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Introduction I : Formulation of the problem

A proper concave function U : Rd → [−∞,∞) is called a utility
function supported on Rd

+ if
CU := cl(dom(U)) = cl{x : U(x) > −∞} = Rd

+ and
U is increasing with respect to Rd

+-(partial) order.
Consider the following problem

V (x) := sup{E [U(X )] : X ∈ Ax
T}

where Ax
T is the set of all attainable final gains from an initial

portfolio x (to be defined later). Main results :
1 Existence of a unique solution under asympt. satiability of

value function V
2 Multivariate duality à la Kramkov-Schachermayer (1999)
3 Including liquidation case, discussion of multivariate RAE
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Introduction II : References

Davis Norman (1990), Shreve Soner (1994) - BS-type
model, intertemporal consumption, stochastic optimal
control
Cvitanić Karatzas (1996), Cvitanić Wang (2001) – BS-type
model, liquidated terminal wealth, duality
Kabanov (1999) – more general liquidated terminal wealth
Deelstra Pham Touzi (2001) – Kabanov-Last framework,
multivariate, non-smooth utility supported by solvency cone
Kamizono (2001, 2004) – KL framework, direct utility of
consumption
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Introduction III : Our contributions

Cover the case of discontinuous bid-ask processes, i.e.
random and discontinuous prop. TC.
Direct utility function (à la Kamizono), which separates
investment and consumption assets in order to include
liquidation (not in this talk).
No restrictions on U such as U(0) = 0 or supU(x) =∞.
Can treat anything, including U(0) = −∞.
Prove existence of optimizer under the minimal condition
of “Asymptotic Satiability” of the value function V , which
is a weaker than RAE.
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TC : Kabanov’s market model

Main features of the model : all expressed in physical units, d
risky assets (e.g. foreign currencies), the terms of trading are
given by a bid-ask process {Πt(ω), t ∈ [0,T ]} : an adapted,
càdlàg, d × d matrix-valued process s.t.

Πij > 0, 1 ≤ i , j ≤ d
Πii = 1, 1 ≤ i ≤ d
Πij ≤ ΠikΠkj , 1 ≤ i , j , k ≤ d

Meaning : To buy 1 unit of currency j one has to pay Πij
t (ω)

units of i (at time t when the state of world is ω)
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TC : Solvency cones & price systems

solvency cone: Kt = cone{e i ,Πij
t e i − e j : 1 ≤ i , j ≤ d}

cone of portfolios available at price 0: −Kt

polar of −Kt : K ∗t = {w ∈ Rd : 〈v ,w〉 ≥ 0, ∀v ∈ Kt}
Financial interpretation : w ∈ K ∗t iff w ∈ Rd

+ and
Πij

t w i ≥ w j ⇒ Πij
t ≥ w j

w i ⇒ Πij
t = (1 + λij

t )w j

w i for some
λij

t ≥ 0
Every w ∈ K ∗t (resp. in its relative interior) is called
consistent (resp. strictly consistent) price system.
Frictionless case : If πij ≡ 1 ∀i , j , then Kt = Rd

+ and
K ∗t = {x : x1 = · · · = xd ≥ 0}.
Cones (Kt) induce the following order : Let Y1,Y2 be
Fτ -meas. for some stopping time τ , then Y1 �τ Y2 means
Y1 − Y2 ∈ Kτ .
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TC : Consistent price processes

An Rd
+ \ {0}-valued, adapted process Z is a consistent price

process if
is a càdlàg martingale (time consistency)
Zt ∈ K ∗t ,∀t ∈ [0,T ]

If, moreover, Zτ ∈ riK ∗τ ∀τ stopping time, and
Zσ− ∈ riK ∗σ− ∀σ predictable s.t., Z is called a strictly
consistent price process.

Relations with the usual concept of EMM: choose a
numéraire Z 1, define St = (1,Z 2

t /Z
1
t . . .Z

d
t /Z

1
t ) and set

dQ/dP = Z 1
T/Z

1
0 , then S is a Q-martingale.

Main Assumption

SCPS: there exists a strictly consistent price process Z s .
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TC : Admissible portfolios

Interpretation: Xt = (X 1
t , . . . ,X

d
t ), X i

t = number of units of
asset i held in the portfolio V at time t.
A d -dim process X is an admissible self-financing portfolio
process if

is predictable and finite variation (not nec. càdlàg !)
Xτ − Xσ ∈ −Kσ,τ = −conv(∪σ≤u<τKu, 0)

there exists a threshold a > 0 s.t. XT � −a1 and
Z s
τXτ ≥ −aZ s

τ 1 ∀τ stopping time and ∀Z s ∈ Zs

We denote Ax the set of all admissible portfolio processes X
s.t. X0 = x , and Ax

T := {XT : X ∈ Ax}.
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TC : Super-replication theorem

Let Y ∈ L0(Rd ,FT ) a contingent claim such that ∃a > 0,
Y �T −a1 (i.e. Y + a1 ∈ KT )

Theorem (C.-Schachermayer, 2006)

Under SCPS, the following sets are equal:
1 {x ∈ Rd : ∃X ∈ Ax ,XT � Y }
2 {x ∈ Rd : 〈Z0, x〉 ≥ E [〈ZT ,Y 〉],∀Z ∈ Z(s)}

where, we recall, Ax is the set of all admissible portfolio
processes X s.t. X0 = x
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Let us come back to max U problem

Let U denote a utility function such that CU = Rd
+. Our

objective is

V (x) := sup{E [U(X )] : X ∈ Ax
T}.

For stating the main result we need multivariate Inada’s
conditions :

Essentially smoothness (analogue of U ′(0) =∞)
Asymptotic satiability (analogue of U ′(∞) = 0)
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Essential smoothness: U ′(0) =∞

Definition

A utility function U : Rd → [−∞,∞) is said to be essentially
smooth if

1 U is differentiable in the interior of Rd
+;

2 limi→∞ |∇U(xi )| = +∞ for any xi ∈ Rd
+ converging to a

boundary point of Rd
+.
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Asymptotic satiability : U ′(∞) = 0

Let U be a utility function, and let CU be its support cone.
We say that a utility function U is asymptotically satiable
if given any ε > 0 there exists an x ∈ dom(U) such that

∂U(x) ∩ [0, ε)d 6= ∅.

Recall that the dual function of U is defined by

U∗(x∗) = sup
x∈Rd
{U(x)− 〈x , x∗〉}

One can prove that asympt. satiability of U is equivalent
to 0 ∈ CU∗ := cl(dom(U∗)).
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Main result

Assume that V (x) <∞ for some x ∈ int(domV )

Theorem

Suppose that U : Rd → [−∞,∞) is a utility function supported
on Rd

+, essentially smooth, strictly concave on Rd
++, and

asymptotically satiable.
Suppose in addition one of the following conditions :

1 V is asymptotically satiable
2 U∗ satisfies the growth condition

U∗(εx∗) ≤ ζ(ε)(U∗(x∗)+ + 1)

for all x∗ ∈ Rd
++, ε ∈ (0, 1] and for some positive function

ζ (stronger that 1)
Then the optimal investment problem has a unique solution X̂x .
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Growth condition & asymptotic elasticity I

One-dim. RAE : lim supx→∞
xU′(x)
U(x) < 1 (e.g. U(x) = ln x)

d -dim “natural” analogue (as in, e.g., DPT) :

AE (U) := lim sup
|x |→∞

〈x ,∇U(x)〉
U(x)

< 1

But U(x1, x2) = ln x1 + ln x2 does not satisfy 2-RAE, while
ln x satisfies 1-RAE (that’s why DPT assume U(0) = 0)
In other terms, d -RAE is not very robust wrt adding d ≥ 2
one-dim utility functions
Nonetheless U(x1, x2) = ln x1 + ln x2 does satisfy growth
condition, so our existence result can be applied to it.
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Growth condition & asymptotic elasticity II

We need two more definitions : let U be a utility function
supported on Rd

+

U, essentially smooth, satisfies Multivariate RAE if it is
bounded below and

sup
c∈R

lim inf
x∈int(Rd

+)
|x |→∞

U(x) + c
〈x ,∇U(x)〉

> 1. (3.1)

where |x | := max {|x1|, . . . , |xd |}.
U is multivariate risk-averse (MVRA) if ∀x ∈ dom(U),
x ′ ∈ Rd s.t. x ′ �Rd

+
x , and all z ∈ Rd

+ we have

U(x + z)− U(x) ≥ U(x ′ + z)− U(x ′).

If U(x) =
∑

i Ui (xi ) additive, then concavity of each Ui is
enough to get MVRA, but U(x) =

√
x1x2
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If U(x) =
∑

i Ui (xi ) additive, then concavity of each Ui is
enough to get MVRA, but U(x) =

√
x1x2
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Growth condition & asymptotic elasticity III

Lemma

Let U be a utility function with CU = Rd
+, essentially smooth,

strictly concave on Rd
++, multivariate risk averse and asympt.

satiable.
Suppose that U is bounded below and satisfies multiv. RAE.
Then U∗ satisfies the growth condition, i.e. there exists a
function ζ : (0, 1]→ [0,∞) such that for all ε ∈ (0, 1] and all
x∗ ∈ Rd

++

U∗(εx∗) ≤ ζ(ε)(U∗(x∗)+ + 1).
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Duality I

Define C = A0
T ∩ L∞(Rd ) and Ux : L∞(Rd )→ [−∞,∞)

by
Ux(X ) = E [U(x + X )] .

Then supX∈C Ux(X ) ≤ V (x).
Define the dual cone of C by

D := {m ∈ ba(Rd ) : m(X ) ≤ 0 ∀X ∈ C}.

Then

sup
X∈C

Ux(X ) ≤ sup
X∈L∞

inf
m∈D
{Ux(X )−m(X )}

≤ inf
m∈D

sup
X∈L∞

{Ux(X )−m(X )} =: inf
m∈D

U∗x(m).
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Duality II

Recall that U∗(x∗) = supx∈Rd{U(x)− 〈x , x∗〉}
For any X ∈ Ax

T and m ∈ D

U(X ) ≤ U∗
(
dmc

dP

)
+

〈
X ,

dmc

dP

〉
Taking expectation, one has

E [U(X )] ≤ E
[
U∗
(
dmc

dP

)
+

〈
X ,

dmc

dP

〉]
≤ E

[
U∗
(
dmc

dP

)]
+ m(x)

One can prove that U∗x(m) = E
[
U∗(dmc

dP )
]

+ m(x) for
m ∈ ba(Rd

+), so that V (x) ≤ infm∈D U∗x(m).
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Duality III

Proposition (Lagrange Duality Theorem)

1 If x ∈ int(CV ) then
supX∈C Ux(X ) = V (x) = minm∈D U∗x(m) ∈ R.

2 If x /∈ CV then
supX∈C Ux(X ) = V (x) = infm∈D U∗x(m) = −∞.

In the first case we let m̂ ∈ D denote the minimizer. Then

X̂ := −∇U∗
(
dm̂c

dP

)
is the optimizer for the primal problem.
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Duality IV : Sketch of the proof

Any candidate optimizer X̂ must satisfy

1 U(X̂ ) = U∗
(

dbmc

dP

)
+
〈
X̂ , dbmc

dP

〉
;

2 X̂ ∈ Ax
T ; and

3 E
[〈

X̂ , dbmc

dP

〉]
= m̂(x).

These are equivalent to

1 X̂ =
(
−∇U∗

(
dbmc

dP

)
, 0
)
; and

2 E
[〈

X̂ , dmc

dP

〉]
≤ m(x) ∀m ∈ D, with equality for

m = m̂(x). See C. & Schachermayer (2006)
Take 1 as definition of X̂ . We prove 2 by variational analysis,
here the asymptotic satiability of V turns out to be crucial.
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The liquidation case : consumption vs investment
assets

Consider U(x) = Ũ(x1) where Ũ is a u.s.c. utility function
on R+, which corresponds to liquidation to the first asset.
Define the liquidating utility function Ū as

Ū(x) := sup{Ũ(ξ) : (ξ, 0) ∈ L0
+(x − KT )}, x ∈ Rd

Notice that Ū(x) = Ũ(l(x)) where l(·) is the liquidation
function expressed in physical units, i.e.

l(x) = sup
{
ξ ∈ L0(R+) : (ξ, 0) ∈ L0

+(x − KT )
}
.

One can prove that

sup
X∈Ax

T

E [U(X )] = sup
X∈Ax

T

E
[
Ũ(l(XT−))

]
.
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Ū(x) := sup{Ũ(ξ) : (ξ, 0) ∈ L0
+(x − KT )}, x ∈ Rd
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Ū(x) := sup{Ũ(ξ) : (ξ, 0) ∈ L0
+(x − KT )}, x ∈ Rd
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