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A proper concave function U : RY — [—00,00) is called a utility YIRS

utility

function supported on Rﬁ’r if maximization
CI— —_ - j— d rou:rei:ma
m Cy :=cl(dom(VU)) = cl{x : U(x) > —oo} = RY and proportional

costs

m U is increasing with respect to RY-(partial) order.
Consider the following problem

V(x) :=sup{E[U(X)]: X € AT} Introduction

where A% is the set of all attainable final gains from an initial
portfolio x (to be defined later). Main results :

Existence of a unique solution under asympt. satiability of
value function V

Multivariate duality a la Kramkov-Schachermayer (1999)
Including liquidation case, discussion of multivariate RAE
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Davis Norman (1990), Shreve Soner (1994) - BS-type e
model, intertemporal consumption, stochastic optimal transaction

costs

control

Cvitani¢ Karatzas (1996), Cvitani¢ Wang (2001) — BS-type
model, liquidated terminal wealth, duality

Introduction

Kabanov (1999) — more general liquidated terminal wealth
Deelstra Pham Touzi (2001) — Kabanov-Last framework,
multivariate, non-smooth utility supported by solvency cone

Kamizono (2001, 2004) — KL framework, direct utility of
consumption

Luciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.

Multivariate utility maximization under proportional transaction costs



Multivariate
utility
maximization
H H H H under
m Cover the case of discontinuous bid-ask processes, i.e. el

transaction

random and discontinuous prop. TC. nsact

Introduction

Luciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.

Multivariate utility maximization under proportional transaction costs




Multivariate
utility
maximization
under

m Cover the case of discontinuous bid-ask processes, i.e. el
random and discontinuous prop. TC. transaction

costs

m Direct utility function (a la Kamizono), which separates
investment and consumption assets in order to include
liquidation (not in this talk).

Introduction
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H H H H under
m Cover the case of discontinuous bid-ask processes, i.e. el
random and discontinuous prop. TC. fransaction

m Direct utility function (a la Kamizono), which separates
investment and consumption assets in order to include
liquidation (not in this talk).

Introduction

m No restrictions on U such as U(0) = 0 or sup U(x) = oc.
Can treat anything, including U(0) = —oc.
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Multivariate
utility
maximization

H H H H under
Cover the case of discontinuous bid-ask processes, i.e. el
random and discontinuous prop. TC. fransaction

m Direct utility function (a la Kamizono), which separates
investment and consumption assets in order to include
liquidation (not in this talk).

Introduction

m No restrictions on U such as U(0) = 0 or sup U(x) = oc.
Can treat anything, including U(0) = —oc.

m Prove existence of optimizer under the minimal condition
of “Asymptotic Satiability” of the value function V/, which
is a weaker than RAE.
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Main features of the model : all expressed in physical units, d proportional
risky assets (e.g. foreign currencies), the terms of trading are et
given by a bid-ask process {l:(w),t € [0, T]} : an adapted,
cadlag, d x d matrix-valued process s.t.
mNi>01<ij<d

m N = 1,1<i<d Transaction
m NV <M*N8 1<ijk<d -

Meaning : To buy 1 unit of currency j one has to pay ﬂg(w)
units of /i (at time t when the state of world is w)
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i i i i .. Multivariate
m solvency cone: K; = cone{e',MN{e' —¢ :1<i,j <d} utility
maximization
under
proportional
transaction
costs

Transaction
costs
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i ij i i .. Multivariat:
m solvency cone: K; = cone{e',MN{e' —¢ :1<i,j <d} “tity
. . . maximization
m cone of portfolios available at price 0: —K; under

proportional

| | pO/ar Of_Kt . E_k = {W c Rd N <V7 W> Z 0’ VV & Kt} transaction

costs

Transaction
costs
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m solvency cone: K; = cone{e’,M}e' —

e 1<ij<d} R

maximization

m cone of portfolios available at price 0: —K; under

proportional

| | pO/ar Of_Kt . E_k = {W c Rd N <V7 W> Z O’ VV & Kt} transaction

m Financial interpretation twe K iff w € RY and

ﬂ“w >WJ:>|_|U> :>|_|
Mo>0

Luciano Campi, Mark Owen

costs

=1+ )\g)% for some

Transaction
costs
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m solvency cone: K; = cone{e’,MYe’ — e/ :1<i j<d} R
m cone of portfolios available at price 0: —K; maxlﬂ?m"
m polar of —K; : K ={w c R : (v,w) >0,Vv € K;} Ao
m Financial interpretation twe K iff w € RY and -
Nwi > wi = nY > 0= ni =1+ )\g)% for some
Mo>0
m Every w € K} (resp. in its relative interior) is called Transaction

costs

consistent (resp. strictly consistent) price system.
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m solvency cone: K; = cone{e’,MYe’ — e/ :1<i j<d} R
m cone of portfolios available at price 0: —K; maxlﬂ?m"
m polar of —K; : K ={w c R : (v,w) >0,Vv € K;} Ao
m Financial interpretation twe K iff w € RY and -
Nwi > wi = nY > 0= ni =1+ )\g)% for some
Mo>0
m Every w € K} (resp. in its relative interior) is called Transaction

consistent (resp. strictly consistent) price system.

m Frictionless case : If 7 =1 Vi, j, then K;
:{X;XI:...:XdZO}_
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Niw > wi = n’ > % C = Y (1+)\g)% for some

Mo>0

m solvency cone: K; = cone{e’,Nle’ — e : 1< i j<d} R
m cone of portfolios available at price 0: —K; max.i:;?m"
m polar of —K; : K ={w c R : (v,w) >0,Vv € K;} Froncaction
m Financial interpretation twe K iff w € RY and -

m Every w € K{ (resp. in its relative interior) is called Transaction

consistent (resp. strictly consistent) price system.

m Frictionless case : If 7 =1 Vi, j, then K;
Kf={x:xg=---=x4 >0}

m Cones (K;) induce the following order : Let Y7, Y2 be
Fr-meas. for some stopping time 7, then Y7 >, Y2 means

Y1 — Y2 € K.
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An R9 \ {0}-valued, adapted process Z is a consistent price Multivariate

utility

H maximization
process if e

. N < . . . ti |

m is a cadlag martingale (time consistency) “transaction

costs
m 7 € Kf,Vte 0, T]
m If, moreover, Z. € riK} V7 stopping time, and
Zy— €1iK}_ Vo predictable s.t., Z is called a strictly
consistent price process.

Transaction
costs

Relations with the usual concept of EMM: choose a
numéraire Z1, define S, = (1,22/Z}...Z¢/Z}) and set
dQ/dP = Z}/Z}, then S is a Q-martingale.

Main Assumption

SCPS: there exists a strictly consistent price process Z°.
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Interpretation: Xy = (X1, ..., X&), X{ = number of units of under
. . . . roportiona

asset / held in the portfolio V at time t. “transaction

A d-dim process X is an admissible self-financing portfolio o

process if

m is predictable and finite variation (not nec. cadlag !)

Transaction
costs

We denote A* the set of all admissible portfolio processes X
st. Xo =x, and A% 1= {X7: X € A*}.
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Interpretation: Xy = (X1, ..., X&), X{ = number of units of under
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asset / held in the portfolio V at time t. “transaction

A d-dim process X is an admissible self-financing portfolio o

process if

m is predictable and finite variation (not nec. cadlag !)
m X, — X, € =Ko = —Conv(Us<y<r Ky, 0)

Transaction
costs

We denote A* the set of all admissible portfolio processes X
st. Xo =x, and A% 1= {X7: X € A*}.
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Multivariate
utility

. : . maximization
Interpretation: Xy = (X1, ..., X&), X{ = number of units of under
. . . . roportiona

asset / held in the portfolio V at time t. “transaction

costs

A d-dim process X is an admissible self-financing portfolio
process if

m is predictable and finite variation (not nec. cadlag !)

m X, — X, € =Ko = —Conv(Us<y<r Ky, 0)

m there exists a threshold a > 0 s.t. Xy > —al and
Z:X; > —aZ:1 VT stopping time and VZ° € Z°

We denote A* the set of all admissible portfolio processes X
st. Xo =x, and A% 1= {X7: X € A*}.

Transaction
costs
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Let Y € LO(Rd,}'T) a contingent claim such that 3a > 0, p,o;gf;;na,
Y ET —a]. (|e Y + 31 S KT) trar;(s):;;::ion

Theorem (C.-Schachermayer, 2006)

Under SCPS, the following sets are equal:
{x eRY:3IX € A, X7 = Y}
{x eR?: (Z,x) > E[(Z7,Y)],VZ € 20)}

where, we recall, A is the set of all admissible portfolio
processes X s.t. Xo = x

Transaction
costs

Luciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.

Multivariate utility maximization under proportional transaction costs



Multivariate
utility
maximization

under
Let U denote a utility function such that Cy = Ri. Our proportional
objective is costs

V(x) :=sup{E [U(X)]: X € A}}.

For stating the main result we need multivariate Inada’s
conditions :

Existence
result

m Essentially smoothness (analogue of U’'(0) = o)

m Asymptotic satiability (analogue of U’(c0) = 0)
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A utility function U : RY — [—00,00) is said to be essentially
smooth if

U is differentiable in the interior of RY;
limj oo [VU(x;)| = +00 for any x; € RS converging to a
boundary point of Ri.

Existence
result
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Multivariate
utility

m Let U be a utility function, and let Cy be its support cone. [N
We say that a utility function U is asymptotically satiable e
if given any € > 0 there exists an x € dom(U) such that costs

AU(x) N [0,e)9 # 0.

Existence
result
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Multivariate

utility
m Let U be a utility function, and let Cy be its support cone. [
We say that a utility function U is asymptotically satiable e

if given any € > 0 there exists an x € dom(U) such that costs
AU(x) N [0,e)9 # 0.

m Recall that the dual function of U is defined by

Existence
result

U*(x%) = sup {U(x) — {x,x")}

xER4
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Multivariate
utility

m Let U be a utility function, and let Cy be its support cone. [N
We say that a utility function U is asymptotically satiable e

if given any € > 0 there exists an x € dom(U) such that costs
AU(x) N [0,e)9 # 0.
m Recall that the dual function of U is defined by

U*(x%) = sup {U(x) — {x,x")}

xER4

Existence
result

m One can prove that asympt. satiability of U is equivalent
to 0 € Cy» := cl(dom(U*)).
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Assume that V/(x) < oo for some x € int(dom V) Multivariate

utility
maximization

under
proportional

Suppose that U : RY — [—o0, o0) is a utility function supported transaction
on RY, essentially smooth, strictly concave on RS ,, and o
asymptotically satiable. Campi, Mark
Suppose in addition one of the following conditions :

V' is asymptotically satiable
U* satisfies the growth condition

Existence
result

Ut (ex®) < C(e)(U*(x)T +1)
for all x* € Ri+, e € (0,1] and for some positive function

¢ (stronger that 1)

Then the optimal investment problem has a unique solution X,.
Luciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.
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Multivariate

m One-dim. RAE : limsup,_, XU(())() <1 (eg U(x)=Inx) maximization
under

proportional

transaction
costs

Existence
result

ciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.

Multivariate utility maximization under proportional transaction costs
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! utili
m One-dim. RAE : limsup,_, XLL/](S)() <1 (eg U(x)=Inx) maxl%;%uo"
m d-dim “natural” analogue (as in, e.g., DPT) : proportional

costs

AE(U) := limsup X VUx)

<1
|x|]—o00 U(X)

Existence
result
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Multivariate

m One-dim. RAE : limsup,_, Xg&))() <1 (eg U(x)=Inx) maxlijtmiE:thtion
m d-dim “natural” analogue (as in, e.g., DPT) : proportional
{x, VU(x))

AE(U) := I;)Tjgf 000

m But U(x1,x2) = Inx; + Inxo does not satisfy 2-RAE, while
In x satisfies 1-RAE (that's why DPT assume U(0) = 0)

<1

Existence
result
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. . U’ utility

m One-dim. RAE : limsup,_, XU(S:)() <1l(eg Ux)=Inx) Iy
under

proportional

transaction
costs

m d-dim “natural” analogue (as in, e.g., DPT) :

AE(U) := lim supM <1

[x]—00 U(X)

But U(x1,x2) = Inxy + In x2 does not satisfy 2-RAE, while
In x satisfies 1-RAE (that's why DPT assume U(0) = 0)

m In other terms, d-RAE is not very robust wrt adding d > 2
one-dim utility functions

Existence
result
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. . U’ utility

m One-dim. RAE : limsup,_, XU(S:)() <1l(eg Ux)=Inx) Iy
under

proportional

transaction
costs

m d-dim “natural” analogue (as in, e.g., DPT) :

AE(U) := lim supM <1

|x|]—o00 U(X)
m But U(x1,x2) = Inx; + Inxo does not satisfy 2-RAE, while

In x satisfies 1-RAE (that's why DPT assume U(0) = 0)

m In other terms, d-RAE is not very robust wrt adding d > 2
one-dim utility functions

Existence
result

m Nonetheless U(x1, x2) = Inx; + In x2 does satisfy growth
condition, so our existence result can be applied to it.
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We need two more definitions : let U be a utility function Multivariate

d utility
supported on R maximization
. . . . - - under
m U, essentially smooth, satisfies Multivariate RAE if it is proportional
transaction
bounded below and costs

sup liminf M
ceR xeint(RY) (X, VU(x))

|x[—00

> 1. (3.1)

where |x| := max {|xi|,..., |xq|}.

Existence
result
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We need two more definitions : let U be a utility function Multivariate

utilit,
supported on Rﬁ’_ maximciiz;/tion
m U, essentially smooth, satisfies Multivariate RAE if it is proportional

transaction

bounded below and i

sup liminf M
ceR xeint(RY) (X, VU(x))

|x[—00

> 1. (3.1)

where |x| := max {|xi|,..., |xq|}.
m U is multivariate risk-averse (MVRA) if Vx € dom(U),
x eR9st. x tRi x, and all z € Rﬁ’r we have

Existence
result

U(x +z) — U(x) > U(xX' + z) — U(X).
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We need two more definitions : let U be a utility function Multivariate

utility

supported on Rﬁ’_ maximization
m U, essentially smooth, satisfies Multivariate RAE if it is proportional

transaction

bounded below and i

sup liminf M
ceR xeint(RY) (X, VU(x))

|x[—00

> 1. (3.1)

where |x| := max {|xi|,..., |xq|}.
m U is multivariate risk-averse (MVRA) if Vx € dom(U),
x e R st. x ~gd X, and all z € RS’F we have
+
U(x +z) — U(x) > U(xX' + z) — U(X).
m If U(x) =), Ui(x;) additive, then concavity of each U; is
enough to get MVRA, but U(x) = /x1x2
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Multivariate
utility
maximization

under
Lemma proportional

transaction

Let U be a utility function with Cy = Ri, essentially smooth,
strictly concave on Ri +, multivariate risk averse and asympt.
satiable.

Suppose that U is bounded below and satisfies multiv. RAE.
Then U* satisfies the growth condition, i.e. there exists a
function ¢ : (0,1] — [0, 00) such that for all € € (0,1] and all
x* € ]Ri n

Existence
result

U*(ex*) < C(e)(U*(x*)T +1).
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= Define C = A} N L®(R?) and Uy : L(RY) — [~o0,00) (NS
by max::cuiz;non

Ux(X) = E [U(x + X)]. e
Then supy e Ux(X) < V(x).

Duality
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m Define C = A% N L®(RY) and U, : L®(RY) — [—00, 00)
by
Ux(X) =E[U(x + X)].

Then supy e Ux(X) < V(x).
m Define the dual cone of C by

D:={meba(RY): m(X)<0 V¥XecC}.

Multivariate
utility
maximization
under
proportional
transaction
costs

Duality
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Multivariate

m Define C = A% N L®(RY) and U, : L®(RY) — [—00, 00) utility
by max::clize.a:’tlon
Ux(X) = E [U(x + X)]. e

costs

Then supy e Ux(X) < V(x).
m Define the dual cone of C by

D:={meba(RY): m(X)<0 V¥XecC}.
m Then

Duality

sup Uy(X) < sup inf {Ux(X) — m(X)}

< ot 2. (O = (X)) == nf, Us(m)
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Multivariate
m Recall that U*(x*) = sup,cra{U(x) — (x,x*)} utility
maximization
under
proportional
transaction
costs

Duality
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Multivariate
m Recall that U*(x*) = sup,cra{U(x) — (x,x*)} utility
maximization
m Forany X € Ay and me D under
proportional
transaction

dmc dmc costs
< * - N
UX) < U (5 ) +( X p

Duality
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m Recall that U*(x*) = sup,cpa{U(x) — (x,x*)} iz
maximization

m Forany X € Ay and me D under
proportional
transaction

dmc dmC costs
< U | — -
U(X) < U (dp)+<x, dP>
m Taking expectation, one has
dm® dm®
< ol Qi -
E[UX)] < E[U (dP)+<X’ IP >]
dm€
< *
< E [U (d]P)] + m(x)

Duality
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m Recall that U*(x*) = sup,cpa{U(x) — (x,x*)} iz
maximization

m Forany X € Ay and me D under
proportional
transaction

dmc dmc costs
< U | — -
o <0 (4« (.90
m Taking expectation, one has
dm® dm®
< * -
E[UX)] < E[U (dP)+<X’ IP >]
.« [ dm€©
E [U ( i )] + m(x)

m One can prove that U(m) = E [U*(djﬁ': )] -+ m(x) for
m € ba(RY), so that V(x) < infmep Uz(m).

IN

Duality
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Multivariate

Proposition (Lagrange Duality Theorem) el

under
proportional
transaction

If x € int(Cy) then costs
supxcc Ux(X) = V(x) = minpep Ui(m) € R. ano

Ifx ¢ Cy then  Oven
supxec Ux(X) = V(x) = inf pep U (m) = —o0.

In the first case we let m € D denote the minimizer. Then

X = —VU* (dm )

Duality

dP

is the optimizer for the primal problem.
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Multivariate

Any candidate optimizer X must satisfy utility

maximization

< me< < m< under
UX) = U (425) + (X, 9,
transaction

< costs

X € A%; and

~ ~c R
B (X, 95)] = ().

Duality
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-~ Multivariate

Any candidate optimizer X must satisfy utility
maximization

Y _ * [ dm°© Yy dmc\. under
Ux) = U (4F ) + (X&) e

costs

X € A%; and
B (X, 95)] = ().
These are equivalent to
X = (—VU* (d@) ,Q); and
E [<)A(, %ﬂ < m(x) Vm € D, with equality for
m = m(x). See C. & Schachermayer (2006)

Take 1 as definition of X. We prove 2 by variational analysis,
here the asymptotic satiability of V turns out to be crucial.

Duality

Luciano Campi, Mark Owen U. Paris-Dauphine & Heriot-Watt U.

Multivariate utility maximization under proportional transaction costs



m Consider U(x) = U(x1) where U is a u.s.c. utility function My
on R, which corresponds to liquidation to the first asset. T nder

proportional
transaction
costs

Liquidation
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m Consider U(x) = U(x1) where U is a u.s.c. utility function My
on R, which corresponds to liquidation to the first asset. T nder
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m Define the liquidating utility function U as

U(x) = sup{U(€) : (£,0) € LS. (x — KT)},
m Notice that U(x) = U(/(x)) where I(-) is the liquidation

function expressed in physical units, i.e.

I(x) =sup {€ € L°(Ry) & (£,0) € LY (x — K7)}.

m One can prove that

sup E[UX)] = sup E [D(/(XP))}.
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