

Weak Dynamic Programming for Viscosity Solutions

B. Bouchard

Ceremade, Univ. Paris-Dauphine, and, Crest, Ensaie

May 2009

Joint work with Nizar Touzi, CMAP, Ecole Polytechnique

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

- To derive the related HJB equation, one uses the DPP

$$"V(t, x) = \sup_{\nu \in \mathcal{U}} \mathbb{E}[V(\tau, X_\tau^\nu) | X_t^\nu = x]"$$

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

- To derive the related HJB equation, one uses the DPP

$$"V(t, x) = \sup_{\nu \in \mathcal{U}} \mathbb{E}[V(\tau, X_\tau^\nu) | X_t^\nu = x]"$$

- Usually not that easy to prove

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

- To derive the related HJB equation, one uses the DPP

$$"V(t, x) = \sup_{\nu \in \mathcal{U}} \mathbb{E}[V(\tau, X_\tau^\nu) | X_t^\nu = x]"$$

- Usually not that easy to prove
 - a Heavy measurable selection argument ?

$$(t, x) \mapsto \nu^\varepsilon(t, x) \text{ s.t. } J(t, x; \nu^\varepsilon(t, x)) \geq V(t, x) - \varepsilon$$

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

- To derive the related HJB equation, one uses the DPP

$$"V(t, x) = \sup_{\nu \in \mathcal{U}} \mathbb{E}[V(\tau, X_\tau^\nu) | X_t^\nu = x]"$$

- Usually not that easy to prove
 - a Heavy measurable selection argument?
 $(t, x) \mapsto \nu^\varepsilon(t, x)$ s.t. $J(t, x; \nu^\varepsilon(t, x)) \geq V(t, x) - \varepsilon$
 - b Continuity of the value function?
 $(t, x) \in B_{r_i}(t_i, x_i) \mapsto \nu^\varepsilon(t_i, x_i)$ s.t.
 $J(t, x; \nu^\varepsilon(t_i, x_i)) \geq J(t_i, x_i; \nu^\varepsilon(t_i, x_i)) - \varepsilon \geq V(t_i, x_i) - 2\varepsilon \geq V(t, x) - 3\varepsilon$

Motivations

- Consider the control problem in standard form

$$V(t, x) := \sup_{\nu \in \mathcal{U}} J(t, x; \nu), \quad J(t, x; \nu) := \mathbb{E}[f(X_T^\nu) | X_t^\nu = x]$$

- To derive the related HJB equation, one uses the DPP

$$"V(t, x) = \sup_{\nu \in \mathcal{U}} \mathbb{E}[V(\tau, X_\tau^\nu) | X_t^\nu = x]"$$

- Usually not that easy to prove

- a Heavy measurable selection argument ?

$$(t, x) \mapsto \nu^\varepsilon(t, x) \text{ s.t. } J(t, x; \nu^\varepsilon(t, x)) \geq V(t, x) - \varepsilon$$

- b Continuity of the value function ? $(t, x) \in B_{r_i}(t_i, x_i) \mapsto \nu^\varepsilon(t_i, x_i)$ s.t.

$$J(t, x; \nu^\varepsilon(t_i, x_i)) \geq J(t_i, x_i; \nu^\varepsilon(t_i, x_i)) - \varepsilon \geq V(t_i, x_i) - 2\varepsilon \geq V(t, x) - 3\varepsilon$$

- Our aim is to provide a weak version, much much easier to prove.

Framework

- $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_t)_{t \leq T}, \mathbb{P})$, $T > 0$.

Framework

- $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_t)_{t \leq T}, \mathbb{P})$, $T > 0$.
- Controls :

\mathcal{U}_0 , a collection of \mathbb{R}^d -valued progressively measurable processes.

Framework

- $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_t)_{t \leq T}, \mathbb{P}), T > 0.$
- Controls :

\mathcal{U}_0 , a collection of \mathbb{R}^d -valued progressively measurable processes.

- Controlled process :

$$(\tau, \xi; \nu) \in \mathcal{S} \times \mathcal{U}_0 \longmapsto X_{\tau, \xi}^\nu \in \mathbb{H}_{\text{rcll}}^0(\mathbb{R}^d)$$

with $[0, T] \times \mathbb{R}^d \subset \mathcal{S} \subset \{(\tau, \xi) : \tau \in \mathcal{T}_{[0, T]} \text{ and } \xi \in \mathbb{L}_\tau^0(\mathbb{R}^d)\}.$

Reward and Value functions

- Reward function

$$J(t, x; \nu) := \mathbb{E} [f(X_{t,x}^\nu(T))]$$

defined for controls ν in

$$\mathcal{U} := \left\{ \nu \in \mathcal{U}_0 : \mathbb{E} [|f(X_{t,x}^\nu(T))|] < \infty \ \forall (t, x) \in [0, T] \times \mathbb{R}^d \right\}.$$

Reward and Value functions

- Reward function

$$J(t, x; \nu) := \mathbb{E} [f(X_{t,x}^\nu(T))]$$

defined for controls ν in

$$\mathcal{U} := \left\{ \nu \in \mathcal{U}_0 : \mathbb{E} [|f(X_{t,x}^\nu(T))|] < \infty \ \forall (t, x) \in [0, T] \times \mathbb{R}^d \right\}.$$

- Admissibility : a control $\nu \in \mathcal{U}$ is t -admissible if it is independent of \mathcal{F}_t . We denote by \mathcal{U}_t the collection of such processes.

Reward and Value functions

- Reward function

$$J(t, x; \nu) := \mathbb{E} [f(X_{t,x}^\nu(T))]$$

defined for controls ν in

$$\mathcal{U} := \left\{ \nu \in \mathcal{U}_0 : \mathbb{E} [|f(X_{t,x}^\nu(T))|] < \infty \ \forall (t, x) \in [0, T] \times \mathbb{R}^d \right\}.$$

- Admissibility : a control $\nu \in \mathcal{U}$ is t -admissible if it is independent of \mathcal{F}_t . We denote by \mathcal{U}_t the collection of such processes.
- Value function :

$$V(t, x) := \sup_{\nu \in \mathcal{U}_t} J(t, x; \nu) \quad \text{for } (t, x) \in [0, T] \times \mathbb{R}^d.$$

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A1 (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A1 (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .

A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t,x}^\nu = X_{t,x}^{\tilde{\nu}}$ on A .

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

- A1** (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .
- A2** (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t,x}^\nu = X_{t,x}^{\tilde{\nu}}$ on A .
- A3** (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_t, \theta \in \mathcal{T}_{[t,T]}^t :$
 $\nu \mathbf{1}_{[0,\theta]} + \tilde{\nu} \mathbf{1}_{(\theta,T]} \in \mathcal{U}_t$.

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

- A1** (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .
- A2** (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t,x}^\nu = X_{t,x}^{\tilde{\nu}}$ on A .
- A3** (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_t, \theta \in \mathcal{T}_{[t,T]}^t :$
 $\nu \mathbf{1}_{[0,\theta]} + \tilde{\nu} \mathbf{1}_{(\theta,T]} \in \mathcal{U}_t$.
- A4** (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t,T]}^t :$

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

- A1** (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .
- A2** (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t,x}^\nu = X_{t,x}^{\tilde{\nu}}$ on A .
- A3** (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_t, \theta \in \mathcal{T}_{[t, T]}^t :$
 $\nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_t$.
- A4** (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t :$
 - a.** For \mathbb{P} -a.e $\omega \in \Omega, \exists \tilde{\nu}_\omega \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\theta](\omega) \leq J(\theta(\omega), X_{t,x}^\nu(\theta)(\omega); \tilde{\nu}_\omega)$$

Assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

- A1** (Independence) The process $X_{t,x}^\nu$ is independent of \mathcal{F}_t .
- A2** (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t,x}^\nu = X_{t,x}^{\tilde{\nu}}$ on A .
- A3** (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_t, \theta \in \mathcal{T}_{[t, T]}^t :$
 $\nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_t$.
- A4** (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t :$
 - a.** For \mathbb{P} -a.e $\omega \in \Omega, \exists \tilde{\nu}_\omega \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\theta](\omega) \leq J(\theta(\omega), X_{t,x}^\nu(\theta)(\omega); \tilde{\nu}_\omega)$$

- b.** $\forall t \leq s \leq T, \theta \in \mathcal{T}_{[t, s]}^t, \tilde{\nu} \in \mathcal{U}_s$, and $\bar{\nu} := \nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]} :$

$$\mathbb{E} [f(X_{t,x}^{\bar{\nu}}(T)) | \mathcal{F}_\theta](\omega) = J(\theta(\omega), X_{t,x}^\nu(\theta)(\omega); \tilde{\nu}) \text{ for } \mathbb{P} - \text{a.e. } \omega \in \Omega.$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality : $V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality : $V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$

Proof :

$$V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\tau]]$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality : $V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$

Proof :

$$V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\tau]]$$

where for some $\tilde{\nu}_\omega \in \mathcal{U}_{\tau(\omega)}$

$$\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\tau](\omega) \leq J(\tau(\omega), X_{t,x}^\nu(\tau)(\omega); \tilde{\nu}_\omega)$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality : $V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$

Proof :

$$V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [\mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\tau]]$$

where for some $\tilde{\nu}_\omega \in \mathcal{U}_{\tau(\omega)}$

$$\begin{aligned} \mathbb{E} [f(X_{t,x}^\nu(T)) | \mathcal{F}_\tau](\omega) &\leq J(\tau(\omega), X_{t,x}^\nu(\tau)(\omega); \tilde{\nu}_\omega) \\ &\leq V(\tau(\omega), X_{t,x}^\nu(\tau)(\omega)) \end{aligned}$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality :

$$V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

- Aim : Prove the DPP for $\tau \in \mathcal{T}_{[t, T]}^t$ (independent on \mathcal{F}_t)

$$"V(t, x) = \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]"$$

- Easy inequality :

$$V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

- More difficult one :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Fix $(t_i, x_i)_{i \geq 1} := (\mathbb{Q} \times \mathbb{Q}^d) \cap ([t, T] \times \mathbb{R}^d)$.

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Fix $(t_i, x_i)_{i \geq 1} := (\mathbb{Q} \times \mathbb{Q}^d) \cap ([t, T] \times \mathbb{R}^d)$.

For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq V(t, x) - 2\varepsilon,$$

on $(t_i - r_i, t_i] \times B_{r_i}(x_i)$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Fix $(t_i, x_i)_{i \geq 1} := (\mathbb{Q} \times \mathbb{Q}^d) \cap ([t, T] \times \mathbb{R}^d)$.

For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq V(t, x) - 2\varepsilon,$$

on $(t_i - r_i, t_i] \times B_{r_i}(x_i)$ and also on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Fix $(t_i, x_i)_{i \geq 1} := (\mathbb{Q} \times \mathbb{Q}^d) \cap ([t, T] \times \mathbb{R}^d)$.

For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq V(t, x) - 2\varepsilon,$$

on $(t_i - r_i, t_i] \times B_{r_i}(x_i)$ and also on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \tau]} \nu + \mathbf{1}_{(\tau, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \nu^i.$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\mathbb{E} \left[f \left(X_{t,x}^{\nu^\varepsilon}(\tau) \right) | \mathcal{F}_\tau \right] = \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i} (\tau, X_{t,x}^\nu(\tau))$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\begin{aligned}\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau] &= \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &\geq \sum_{i \geq 1} (V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau))\end{aligned}$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\begin{aligned}\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau] &= \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &\geq \sum_{i \geq 1} (V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &= V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon\end{aligned}$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\begin{aligned}\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau] &= \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &\geq \sum_{i \geq 1} (V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &= V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon\end{aligned}$$

and

$$V(t, x) \geq J(t, x; \nu^\varepsilon)$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\begin{aligned}\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau] &= \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &\geq \sum_{i \geq 1} (V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &= V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon\end{aligned}$$

and

$$\begin{aligned}V(t, x) &\geq J(t, x; \nu^\varepsilon) \\ &= \mathbb{E} [\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau]]\end{aligned}$$

The case where $J(\cdot; \nu)$ is l.s.c. and V is continuous

Proof : Then,

$$\begin{aligned}\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau] &= \sum_{i \geq 1} J(\tau, X_{t,x}^\nu(\tau); \nu^i) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &\geq \sum_{i \geq 1} (V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon) \mathbf{1}_{A_i}(\tau, X_{t,x}^\nu(\tau)) \\ &= V(\tau, X_{t,x}^\nu(\tau)) - 3\varepsilon\end{aligned}$$

and

$$\begin{aligned}V(t, x) &\geq J(t, x; \nu^\varepsilon) \\ &= \mathbb{E} [\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(\tau)) | \mathcal{F}_\tau]] \\ &\geq \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))] - 3\varepsilon.\end{aligned}$$

Problems

- The lower-semicontinuity of $J(\cdot; \nu)$ is very important in this proof

Problems

- The lower-semicontinuity of $J(\cdot; \nu)$ is very important in this proof : It is in general not difficult to obtain.

Problems

- The lower-semicontinuity of $J(\cdot; \nu)$ is very important in this proof : It is in general not difficult to obtain.
- The upper-semicontinuity of V is also very important

Problems

- The lower-semicontinuity of $J(\cdot; \nu)$ is very important in this proof : It is in general not difficult to obtain.
- The upper-semicontinuity of V is also very important : It is much more difficult to obtain, especially when controls are not uniformly bounded (singular control).

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

but one only needs :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [\varphi(\tau, X_{t,x}^\nu(\tau))]$$

for all smooth function such that (t, x) achieves a minimum of $V - \varphi$.

Observation

To derive the PDE in the viscosity sense, try to obtain :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V(\tau, X_{t,x}^\nu(\tau))]$$

but one only needs :

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [\varphi(\tau, X_{t,x}^\nu(\tau))]$$

for all smooth function such that (t, x) achieves a minimum of $V - \varphi$.

φ being smooth it should be much easier to prove !!

The weak DPP

Assume that for all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$

$$\liminf_{(t', x') \rightarrow (t, x), t' \leq t} J(t', x'; \nu) \geq J(t, x; \nu).$$

The weak DPP

Assume that for all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$

$$\liminf_{(t', x') \rightarrow (t, x), t' \leq t} J(t', x'; \nu) \geq J(t, x; \nu).$$

Theorem : Fix $\{\theta^\nu, \nu \in \mathcal{U}_t\} \subset \mathcal{T}_{[t, T]}^t$ a family of stopping times.

Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^d$, we have

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))],$$

where $\mathcal{U}_t^\varphi =$

$$\{\nu \in \mathcal{U}_t : \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^+] < \infty \text{ or } \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^-] < \infty\}.$$

The weak DPP

Assume that for all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$

$$\liminf_{(t', x') \rightarrow (t, x), t' \leq t} J(t', x'; \nu) \geq J(t, x; \nu).$$

Theorem : Fix $\{\theta^\nu, \nu \in \mathcal{U}_t\} \subset \mathcal{T}_{[t, T]}^t$ a family of stopping times.

Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^d$, we have

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))],$$

where $\mathcal{U}_t^\varphi =$

$$\{\nu \in \mathcal{U}_t : \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^+] < \infty \text{ or } \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^-] < \infty\}.$$

Remark : The minimum can be taken to be local if

$\{(\theta^\nu, X_{t,x}^\nu(\theta^\nu)), \nu \in \mathcal{U}_t\}$ is bounded in \mathbb{L}^∞ .

The weak DPP

Assume that for all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$

$$\liminf_{(t', x') \rightarrow (t, x), t' \leq t} J(t', x'; \nu) \geq J(t, x; \nu).$$

Theorem : Fix $\{\theta^\nu, \nu \in \mathcal{U}_t\} \subset \mathcal{T}_{[t, T]}^t$ a family of stopping times.

Then, for any upper-semicontinuous function φ such that $V \geq \varphi$ on $[t, T] \times \mathbb{R}^d$, we have

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))],$$

where $\mathcal{U}_t^\varphi =$

$$\{\nu \in \mathcal{U}_t : \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^+] < \infty \text{ or } \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))^-] < \infty\}.$$

Remark : The minimum can be taken to be local if

$\{(\theta^\nu, X_{t,x}^\nu(\theta^\nu)), \nu \in \mathcal{U}_t\}$ is bounded in \mathbb{L}^∞ . In practice φ is taken to be $C^{1,2}$.

The weak DPP

Proof.

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq \varphi(t_i, x_i) - \varepsilon \geq \varphi(t, x) - 2\varepsilon,$$

on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq \varphi(t_i, x_i) - \varepsilon \geq \varphi(t, x) - 2\varepsilon,$$

on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \theta^\nu]} \nu + \mathbf{1}_{(\theta^\nu, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \nu^i.$$

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq \varphi(t_i, x_i) - \varepsilon \geq \varphi(t, x) - 2\varepsilon,$$

on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \theta^\nu]} \nu + \mathbf{1}_{(\theta^\nu, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \nu^i.$$

Then,

$$\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(T)) | \mathcal{F}_\theta^\nu] = \sum_{i \geq 1} J(\theta^\nu, X_{t,x}^\nu(\theta^\nu); \nu^i) \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu))$$

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq \varphi(t_i, x_i) - \varepsilon \geq \varphi(t, x) - 2\varepsilon,$$

on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \theta^\nu]} \nu + \mathbf{1}_{(\theta^\nu, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \nu^i.$$

Then,

$$\begin{aligned} \mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(T)) | \mathcal{F}_\theta^\nu] &= \sum_{i \geq 1} J(\theta^\nu, X_{t,x}^\nu(\theta^\nu); \nu^i) \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \\ &\geq \sum_{i \geq 1} (\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) - 3\varepsilon) \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \end{aligned}$$

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that

$$J(t, x; \nu^i) + \varepsilon \geq J(t_i, x_i; \nu^i) \geq V(t_i, x_i) - \varepsilon \geq \varphi(t_i, x_i) - \varepsilon \geq \varphi(t, x) - 2\varepsilon,$$

on $A_i := (t_i - r_i, t_i] \times B_i$, a partition of $[t, T] \times \mathbb{R}^d$.

Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \theta^\nu]} \nu + \mathbf{1}_{(\theta^\nu, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \nu^i.$$

Then,

$$\begin{aligned} \mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(T)) | \mathcal{F}_\theta^\nu] &= \sum_{i \geq 1} J(\theta^\nu, X_{t,x}^\nu(\theta^\nu); \nu^i) \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \\ &\geq \sum_{i \geq 1} (\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) - 3\varepsilon) \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \\ &= \varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) - 3\varepsilon \end{aligned}$$

The weak DPP

Proof. For $i \geq 1$, fix $r_i > 0$ and $\nu^i \in \mathcal{U}_{t_i}$ such that on $A_i := (t_i - r_i, t_i] \times B_i$, disjoint sets that cover $[t, T] \times \mathbb{R}^d$. Given $\nu \in \mathcal{U}_t$, define

$$\nu^\varepsilon := \mathbf{1}_{[t, \theta^\nu]} \nu + \mathbf{1}_{(\theta^\nu, T]} \sum_{i \geq 1} \mathbf{1}_{A_i}(\theta^\nu, X_{t,x}^\nu(\theta^\nu)) \nu^i.$$

and

$$\begin{aligned} V(t, x) &\geq J(t, x; \nu^\varepsilon) \\ &= \mathbb{E} [\mathbb{E} [f(X_{t,x}^{\nu^\varepsilon}(T)) | \mathcal{F}_\theta^\nu]] \\ &\geq \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))] - 3\varepsilon. \end{aligned}$$

The weak DPP

Using test functions makes the proof straightforward :

$$\sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))] \leq V(t, x)$$

The weak DPP

Using test functions makes the proof straightforward :

$$\sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))] \leq V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V^*(\theta^\nu, X_{t,x}^\nu(\theta^\nu))]$$

The weak DPP

Using test functions makes the proof straightforward :

$$\sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))] \leq V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V^*(\theta^\nu, X_{t,x}^\nu(\theta^\nu))]$$

Remark : If $\{X_{t,x}^\nu(\theta^\nu), \nu \in \mathcal{U}_t\}$ is bounded in \mathbb{L}^∞ , one can approximate V_* from below by smooth functions and obtain :

$$\sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V_*(\theta^\nu, X_{t,x}^\nu(\theta^\nu))] \leq V(t, x) \leq \sup_{\nu \in \mathcal{U}_t} \mathbb{E} [V^*(\theta^\nu, X_{t,x}^\nu(\theta^\nu))]$$

Example : Framework

- Controlled process

$$dX(r) = \mu(X(r), \nu_r) dr + \sigma(X(r), \nu_r) dW_r$$

Example : Framework

- Controlled process

$$dX(r) = \mu(X(r), \nu_r) dr + \sigma(X(r), \nu_r) dW_r$$

- \mathcal{U} = square integrable progressively measurable processes with values in $U \subset \mathbb{R}^d$

Example : Framework

- Controlled process

$$dX(r) = \mu(X(r), \nu_r) dr + \sigma(X(r), \nu_r) dW_r$$

- \mathcal{U} = square integrable progressively measurable processes with values in $U \subset \mathbb{R}^d$
- f is l.s.c with f^- with linear growth, μ and σ Lipschitz continuous.

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

L.s.c. $(t', x') \rightarrow (t, x) \Rightarrow X_{t', x'}^\nu(T) \rightarrow X_{t, x}^\nu(T)$ in \mathbb{L}^2
 $\Rightarrow \liminf \mathbb{E} [f(X_{t', x'}^\nu(T))] \geq \mathbb{E} [f(X_{t, x}^\nu(T))].$

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

L.s.c. $(t', x') \rightarrow (t, x) \Rightarrow X_{t', x'}^\nu(T) \rightarrow X_{t, x}^\nu(T)$ in \mathbb{L}^2
 $\Rightarrow \liminf \mathbb{E} [f(X_{t', x'}^\nu(T))] \geq \mathbb{E} [f(X_{t, x}^\nu(T))].$

A1 (Independence) The process $X_{t, x}^\nu$ is independent of \mathcal{F}_t .

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

L.s.c. $(t', x') \rightarrow (t, x) \Rightarrow X_{t', x'}^\nu(T) \rightarrow X_{t, x}^\nu(T)$ in \mathbb{L}^2

$$\Rightarrow \liminf \mathbb{E} [f(X_{t', x'}^\nu(T))] \geq \mathbb{E} [f(X_{t, x}^\nu(T))].$$

A1 (Independence) The process $X_{t, x}^\nu$ is independent of \mathcal{F}_t .

A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^\nu = X_{t, x}^{\tilde{\nu}}$ on A .

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

L.s.c. $(t', x') \rightarrow (t, x) \Rightarrow X_{t', x'}^\nu(T) \rightarrow X_{t, x}^\nu(T)$ in \mathbb{L}^2

$$\Rightarrow \liminf \mathbb{E} [f(X_{t', x'}^\nu(T))] \geq \mathbb{E} [f(X_{t, x}^\nu(T))].$$

A1 (Independence) The process $X_{t, x}^\nu$ is independent of \mathcal{F}_t .

A2 (Causality) $\forall \tilde{\nu} \in \mathcal{U}_t : \nu = \tilde{\nu}$ on $A \subset \mathcal{F} \Rightarrow X_{t, x}^\nu = X_{t, x}^{\tilde{\nu}}$ on A .

A3 (Stability under concatenation) $\forall \tilde{\nu} \in \mathcal{U}_t, \theta \in \mathcal{T}_{[t, T]}^t :$

$$\nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]} \in \mathcal{U}_t.$$

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

a. For \mathbb{P} -a.e $\omega \in \Omega$, $\exists \tilde{\nu}_\omega \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$\mathbb{E} [f (X_{t,x}^\nu (T)) | \mathcal{F}_\theta] (\omega) \leq J(\theta(\omega), X_{t,x}^\nu (\theta)(\omega); \tilde{\nu}_\omega)$$

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

a. For \mathbb{P} -a.e $\omega \in \Omega$, $\exists \tilde{\nu}_\omega \in \mathcal{U}_{\theta(\omega)}$ s.t.

$$\mathbb{E} [f (X_{t,x}^\nu (T)) | \mathcal{F}_\theta] (\omega) \leq J(\theta(\omega), X_{t,x}^\nu (\theta)(\omega); \tilde{\nu}_\omega)$$

Proof. Canonical space : $W(\omega) = \omega$. Set $\mathbf{T}_s(\omega) := (\omega_r - \omega_s)_{r \geq s}$ and $\omega^s := (\omega_{r \wedge s})_{r \geq 0}$.

$$\begin{aligned} \mathbb{E} [f (X_{t,x}^\nu (T)) | \mathcal{F}_\theta] (\omega) &= \int f \left(X_{\theta(\omega), X_{t,x}^\nu (\theta)(\omega)}^{\nu(\omega^\theta(\omega) + \mathbf{T}_{\theta(\omega)}(\omega))} (T) (\mathbf{T}_{\theta(\omega)}(\omega)) \right) d\mathbb{P}(\mathbf{T}_{\theta(\omega)}(\omega)) \\ &= \int f \left(X_{\theta(\omega), X_{t,x}^\nu (\theta)(\omega)}^{\nu(\omega^\theta(\omega) + \mathbf{T}_{\theta(\omega)}(\tilde{\omega}))} (T) (\mathbf{T}_{\theta(\omega)}(\tilde{\omega})) \right) d\mathbb{P}(\tilde{\omega}) \\ &= J(\theta(\omega), X_{t,x}^\nu (\theta)(\omega); \tilde{\nu}_\omega) \end{aligned}$$

where, $\tilde{\nu}_\omega(\tilde{\omega}) := \nu(\omega^\theta(\omega) + \mathbf{T}_{\theta(\omega)}(\tilde{\omega})) \in \mathcal{U}_{\theta(\omega)}$.

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

b. $\forall t \leq s \leq T$, $\theta \in \mathcal{T}_{[t, s]}^t$, $\tilde{\nu} \in \mathcal{U}_s$, and $\bar{\nu} := \nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]}$:

$$\mathbb{E} [f(X_{t,x}^{\bar{\nu}}(T)) | \mathcal{F}_\theta] (\omega) = J(\theta(\omega), X_{t,x}^{\nu}(\theta)(\omega); \tilde{\nu}) \text{ for } \mathbb{P} - \text{a.e. } \omega \in \Omega.$$

Example : Verification of the assumptions

For all $(t, x) \in [0, T] \times \mathbb{R}^d$ and $\nu \in \mathcal{U}_t$:

A4 (Consistency with deterministic initial data) $\forall \theta \in \mathcal{T}_{[t, T]}^t$:

b. $\forall t \leq s \leq T$, $\theta \in \mathcal{T}_{[t, s]}^t$, $\tilde{\nu} \in \mathcal{U}_s$, and $\bar{\nu} := \nu \mathbf{1}_{[0, \theta]} + \tilde{\nu} \mathbf{1}_{(\theta, T]}$:

$$\mathbb{E} [f (X_{t,x}^{\bar{\nu}}(T)) | \mathcal{F}_\theta] (\omega) = J(\theta(\omega), X_{t,x}^\nu(\theta)(\omega); \tilde{\nu}) \text{ for } \mathbb{P} - \text{a.e. } \omega \in \Omega.$$

Proof.

$$\mathbb{E} [f (X_{t,x}^{\bar{\nu}}(T)) | \mathcal{F}_\theta] (\omega) = \int f \left(X_{\theta(\omega), X_{t,x}^\nu(\theta)(\omega)}^{\tilde{\nu}(\omega^{\theta(\omega)} + \mathbf{T}_{\theta(\omega)}(\tilde{\omega}))} (T) (\mathbf{T}_{\theta(\omega)}(\tilde{\omega})) \right) d\mathbb{P}(\tilde{\omega}),$$

and therefore

$$\begin{aligned} \mathbb{E} [f (X_{t,x}^{\bar{\nu}}(T)) | \mathcal{F}_\theta] (\omega) &= \int f \left(X_{\theta(\omega), X_{t,x}^\nu(\theta)(\omega)}^{\tilde{\nu}(\mathbf{T}_{\theta(\omega)}(\tilde{\omega}))} (T) (\mathbf{T}_{\theta(\omega)}(\tilde{\omega})) \right) d\mathbb{P}(\tilde{\omega}) \\ &= J(\theta(\omega), X_{t,x}^\nu(\theta)(\omega); \tilde{\nu}). \end{aligned}$$

Example : Super-solution property

- Want to prove that V_* is a viscosity super-solution of

$$\inf_{u \in U} (-\mathcal{L}^u V_*) \geq 0$$

Example : Super-solution property

- Want to prove that V_* is a viscosity super-solution of

$$\inf_{u \in U} (-\mathcal{L}^u V_*) \geq 0$$

- By using

$$V(t, x) \geq \sup_{\nu \in \mathcal{U}_t^\varphi} \mathbb{E} [\varphi(\theta^\nu, X_{t,x}^\nu(\theta^\nu))]$$

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.
- Fix $(t_n, x_n, V(t_n, x_n)) \rightarrow (t_0, x_0, V_*(t_0, x_0))$.

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.
- Fix $(t_n, x_n, V(t_n, x_n)) \rightarrow (t_0, x_0, V_*(t_0, x_0))$.
- Set $\theta_n := \inf \{s \geq t_n : (s, X_{t_n, x_n}^u(s)) \notin B_r\}$ so that

$$V(t_n, x_n) + \iota_n = \tilde{\varphi}(t_n, x_n) \leq \mathbb{E} [\tilde{\varphi}(\theta_n, X_{t_n, x_n}^u(\theta_n))]$$

for some $\iota_n \rightarrow 0$

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.
- Fix $(t_n, x_n, V(t_n, x_n)) \rightarrow (t_0, x_0, V_*(t_0, x_0))$.
- Set $\theta_n := \inf \{s \geq t_n : (s, X_{t_n, x_n}^u(s)) \notin B_r\}$ so that

$$\begin{aligned} V(t_n, x_n) + \iota_n &= \tilde{\varphi}(t_n, x_n) \leq \mathbb{E} [\tilde{\varphi}(\theta_n, X_{t_n, x_n}^u(\theta_n))] \\ &\leq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))] - r^4 \end{aligned}$$

for some $\iota_n \rightarrow 0$

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.
- Fix $(t_n, x_n, V(t_n, x_n)) \rightarrow (t_0, x_0, V_*(t_0, x_0))$.
- Set $\theta_n := \inf \{s \geq t_n : (s, X_{t_n, x_n}^u(s)) \notin B_r\}$ so that

$$\begin{aligned} V(t_n, x_n) + \iota_n &= \tilde{\varphi}(t_n, x_n) \leq \mathbb{E} [\tilde{\varphi}(\theta_n, X_{t_n, x_n}^u(\theta_n))] \\ &\leq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))] - r^4 \end{aligned}$$

for some $\iota_n \rightarrow 0$, i.e. $V(t_n, x_n) \leq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))] - r^4/2$.

Example : Super-solution property

- $(t_0, x_0) \in [0, T) \times \mathbb{R}^d$ s.t. $0 = (V_* - \varphi)(t_0, x_0) = \min(V_* - \varphi)$
- Assume that $-\mathcal{L}^u \varphi(t_0, x_0) < 0$, for some $u \in U$.
- Set $\tilde{\varphi}(t, x) := \varphi(t, x) - |t - t_0|^4 - |x - x_0|^4$.
- Then, $-\mathcal{L}^u \tilde{\varphi}(t, x) \leq 0$ on $B_r := \{|t - t_0| \leq r, |x - x_0| \leq r\}$.
- Fix $(t_n, x_n, V(t_n, x_n)) \rightarrow (t_0, x_0, V_*(t_0, x_0))$.
- Set $\theta_n := \inf \{s \geq t_n : (s, X_{t_n, x_n}^u(s)) \notin B_r\}$ so that

$$\begin{aligned} V(t_n, x_n) + \iota_n &= \tilde{\varphi}(t_n, x_n) \leq \mathbb{E} [\tilde{\varphi}(\theta_n, X_{t_n, x_n}^u(\theta_n))] \\ &\leq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))] - r^4 \end{aligned}$$

for some $\iota_n \rightarrow 0$, i.e. $V(t_n, x_n) \leq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))] - r^4/2$.

- While $V(t_n, x_n) \geq \mathbb{E} [\varphi(\theta_n, X_{t_n, x_n}^u(\theta_n))]$ by the weak DPP.

Extensions

- Optimal control with running gain

Extensions

- Optimal control with running gain
- Optimal stopping

Extensions

- Optimal control with running gain
- Optimal stopping
- Mixed optimal control/stopping, impulse control, ...