prove ! !
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The weak DPP
Assume that for all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut

lim inf
(t′,x ′)→(t,x), t′≤t

J(t ′, x ′; ν) ≥ J(t, x ; ν).

Theorem : Fix {θν , ν ∈ Ut} ⊂ T t
[t,T ] a family of stopping times.

Then, for any upper-semicontinuous function ϕ such that V ≥ ϕ
on [t,T ]× Rd , we have

V (t, x) ≥ sup
ν∈Uϕt

E
[
ϕ(θν ,X ν

t,x(θν))
]
,

where Uϕt ={
ν ∈ Ut : E

[
ϕ(θν ,X ν

t,x(θν))+
]
<∞ or E

[
ϕ(θν ,X ν

t,x(θν))−
]
<∞

}
.

Remark : The minimum can be taken to be local if
{(θν ,X ν

t,x(θν)), ν ∈ Ut} is bounded in L∞. In practice ϕ is taken
to be C 1,2.
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The weak DPP
Proof.

For i ≥ 1, fix ri > 0 and ν i ∈ Uti such that

J(t, x ; ν i )+ε ≥ J(ti , xi ; ν
i ) ≥ V (ti , xi )−ε ≥ ϕ(ti , xi )−ε ≥ ϕ(t, x)−2ε,

on Ai := (ti − ri , ti ]× Bi , a partition of [t,T ]× Rd .
Given ν ∈ Ut , define

νε := 1[t,θν ]ν + 1(θν ,T ]

∑
i≥1

1Ai (θ
ν ,X ν

t,x(θν))ν i .

Then,

E
[
f
(
X νε

t,x(T )
)
|Fνθ
]

=
∑
i≥1

J(θν ,X ν
t,x(θν); ν i )1Ai

(
θν ,X ν

t,x(θν)
)

≥
∑
i≥1

(
ϕ(θν ,X ν

t,x(θν))− 3ε
)
1Ai

(
θν ,X ν

t,x(θν)
)

= ϕ(θν ,X ν
t,x(θν))− 3ε
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The weak DPP

Proof. For i ≥ 1, fix ri > 0 and ν i ∈ Uti such that on
Ai := (ti − ri , ti ]× Bi , disjoint sets that cover [t,T ]× Rd .
Given ν ∈ Ut , define
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∑
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The weak DPP

Using test functions makes the proof straightforward :

sup
ν∈Uϕt

E
[
ϕ(θν ,X ν

t,x(θν))
]
≤ V (t, x)

≤ sup
ν∈Ut

E
[
V ∗(θν ,X ν

t,x(θν))
]

Remark : If {X ν
t,x(θν), ν ∈ Ut} is bounded in L∞, one can

approximate V∗ from below by smooth functions and obtain :

sup
ν∈Ut

E
[
V∗(θν ,X ν

t,x(θν))
]
≤ V (t, x) ≤ sup

ν∈Ut

E
[
V ∗(θν ,X ν

t,x(θν))
]
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Example : Framework

• Controlled process

dX (r) = µ (X (r), νr ) dr + σ (X (r), νr ) dWr

• U = square integrable progressively measurable processes with
values in U ⊂ Rd

• f is l.s.c with f − with linear growth, µ and σ Lipschitz
continuous.
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Example : Verification of the assumptions

For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

L.s.c. (t ′, x ′)→ (t, x) ⇒ X ν
t′,x ′(T )→ X ν

t,x(T ) in L2

⇒ lim inf E
[
f (X ν

t′,x ′(T ))
]
≥ E

[
f (X ν

t,x(T ))
]
.

A1 (Independence) The process X ν
t,x is independent of Ft .

A2 (Causality) ∀ ν̃ ∈ Ut : ν = ν̃ on A ⊂ F ⇒ X ν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) ∀ ν̃ ∈ Ut , θ ∈ T t
[t,T ] :

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .



Example : Verification of the assumptions

For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

L.s.c. (t ′, x ′)→ (t, x) ⇒ X ν
t′,x ′(T )→ X ν

t,x(T ) in L2

⇒ lim inf E
[
f (X ν

t′,x ′(T ))
]
≥ E

[
f (X ν

t,x(T ))
]
.

A1 (Independence) The process X ν
t,x is independent of Ft .

A2 (Causality) ∀ ν̃ ∈ Ut : ν = ν̃ on A ⊂ F ⇒ X ν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) ∀ ν̃ ∈ Ut , θ ∈ T t
[t,T ] :

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .



Example : Verification of the assumptions

For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

L.s.c. (t ′, x ′)→ (t, x) ⇒ X ν
t′,x ′(T )→ X ν

t,x(T ) in L2

⇒ lim inf E
[
f (X ν

t′,x ′(T ))
]
≥ E

[
f (X ν

t,x(T ))
]
.

A1 (Independence) The process X ν
t,x is independent of Ft .

A2 (Causality) ∀ ν̃ ∈ Ut : ν = ν̃ on A ⊂ F ⇒ X ν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) ∀ ν̃ ∈ Ut , θ ∈ T t
[t,T ] :

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .



Example : Verification of the assumptions

For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

L.s.c. (t ′, x ′)→ (t, x) ⇒ X ν
t′,x ′(T )→ X ν

t,x(T ) in L2

⇒ lim inf E
[
f (X ν

t′,x ′(T ))
]
≥ E

[
f (X ν

t,x(T ))
]
.

A1 (Independence) The process X ν
t,x is independent of Ft .

A2 (Causality) ∀ ν̃ ∈ Ut : ν = ν̃ on A ⊂ F ⇒ X ν
t,x = X ν̃

t,x on A.

A3 (Stability under concatenation) ∀ ν̃ ∈ Ut , θ ∈ T t
[t,T ] :

ν1[0,θ] + ν̃1(θ,T ] ∈ Ut .



Example : Verification of the assumptions
For all (t, x) ∈ [0,T ]× Rd and ν ∈ Ut :

A4 (Consistency with deterministic initial data) ∀ θ ∈ T t
[t,T ] :

a. For P-a.e ω ∈ Ω, ∃ ν̃ω ∈ Uθ(ω) s.t.

E
[
f
(
X ν

t,x(T )
)
|Fθ
]

(ω) ≤ J(θ(ω),X ν
t,x(θ)(ω); ν̃ω)

Proof. Canonical space : W (ω) = ω. Set Ts(ω) := (ωr − ωs)r≥s and
ωs := (ωr∧s)r≥0.

E
ˆ
f
`
X ν

t,x(T )
´
|Fθ
˜
(ω) =

Z
f
„

X
ν(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xνt,x (θ)(ω) (T )(Tθ(ω)(ω))

«
dP(Tθ(ω)(ω)) .

=

Z
f
„

X
ν(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Xνt,x (θ)(ω) (T )(Tθ(ω)(ω̃))

«
dP(ω̃)

= J(θ(ω),X ν
t,x(θ)(ω); ν̃ω)

where, ν̃ω(ω̃) := ν(ωθ(ω) + Tθ(ω)(ω̃)) ∈ Uθ(ω).
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