

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Multivariate utility maximization under proportional transaction costs

Luciano Campi, Mark Owen

U. Paris-Dauphine & Heriot-Watt U.

Contents

1 Introduction

Multivariate
utility
maximization
under
proportional
transaction
costs

2 Transaction costs

Luciano
Campi, Mark
Owen

3 Existence result

Introduction

Transaction
costs

Existence
result

4 Duality

Duality

5 Liquidation

Liquidation

Introduction I : Formulation of the problem

A proper concave function $U : \mathbb{R}^d \rightarrow [-\infty, \infty)$ is called a utility function supported on \mathbb{R}_+^d if

- $C_U := \text{cl}(\text{dom}(U)) = \text{cl}\{x : U(x) > -\infty\} = \mathbb{R}_+^d$ and
- U is increasing with respect to \mathbb{R}_+^d -(partial) order.

Consider the following problem

$$V(x) := \sup\{\mathbb{E}[U(X)] : X \in \mathcal{A}_T^x\}$$

where \mathcal{A}_T^x is the set of all attainable final gains from an initial portfolio x (to be defined later). **Main results :**

- 1 Existence of a unique solution under asympt. satiability of value function V
- 2 Multivariate duality à la Kramkov-Schachermayer (1999)
- 3 Including liquidation case, discussion of multivariate RAE

Introduction II : References

- Davis Norman (1990), Shreve Soner (1994) - BS-type model, intertemporal consumption, stochastic optimal control
- Cvitanić Karatzas (1996), Cvitanić Wang (2001) – BS-type model, liquidated terminal wealth, duality
- Kabanov (1999) – more general liquidated terminal wealth
- Deelstra Pham Touzi (2001) – Kabanov-Last framework, multivariate, non-smooth utility supported by solvency cone
- Kamizono (2001, 2004) – KL framework, direct utility of consumption

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Introduction III : Our contributions

- Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.
- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
- No restrictions on U such as $U(0) = 0$ or $\sup U(x) = \infty$. Can treat anything, including $U(0) = -\infty$.
- Prove existence of optimizer under the minimal condition of "Asymptotic Satiability" of the value function V , which is a weaker than RAE.

Introduction III : Our contributions

- Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.
- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
- No restrictions on U such as $U(0) = 0$ or $\sup U(x) = \infty$. Can treat anything, including $U(0) = -\infty$.
- Prove existence of optimizer under the minimal condition of "Asymptotic Satiability" of the value function V , which is a weaker than RAE.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Introduction III : Our contributions

- Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.
- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
- No restrictions on U such as $U(0) = 0$ or $\sup U(x) = \infty$. Can treat anything, including $U(0) = -\infty$.
- Prove existence of optimizer under the minimal condition of “Asymptotic Satiability” of the value function V , which is a weaker than RAE.

Introduction III : Our contributions

- Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.
- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
- No restrictions on U such as $U(0) = 0$ or $\sup U(x) = \infty$. Can treat anything, including $U(0) = -\infty$.
- Prove existence of optimizer under the minimal condition of “Asymptotic Satiability” of the value function V , which is a weaker than RAE.

Main features of the model : all expressed in physical units, d risky assets (e.g. foreign currencies), the terms of trading are given by a **bid-ask process** $\{\Pi_t(\omega), t \in [0, T]\}$: an adapted, càdlàg, $d \times d$ matrix-valued process s.t.

- $\Pi^{ij} > 0, 1 \leq i, j \leq d$
- $\Pi^{ii} = 1, 1 \leq i \leq d$
- $\Pi^{ij} \leq \Pi^{ik} \Pi^{kj}, 1 \leq i, j, k \leq d$

Meaning : To buy 1 unit of currency j one has to pay $\Pi_t^{ij}(\omega)$ units of i (at time t when the state of world is ω)

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\Pi_t^{ij} = 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} = 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} \equiv 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} \equiv 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} \equiv 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} \equiv 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

TC : Solvency cones & price systems

- *solvency cone*: $K_t = \text{cone}\{\mathbf{e}^i, \Pi_t^{ij} \mathbf{e}^i - \mathbf{e}^j : 1 \leq i, j \leq d\}$
- *cone of portfolios available at price 0*: $-K_t$
- *polar of $-K_t$* : $K_t^* = \{w \in \mathbb{R}^d : \langle v, w \rangle \geq 0, \forall v \in K_t\}$
- *Financial interpretation*: $w \in K_t^*$ iff $w \in \mathbb{R}_+^d$ and $\Pi_t^{ij} w^i \geq w^j \Rightarrow \Pi_t^{ij} \geq \frac{w^j}{w^i} \Rightarrow \Pi_t^{ij} = (1 + \lambda_t^{ij}) \frac{w^j}{w^i}$ for some $\lambda_t^{ij} \geq 0$
- Every $w \in K_t^*$ (resp. in its relative interior) is called *consistent* (resp. *strictly consistent*) *price system*.
- Frictionless case : If $\pi^{ij} \equiv 1 \quad \forall i, j$, then $K_t = \mathbb{R}_+^d$ and $K_t^* = \{x : x_1 = \dots = x_d \geq 0\}$.
- Cones (K_t) induce the following order : Let Y_1, Y_2 be \mathcal{F}_τ -meas. for some stopping time τ , then $Y_1 \succeq_\tau Y_2$ means $Y_1 - Y_2 \in K_\tau$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

An $\mathbb{R}_+^d \setminus \{0\}$ -valued, adapted process Z is a consistent price process if

- is a càdlàg martingale (*time consistency*)
- $Z_t \in K_t^*, \forall t \in [0, T]$
- If, moreover, $Z_\tau \in \text{ri}K_\tau^* \ \forall \tau$ stopping time, and $Z_{\sigma-} \in \text{ri}K_{\sigma-}^* \ \forall \sigma$ predictable s.t., Z is called a *strictly* consistent price process.

Relations with the usual concept of EMM: choose a numéraire Z^1 , define $S_t = (1, Z_t^2/Z_t^1 \dots Z_t^d/Z_t^1)$ and set $d\mathbb{Q}/d\mathbb{P} = Z_T^1/Z_0^1$, then S is a \mathbb{Q} -martingale.

Main Assumption

SCPS: there exists a strictly consistent price process Z^s .

TC : Admissible portfolios

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Interpretation: $X_t = (X_t^1, \dots, X_t^d)$, X_t^i = number of units of asset i held in the portfolio V at time t .

A d -dim process X is an *admissible self-financing portfolio process* if

- is *predictable and finite variation* (not nec. càdlàg !)
- $X_\tau - X_\sigma \in -\mathcal{K}_{\sigma, \tau} = -\overline{\text{conv}}(\cup_{\sigma \leq u < \tau} K_u, 0)$
- there exists a threshold $a > 0$ s.t. $X_T \succeq -a\mathbf{1}$ and $Z_T^s X_T \geq -a Z_T^s \mathbf{1}$ $\forall \tau$ stopping time and $\forall Z^s \in \mathcal{Z}^s$

We denote \mathcal{A}^x the set of all admissible portfolio processes X s.t. $X_0 = x$, and $\mathcal{A}_T^x := \{X_T : X \in \mathcal{A}^x\}$.

TC : Admissible portfolios

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Interpretation: $X_t = (X_t^1, \dots, X_t^d)$, X_t^i = number of units of asset i held in the portfolio V at time t .

A d -dim process X is an *admissible self-financing portfolio process* if

- is *predictable and finite variation* (not nec. càdlàg !)
- $X_\tau - X_\sigma \in -\mathcal{K}_{\sigma, \tau} = -\overline{\text{conv}}(\cup_{\sigma \leq u < \tau} K_u, 0)$
- there exists a threshold $a > 0$ s.t. $X_T \succeq -a\mathbf{1}$ and $Z_T^s X_T \geq -a Z_T^s \mathbf{1}$ $\forall \tau$ stopping time and $\forall Z^s \in \mathcal{Z}^s$

We denote \mathcal{A}^x the set of all admissible portfolio processes X s.t. $X_0 = x$, and $\mathcal{A}_T^x := \{X_T : X \in \mathcal{A}^x\}$.

TC : Admissible portfolios

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Interpretation: $X_t = (X_t^1, \dots, X_t^d)$, X_t^i = number of units of asset i held in the portfolio V at time t .

A d -dim process X is an *admissible self-financing portfolio process* if

- is *predictable and finite variation* (not nec. càdlàg !)
- $X_\tau - X_\sigma \in -\mathcal{K}_{\sigma, \tau} = -\overline{\text{conv}}(\cup_{\sigma \leq u < \tau} K_u, 0)$
- there exists a threshold $a > 0$ s.t. $X_T \succeq -a\mathbf{1}$ and $Z_\tau^s X_\tau \geq -a Z_\tau^s \mathbf{1}$ $\forall \tau$ stopping time and $\forall Z^s \in \mathcal{Z}^s$

We denote \mathcal{A}^x the set of all admissible portfolio processes X s.t. $X_0 = x$, and $\mathcal{A}_T^x := \{X_T : X \in \mathcal{A}^x\}$.

TC : Super-replication theorem

Let $Y \in L^0(\mathbb{R}^d, \mathcal{F}_T)$ a contingent claim such that $\exists a > 0$,
 $Y \succeq_T -a\mathbf{1}$ (i.e. $Y + a\mathbf{1} \in K_T$)

Theorem (C.-Schachermayer, 2006)

Under SCPS, the following sets are equal:

- 1 $\{x \in \mathbb{R}^d : \exists X \in \mathcal{A}^x, X_T \succeq Y\}$
- 2 $\{x \in \mathbb{R}^d : \langle Z_0, x \rangle \geq E[\langle Z_T, Y \rangle], \forall Z \in \mathcal{Z}^{(s)}\}$

where, we recall, \mathcal{A}^x is the set of all admissible portfolio processes X s.t. $X_0 = x$

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Let us come back to max U problem

Let U denote a utility function such that $C_U = \mathbb{R}_+^d$. Our objective is

$$V(x) := \sup\{\mathbb{E}[U(X)] : X \in \mathcal{A}_T^x\}.$$

For stating the main result we need multivariate Inada's conditions :

- *Essentially smoothness* (analogue of $U'(0) = \infty$)
- *Asymptotic satiability* (analogue of $U'(\infty) = 0$)

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs

Existence
result

Duality

Liquidation

Definition

A utility function $U : \mathbb{R}^d \rightarrow [-\infty, \infty)$ is said to be *essentially smooth* if

- 1 U is differentiable in the interior of \mathbb{R}_+^d ;
- 2 $\lim_{i \rightarrow \infty} |\nabla U(x_i)| = +\infty$ for any $x_i \in \mathbb{R}_+^d$ converging to a boundary point of \mathbb{R}_+^d .

Asymptotic satiability : $U'(\infty) = 0$

- Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon]^d \neq \emptyset.$$

- Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$$

- One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl}(\text{dom}(U^*))$.

Asymptotic satiability : $U'(\infty) = 0$

- Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon]^d \neq \emptyset.$$

- Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$$

- One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl}(\text{dom}(U^*))$.

Asymptotic satiability : $U'(\infty) = 0$

- Let U be a utility function, and let C_U be its support cone. We say that a utility function U is *asymptotically satiable* if given any $\epsilon > 0$ there exists an $x \in \text{dom}(U)$ such that

$$\partial U(x) \cap [0, \epsilon]^d \neq \emptyset.$$

- Recall that the dual function of U is defined by

$$U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$$

- One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^*} := \text{cl}(\text{dom}(U^*))$.

Main result

Assume that $V(x) < \infty$ for some $x \in \text{int}(\text{dom } V)$

Theorem

Suppose that $U : \mathbb{R}^d \rightarrow [-\infty, \infty)$ is a utility function supported on \mathbb{R}_+^d , essentially smooth, strictly concave on \mathbb{R}_{++}^d , and asymptotically satiable.

Suppose in addition **one of the following conditions** :

- 1 V is asymptotically satiable
- 2 U^* satisfies the growth condition

$$U^*(\epsilon x^*) \leq \zeta(\epsilon)(U^*(x^*)^+ + 1)$$

for all $x^* \in \mathbb{R}_{++}^d$, $\epsilon \in (0, 1]$ and for some positive function ζ (stronger than 1)

Then the optimal investment problem has a unique solution \hat{X}_x .

Multivariate utility maximization under proportional transaction costs

Luciano Campi, Mark Owen

Introduction

Transaction costs

Existence result

Duality

Liquidation

Growth condition & asymptotic elasticity I

- One-dim. RAE : $\limsup_{x \rightarrow \infty} \frac{xU'(x)}{U(x)} < 1$ (e.g. $U(x) = \ln x$)
- d -dim “natural” analogue (as in, e.g., DPT) :

$$AE(U) := \limsup_{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x) \rangle}{U(x)} < 1$$

- But $U(x_1, x_2) = \ln x_1 + \ln x_2$ does not satisfy 2-RAE, while $\ln x$ satisfies 1-RAE (that's why DPT assume $U(0) = 0$)
- In other terms, d -RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U(x_1, x_2) = \ln x_1 + \ln x_2$ does satisfy growth condition, so our existence result can be applied to it.

Growth condition & asymptotic elasticity I

- One-dim. RAE : $\limsup_{x \rightarrow \infty} \frac{xU'(x)}{U(x)} < 1$ (e.g. $U(x) = \ln x$)
- d -dim “natural” analogue (as in, e.g., DPT) :

$$AE(U) := \limsup_{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x) \rangle}{U(x)} < 1$$

- But $U(x_1, x_2) = \ln x_1 + \ln x_2$ does not satisfy 2-RAE, while $\ln x$ satisfies 1-RAE (that's why DPT assume $U(0) = 0$)
- In other terms, d -RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U(x_1, x_2) = \ln x_1 + \ln x_2$ does satisfy growth condition, so our existence result can be applied to it.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Growth condition & asymptotic elasticity I

- One-dim. RAE : $\limsup_{x \rightarrow \infty} \frac{xU'(x)}{U(x)} < 1$ (e.g. $U(x) = \ln x$)
- d -dim “natural” analogue (as in, e.g., DPT) :

$$AE(U) := \limsup_{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x) \rangle}{U(x)} < 1$$

- But $U(x_1, x_2) = \ln x_1 + \ln x_2$ does not satisfy 2-RAE, while $\ln x$ satisfies 1-RAE (that's why DPT assume $U(0) = 0$)
- In other terms, d -RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U(x_1, x_2) = \ln x_1 + \ln x_2$ does satisfy growth condition, so our existence result can be applied to it.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Growth condition & asymptotic elasticity I

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

- One-dim. RAE : $\limsup_{x \rightarrow \infty} \frac{xU'(x)}{U(x)} < 1$ (e.g. $U(x) = \ln x$)
- d -dim “natural” analogue (as in, e.g., DPT) :

$$AE(U) := \limsup_{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x) \rangle}{U(x)} < 1$$

- But $U(x_1, x_2) = \ln x_1 + \ln x_2$ does not satisfy 2-RAE, while $\ln x$ satisfies 1-RAE (that's why DPT assume $U(0) = 0$)
- In other terms, d -RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U(x_1, x_2) = \ln x_1 + \ln x_2$ does satisfy growth condition, so our existence result can be applied to it.

Growth condition & asymptotic elasticity I

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

- One-dim. RAE : $\limsup_{x \rightarrow \infty} \frac{xU'(x)}{U(x)} < 1$ (e.g. $U(x) = \ln x$)
- d -dim “natural” analogue (as in, e.g., DPT) :

$$AE(U) := \limsup_{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x) \rangle}{U(x)} < 1$$

- But $U(x_1, x_2) = \ln x_1 + \ln x_2$ does not satisfy 2-RAE, while $\ln x$ satisfies 1-RAE (that's why DPT assume $U(0) = 0$)
- In other terms, d -RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U(x_1, x_2) = \ln x_1 + \ln x_2$ does satisfy growth condition, so our existence result can be applied to it.

Growth condition & asymptotic elasticity II

We need two more definitions : let U be a utility function supported on \mathbb{R}_+^d

- U , essentially smooth, satisfies Multivariate RAE if it is bounded below and

$$\sup_{c \in \mathbb{R}} \liminf_{\substack{x \in \text{int}(\mathbb{R}_+^d) \\ |x| \rightarrow \infty}} \frac{U(x) + c}{\langle x, \nabla U(x) \rangle} > 1. \quad (3.1)$$

where $|x| := \max \{|x_1|, \dots, |x_d|\}$.

- U is multivariate risk-averse (MVRA) if $\forall x \in \text{dom}(U)$, $x' \in \mathbb{R}^d$ s.t. $x' \succeq_{\mathbb{R}_+^d} x$, and all $z \in \mathbb{R}_+^d$ we have

$$U(x + z) - U(x) \geq U(x' + z) - U(x').$$

- If $U(x) = \sum_i U_i(x_i)$ additive, then concavity of each U_i is enough to get MVRA, but $U(x) = \sqrt{x_1 x_2}$

Multivariate utility maximization under proportional transaction costs

Luciano Campi, Mark Owen

Introduction

Transaction costs

Existence result

Duality

Liquidation

Growth condition & asymptotic elasticity II

We need two more definitions : let U be a utility function supported on \mathbb{R}_+^d

- U , essentially smooth, satisfies Multivariate RAE if it is bounded below and

$$\sup_{c \in \mathbb{R}} \liminf_{\substack{x \in \text{int}(\mathbb{R}_+^d) \\ |x| \rightarrow \infty}} \frac{U(x) + c}{\langle x, \nabla U(x) \rangle} > 1. \quad (3.1)$$

where $|x| := \max \{|x_1|, \dots, |x_d|\}$.

- U is multivariate risk-averse (MVRA) if $\forall x \in \text{dom}(U)$, $x' \in \mathbb{R}^d$ s.t. $x' \succeq_{\mathbb{R}_+^d} x$, and all $z \in \mathbb{R}_+^d$ we have

$$U(x + z) - U(x) \geq U(x' + z) - U(x').$$

- If $U(x) = \sum_i U_i(x_i)$ additive, then concavity of each U_i is enough to get MVRA, but $U(x) = \sqrt{x_1 x_2}$

Multivariate utility maximization under proportional transaction costs

Luciano Campi, Mark Owen

Introduction

Transaction costs

Existence result

Duality

Liquidation

Growth condition & asymptotic elasticity II

We need two more definitions : let U be a utility function supported on \mathbb{R}_+^d

- U , essentially smooth, satisfies Multivariate RAE if it is bounded below and

$$\sup_{c \in \mathbb{R}} \liminf_{\substack{x \in \text{int}(\mathbb{R}_+^d) \\ |x| \rightarrow \infty}} \frac{U(x) + c}{\langle x, \nabla U(x) \rangle} > 1. \quad (3.1)$$

where $|x| := \max \{|x_1|, \dots, |x_d|\}$.

- U is multivariate risk-averse (MVRA) if $\forall x \in \text{dom}(U)$, $x' \in \mathbb{R}^d$ s.t. $x' \succeq_{\mathbb{R}_+^d} x$, and all $z \in \mathbb{R}_+^d$ we have

$$U(x + z) - U(x) \geq U(x' + z) - U(x').$$

- If $U(x) = \sum_i U_i(x_i)$ additive, then concavity of each U_i is enough to get MVRA, but $U(x) = \sqrt{x_1 x_2}$

Growth condition & asymptotic elasticity III

Lemma

Let U be a utility function with $C_U = \mathbb{R}_+^d$, essentially smooth, strictly concave on \mathbb{R}_{++}^d , multivariate risk averse and asympt. satiable.

Suppose that U is bounded below and satisfies multiv. RAE. Then U^* satisfies the growth condition, i.e. there exists a function $\zeta : (0, 1] \rightarrow [0, \infty)$ such that for all $\epsilon \in (0, 1]$ and all $x^* \in \mathbb{R}_{++}^d$

$$U^*(\epsilon x^*) \leq \zeta(\epsilon)(U^*(x^*)^+ + 1).$$

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Duality I

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs

Existence
result

Duality

Liquidation

- Define $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and $\mathbb{U}_x : L^\infty(\mathbb{R}^d) \rightarrow [-\infty, \infty)$ by

$$\mathbb{U}_x(X) = \mathbb{E}[U(x + X)].$$

Then $\sup_{X \in \mathcal{C}} \mathbb{U}_x(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

$$\mathcal{D} := \{m \in \text{ba}(\mathbb{R}^d) : m(X) \leq 0 \quad \forall X \in \mathcal{C}\}.$$

- Then

$$\begin{aligned} \sup_{X \in \mathcal{C}} \mathbb{U}_x(X) &\leq \sup_{X \in L^\infty} \inf_{m \in \mathcal{D}} \{\mathbb{U}_x(X) - m(X)\} \\ &\leq \inf_{m \in \mathcal{D}} \sup_{X \in L^\infty} \{\mathbb{U}_x(X) - m(X)\} =: \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m). \end{aligned}$$

Duality I

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs

Existence
result

Duality

Liquidation

- Define $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and $\mathbb{U}_x : L^\infty(\mathbb{R}^d) \rightarrow [-\infty, \infty)$ by

$$\mathbb{U}_x(X) = \mathbb{E}[U(x + X)].$$

Then $\sup_{X \in \mathcal{C}} \mathbb{U}_x(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

$$\mathcal{D} := \{m \in \text{ba}(\mathbb{R}^d) : m(X) \leq 0 \quad \forall X \in \mathcal{C}\}.$$

- Then

$$\begin{aligned} \sup_{X \in \mathcal{C}} \mathbb{U}_x(X) &\leq \sup_{X \in L^\infty} \inf_{m \in \mathcal{D}} \{\mathbb{U}_x(X) - m(X)\} \\ &\leq \inf_{m \in \mathcal{D}} \sup_{X \in L^\infty} \{\mathbb{U}_x(X) - m(X)\} =: \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m). \end{aligned}$$

Duality I

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs

Existence
result

Duality
Liquidation

- Define $\mathcal{C} = \mathcal{A}_T^0 \cap L^\infty(\mathbb{R}^d)$ and $\mathbb{U}_x : L^\infty(\mathbb{R}^d) \rightarrow [-\infty, \infty)$ by

$$\mathbb{U}_x(X) = \mathbb{E}[U(x + X)].$$

Then $\sup_{X \in \mathcal{C}} \mathbb{U}_x(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

$$\mathcal{D} := \{m \in \text{ba}(\mathbb{R}^d) : m(X) \leq 0 \quad \forall X \in \mathcal{C}\}.$$

- Then

$$\begin{aligned} \sup_{X \in \mathcal{C}} \mathbb{U}_x(X) &\leq \sup_{X \in L^\infty} \inf_{m \in \mathcal{D}} \{\mathbb{U}_x(X) - m(X)\} \\ &\leq \inf_{m \in \mathcal{D}} \sup_{X \in L^\infty} \{\mathbb{U}_x(X) - m(X)\} =: \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m). \end{aligned}$$

Duality II

- Recall that $U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$

- For any $X \in \mathcal{A}_T^x$ and $m \in \mathcal{D}$

$$U(X) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle$$

- Taking expectation, one has

$$\begin{aligned} \mathbb{E}[U(X)] &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle \right] \\ &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x) \end{aligned}$$

- One can prove that $\mathbb{U}_x^*(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x)$ for $m \in \text{ba}(\mathbb{R}_+^d)$, so that $V(x) \leq \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m)$.

Duality II

- Recall that $U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$
- For any $X \in \mathcal{A}_T^x$ and $m \in \mathcal{D}$

$$U(X) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle$$

- Taking expectation, one has

$$\begin{aligned} \mathbb{E}[U(X)] &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle \right] \\ &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x) \end{aligned}$$

- One can prove that $\mathbb{U}_x^*(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x)$ for $m \in \text{ba}(\mathbb{R}_+^d)$, so that $V(x) \leq \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m)$.

Duality II

- Recall that $U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$
- For any $X \in \mathcal{A}_T^x$ and $m \in \mathcal{D}$

$$U(X) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle$$

- Taking expectation, one has

$$\begin{aligned} \mathbb{E}[U(X)] &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle \right] \\ &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x) \end{aligned}$$

- One can prove that $\mathbb{U}_x^*(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x)$ for $m \in \text{ba}(\mathbb{R}_+^d)$, so that $V(x) \leq \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m)$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Duality II

- Recall that $U^*(x^*) = \sup_{x \in \mathbb{R}^d} \{U(x) - \langle x, x^* \rangle\}$
- For any $X \in \mathcal{A}_T^x$ and $m \in \mathcal{D}$

$$U(X) \leq U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle$$

- Taking expectation, one has

$$\begin{aligned} \mathbb{E}[U(X)] &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) + \left\langle X, \frac{dm^c}{d\mathbb{P}} \right\rangle \right] \\ &\leq \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x) \end{aligned}$$

- One can prove that $\mathbb{U}_x^*(m) = \mathbb{E} \left[U^* \left(\frac{dm^c}{d\mathbb{P}} \right) \right] + m(x)$ for $m \in \text{ba}(\mathbb{R}_+^d)$, so that $V(x) \leq \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m)$.

Multivariate
utility
maximization
under
proportional
transaction
costs

Luciano
Campi, Mark
Owen

Introduction

Transaction
costs

Existence
result

Duality

Liquidation

Proposition (Lagrange Duality Theorem)

1 If $x \in \text{int}(C_V)$ then

$$\sup_{X \in \mathcal{C}} \mathbb{U}_x(X) = V(x) = \min_{m \in \mathcal{D}} \mathbb{U}_x^*(m) \in \mathbb{R}.$$

2 If $x \notin C_V$ then

$$\sup_{X \in \mathcal{C}} \mathbb{U}_x(X) = V(x) = \inf_{m \in \mathcal{D}} \mathbb{U}_x^*(m) = -\infty.$$

In the first case we let $\hat{m} \in \mathcal{D}$ denote the minimizer. Then

$$\hat{X} := -\nabla U^* \left(\frac{d\hat{m}^c}{d\mathbb{P}} \right)$$

is the optimizer for the primal problem.

Duality IV : Sketch of the proof

Any candidate optimizer \hat{X} must satisfy

1 $U(\hat{X}) = U^* \left(\frac{d\hat{m}^c}{dP} \right) + \left\langle \hat{X}, \frac{d\hat{m}^c}{dP} \right\rangle;$

2 $\hat{X} \in \mathcal{A}_T^x$; and

3 $E \left[\left\langle \hat{X}, \frac{d\hat{m}^c}{dP} \right\rangle \right] = \hat{m}(x).$

These are equivalent to

1 $\hat{X} = \left(-\nabla U^* \left(\frac{d\hat{m}^c}{dP} \right), \underline{0} \right)$; and

2 $E \left[\left\langle \hat{X}, \frac{d\hat{m}^c}{dP} \right\rangle \right] \leq m(x) \quad \forall m \in \mathcal{D},$ with equality for $m = \hat{m}(x).$ See C. & Schachermayer (2006)

Take 1 as definition of \hat{X} . We prove 2 by variational analysis, here the asymptotic satiability of V turns out to be crucial.

Duality IV : Sketch of the proof

Any candidate optimizer \widehat{X} must satisfy

1 $U(\widehat{X}) = U^* \left(\frac{d\widehat{m}^c}{dP} \right) + \left\langle \widehat{X}, \frac{d\widehat{m}^c}{dP} \right\rangle;$

2 $\widehat{X} \in \mathcal{A}_T^x$; and

3 $E \left[\left\langle \widehat{X}, \frac{d\widehat{m}^c}{dP} \right\rangle \right] = \widehat{m}(x).$

These are equivalent to

1 $\widehat{X} = \left(-\nabla U^* \left(\frac{d\widehat{m}^c}{dP} \right), \underline{0} \right)$; and

2 $E \left[\left\langle \widehat{X}, \frac{d\widehat{m}^c}{dP} \right\rangle \right] \leq m(x) \quad \forall m \in \mathcal{D},$ with equality for $m = \widehat{m}(x).$ See C. & Schachermayer (2006)

Take 1 as definition of \widehat{X} . We prove 2 by variational analysis, here the asymptotic satiability of V turns out to be crucial.

The liquidation case : consumption vs investment assets

- Consider $U(x) = \tilde{U}(x_1)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_+ , which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$\bar{U}(x) := \sup\{\tilde{U}(\xi) : (\xi, 0) \in L_+^0(x - K_T)\}, \quad x \in \mathbb{R}^d$$

- Notice that $\bar{U}(x) = \tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in *physical units*, i.e.

$$I(x) = \sup \{ \xi \in L^0(\mathbb{R}_+) : (\xi, 0) \in L_+^0(x - K_T) \}.$$

- One can prove that

$$\sup_{X \in \mathcal{A}_T^x} \mathbb{E}[U(X)] = \sup_{X \in \mathcal{A}_T^x} \mathbb{E}[\tilde{U}(I(X_{T-}))].$$

The liquidation case : consumption vs investment assets

- Consider $U(x) = \tilde{U}(x_1)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_+ , which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$\bar{U}(x) := \sup\{\tilde{U}(\xi) : (\xi, 0) \in L_+^0(x - K_T)\}, \quad x \in \mathbb{R}^d$$

- Notice that $\bar{U}(x) = \tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in *physical units*, i.e.

$$I(x) = \sup \{\xi \in L^0(\mathbb{R}_+) : (\xi, 0) \in L_+^0(x - K_T)\}.$$

- One can prove that

$$\sup_{X \in \mathcal{A}_T^x} E[U(X)] = \sup_{X \in \mathcal{A}_T^x} E[\tilde{U}(I(X_{T-}))].$$

The liquidation case : consumption vs investment assets

- Consider $U(x) = \tilde{U}(x_1)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_+ , which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$\bar{U}(x) := \sup\{\tilde{U}(\xi) : (\xi, 0) \in L_+^0(x - K_T)\}, \quad x \in \mathbb{R}^d$$

- Notice that $\bar{U}(x) = \tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in *physical units*, i.e.

$$I(x) = \sup \{ \xi \in L^0(\mathbb{R}_+) : (\xi, 0) \in L_+^0(x - K_T) \}.$$

- One can prove that

$$\sup_{X \in \mathcal{A}_T^x} E[U(X)] = \sup_{X \in \mathcal{A}_T^x} E[\tilde{U}(I(X_{T-}))].$$

The liquidation case : consumption vs investment assets

- Consider $U(x) = \tilde{U}(x_1)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_+ , which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$\bar{U}(x) := \sup\{\tilde{U}(\xi) : (\xi, 0) \in L_+^0(x - K_T)\}, \quad x \in \mathbb{R}^d$$

- Notice that $\bar{U}(x) = \tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in *physical units*, i.e.

$$I(x) = \sup \{ \xi \in L^0(\mathbb{R}_+) : (\xi, 0) \in L_+^0(x - K_T) \}.$$

- One can prove that

$$\sup_{X \in \mathcal{A}_T^x} E[U(X)] = \sup_{X \in \mathcal{A}_T^x} E[\tilde{U}(I(X_{T-}))].$$