Multivariate utility maximization under proportional transaction costs

```
Multivariate
    utility
maximization
    under
proportional
transaction
    costs
    Luciano
Campi, Mark
    Owen
```

Luciano Campi, Mark Owen
U. Paris-Dauphine \& Heriot-Watt U.

Transaction

Contents

1 Introduction

2 Transaction costs

```
Multivariate
    utility
maximization
    under
proportional
transaction
    costs
    Luciano
Campi, Mark
    Owen
Introduction
Transaction
costs
Existence
result
Duality
Liquidation
```

3 Existence result
4 Duality
5 Liquidation

A proper concave function $U: \mathbb{R}^{d} \rightarrow[-\infty, \infty)$ is called a utility function supported on \mathbb{R}_{+}^{d} if

- $C_{U}:=\operatorname{cl}(\operatorname{dom}(U))=\operatorname{cl}\{x: U(x)>-\infty\}=\mathbb{R}_{+}^{d}$ and
- U is increasing with respect to \mathbb{R}_{+}^{d}-(partial) order.

Consider the following problem
Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

$$
V(x):=\sup \left\{\mathrm{E}[U(X)]: X \in \mathcal{A}_{T}^{\times}\right\}
$$

Introduction
Transaction costs
where \mathcal{A}_{T}^{\times}is the set of all attainable final gains from an initial portfolio x (to be defined later). Main results :
1 Existence of a unique solution under asympt. satiability of value function V

Duality
Liquidation
2 Multivariate duality à la Kramkov-Schachermayer (1999)
3 Including liquidation case, discussion of multivariate RAE

■ Davis Norman (1990), Shreve Soner (1994) - BS-type model, intertemporal consumption, stochastic optimal control

- Cvitanić Karatzas (1996), Cvitanić Wang (2001) - BS-type model, liquidated terminal wealth, duality
- Kabanov (1999) - more general liquidated terminal wealth

■ Deelstra Pham Touzi (2001) - Kabanov-Last framework, multivariate, non-smooth utility supported by solvency cone

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation consumption

Introduction III: Our contributions

■ Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.

Multivariate utility
maximization under
proportional
transaction costs

- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
- No restrictions on U such as $U(0)=0$ or $\sup U(x)=\infty$ Can treat anything, including $U(0)=-\infty$.

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Introduction III: Our contributions

■ Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.

Multivariate utility
maximization under
proportional
transaction costs
■ Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).

- No restrictions on U such as $U(0)=0$ or $\sup U(x)=\infty$. Can treat anything, including $U(0)=-\infty$.
Prove existence of ontimizer under the minimal condition of "Asymptotic Satiability" of the value function V, which is a weaker than RAE.

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality

Liquidation

■ Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.

- Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
■ No restrictions on U such as $U(0)=0$ or $\sup U(x)=\infty$. Can treat anything, including $U(0)=-\infty$.
- Prove existence of optimizer under the minimal condition of "Asymptotic Satiability" of the value function V, which is a weaker than RAE.

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

■ Cover the case of discontinuous bid-ask processes, i.e. random and discontinuous prop. TC.
■ Direct utility function (à la Kamizono), which separates investment and consumption assets in order to include liquidation (not in this talk).
■ No restrictions on U such as $U(0)=0$ or $\sup U(x)=\infty$. Can treat anything, including $U(0)=-\infty$.

- Prove existence of optimizer under the minimal condition of "Asymptotic Satiability" of the value function V, which is a weaker than RAE.

Multivariate utility
maximization under
proportional
transaction costs

Luciano

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Main features of the model : all expressed in physical units, d risky assets (e.g. foreign currencies), the terms of trading are given by a bid-ask process $\left\{\Pi_{t}(\omega), t \in[0, T]\right\}$: an adapted, càdlàg, $d \times d$ matrix-valued process s.t.

- $\Pi^{i j}>0,1 \leq i, j \leq d$
- $\Pi^{i i}=1,1 \leq i \leq d$
- $\Pi^{i j} \leq \Pi^{i k} \Pi^{k j}, 1 \leq i, j, k \leq d$

Meaning : To buy 1 unit of currency j one has to pay $\Pi_{t}^{i j}(\omega)$ units of i (at time t when the state of world is ω)

Multivariate utility
maximization under
proportional
transaction costs

Luciano

TC : Solvency cones \& price systems

- solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$ - cone of portfolios available at price 0: $-K_{t}$ polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

TC : Solvency cones \& price systems

■ solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$

- cone of portfolios available at price $0:-K_{t}$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

TC : Solvency cones \& price systems

- solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$
- cone of portfolios available at price $0:-K_{t}$
- polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

TC : Solvency cones \& price systems

■ solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$

- cone of portfolios available at price 0 : $-K_{t}$
- polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$
- Financial interpretation $: w \in K_{t}^{*}$ iff $w \in \mathbb{R}_{+}^{d}$ and $\Pi_{t}^{i j} w^{i} \geq w^{j} \Rightarrow \Pi_{t}^{i j} \geq \frac{w^{j}}{w^{i}} \Rightarrow \Pi_{t}^{i j}=\left(1+\lambda_{t}^{i j}\right) \frac{w^{j}}{w^{j}}$ for some $\lambda_{t}^{i j} \geq 0$
- Every $w \in K_{t}^{*}$ (resp. in its relative interior) is called consistent (resp. strictly consistent) price system. ■ Frictionless case: If $\pi^{i j} \equiv 1 \quad \forall i, i$, then $K_{+}=\mathbb{R}^{d}$ and

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

TC : Solvency cones \& price systems

- solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$
- cone of portfolios available at price 0 : $-K_{t}$
- polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$
- Financial interpretation $: w \in K_{t}^{*}$ iff $w \in \mathbb{R}_{+}^{d}$ and $\Pi_{t}^{i j} w^{i} \geq w^{j} \Rightarrow \Pi_{t}^{i j} \geq \frac{w^{j}}{w^{i}} \Rightarrow \Pi_{t}^{i j}=\left(1+\lambda_{t}^{i j}\right) \frac{w^{j}}{w^{i}}$ for some $\lambda_{t}^{i j} \geq 0$
■ Every $w \in K_{t}^{*}$ (resp. in its relative interior) is called consistent (resp. strictly consistent) price system.
- Frictionless case: If $\pi^{i j} \equiv 1 \quad \forall i, j$, then $K_{t}=\mathbb{R}_{+}^{d}$ and

Multivariate utility
maximization under
proportional transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

TC : Solvency cones \& price systems

- solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$
- cone of portfolios available at price $0:-K_{t}$
- polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$
- Financial interpretation $: w \in K_{t}^{*}$ iff $w \in \mathbb{R}_{+}^{d}$ and $\Pi_{t}^{i j} w^{i} \geq w^{j} \Rightarrow \Pi_{t}^{i j} \geq \frac{w^{j}}{w^{i}} \Rightarrow \Pi_{t}^{i j}=\left(1+\lambda_{t}^{i j}\right) \frac{w^{j}}{w^{i}}$ for some $\lambda_{t}^{i j} \geq 0$
■ Every $w \in K_{t}^{*}$ (resp. in its relative interior) is called consistent (resp. strictly consistent) price system.
■ Frictionless case: If $\pi^{i j} \equiv 1 \quad \forall i, j$, then $K_{t}=\mathbb{R}_{+}^{d}$ and $K_{t}^{*}=\left\{x: x_{1}=\cdots=x_{d} \geq 0\right\}$.

Multivariate utility
maximization under
proportional transaction costs

Luciano

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

- Cones $\left(K_{t}\right)$ induce the following order: Let Y_{1}, Y_{2} be \mathcal{F}_{τ}-meas. for some stopping time τ, then $Y_{1} \succeq_{\tau} Y_{2}$ means $Y_{1}-Y_{2} \in K_{\tau}$.

TC : Solvency cones \& price systems

- solvency cone: $K_{t}=\operatorname{cone}\left\{e^{i}, \Pi_{t}^{i j} e^{i}-e^{j}: 1 \leq i, j \leq d\right\}$
- cone of portfolios available at price 0 : $-K_{t}$
- polar of $-K_{t}: K_{t}^{*}=\left\{w \in \mathbb{R}^{d}:\langle v, w\rangle \geq 0, \forall v \in K_{t}\right\}$
- Financial interpretation $: w \in K_{t}^{*}$ iff $w \in \mathbb{R}_{+}^{d}$ and $\Pi_{t}^{i j} w^{i} \geq w^{j} \Rightarrow \Pi_{t}^{i j} \geq \frac{w^{j}}{w^{i}} \Rightarrow \Pi_{t}^{i j}=\left(1+\lambda_{t}^{i j}\right) \frac{w^{j}}{w^{i}}$ for some $\lambda_{t}^{i j} \geq 0$
■ Every $w \in K_{t}^{*}$ (resp. in its relative interior) is called consistent (resp. strictly consistent) price system.
■ Frictionless case: If $\pi^{i j} \equiv 1 \quad \forall i, j$, then $K_{t}=\mathbb{R}_{+}^{d}$ and $K_{t}^{*}=\left\{x: x_{1}=\cdots=x_{d} \geq 0\right\}$.
■ Cones (K_{t}) induce the following order: Let Y_{1}, Y_{2} be \mathcal{F}_{τ}-meas. for some stopping time τ, then $Y_{1} \succeq_{\tau} Y_{2}$ means $Y_{1}-Y_{2} \in K_{\tau}$.

An $\mathbb{R}_{+}^{d} \backslash\{0\}$-valued, adapted process Z is a consistent price process if

■ is a càdlàg martingale (time consistency)
Multivariate utility
maximization under
proportional
transaction costs

- $Z_{t} \in K_{t}^{*}, \forall t \in[0, T]$
- If, moreover, $Z_{\tau} \in \operatorname{ri} K_{\tau}^{*} \forall \tau$ stopping time, and $Z_{\sigma-} \in \operatorname{ri} K_{\sigma-}^{*} \forall \sigma$ predictable s.t., Z is called a strictly consistent price process.
Relations with the usual concept of EMM: choose a numéraire Z^{1}, define $S_{t}=\left(1, Z_{t}^{2} / Z_{t}^{1} \ldots Z_{t}^{d} / Z_{t}^{1}\right)$ and set $d \mathbb{Q} / d \mathbb{P}=Z_{T}^{1} / Z_{0}^{1}$, then S is a \mathbb{Q}-martingale.

Main Assumption

SCPS: there exists a strictly consistent price process Z^{s}.

Interpretation: $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right), X_{t}^{i}=$ number of units of asset i held in the portfolio V at time t.
A d-dim process X is an admissible self-financing portfolio process if

- is predictable and finite variation (not nec. càdlàg !)

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation
s.t. $X_{0}=x$, and $\mathcal{A}_{T}^{x}:=\left\{X_{T}: X \in \mathcal{A}^{x}\right\}$.

Interpretation: $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right), X_{t}^{i}=$ number of units of asset i held in the portfolio V at time t.
A d-dim process X is an admissible self-financing portfolio process if

- is predictable and finite variation (not nec. càdlàg !)

■ $X_{\tau}-X_{\sigma} \in-\mathcal{K}_{\sigma, \tau}=-\overline{\operatorname{conv}}\left(\cup_{\sigma \leq u<\tau} K_{u}, 0\right)$

- there exists a threshold $a>0$ s.t. $X_{T} \succeq-a 1$ and $Z_{\tau}^{s} X_{\tau} \geq-a Z_{\tau}^{s} 1 \forall \tau$ stopping time and $\forall Z^{s} \in \mathcal{Z}^{s}$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation
s.t. $X_{0}=x$, and $\mathcal{A}_{T}^{x}:=\left\{X_{T}: X \in \mathcal{A}^{\times}\right\}$.

Interpretation: $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right), X_{t}^{i}=$ number of units of asset i held in the portfolio V at time t.
A d-dim process X is an admissible self-financing portfolio process if

■ is predictable and finite variation (not nec. càdlàg !)

- $X_{\tau}-X_{\sigma} \in-\mathcal{K}_{\sigma, \tau}=-\overline{\operatorname{conv}}\left(\cup_{\sigma \leq u<\tau} K_{u}, 0\right)$

■ there exists a threshold $a>0$ s.t. $X_{T} \succeq-a 1$ and $Z_{\tau}^{s} X_{\tau} \geq-a Z_{\tau}^{s} 1 \forall \tau$ stopping time and $\forall Z^{s} \in \mathcal{Z}^{s}$
We denote \mathcal{A}^{x} the set of all admissible portfolio processes X
s.t. $X_{0}=x$, and $\mathcal{A}_{T}^{x}:=\left\{X_{T}: X \in \mathcal{A}^{\times}\right\}$.

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Let $Y \in L^{0}\left(\mathbb{R}^{d}, \mathcal{F}_{T}\right)$ a contingent claim such that $\exists a>0$, $Y \succeq_{T}-a 1$ (i.e. $Y+a 1 \in K_{T}$)

Theorem (C.-Schachermayer, 2006)

Under SCPS, the following sets are equal:
$1\left\{x \in \mathbb{R}^{d}: \exists X \in \mathcal{A}^{x}, X_{T} \succeq Y\right\}$
$2\left\{x \in \mathbb{R}^{d}:\left\langle Z_{0}, x\right\rangle \geq E\left[\left\langle Z_{T}, Y\right\rangle\right], \forall Z \in \mathcal{Z}^{(s)}\right\}$
where, we recall, \mathcal{A}^{x} is the set of all admissible portfolio processes X s.t. $X_{0}=x$

Multivariate utility
maximization
under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Let U denote a utility function such that $C_{U}=\mathbb{R}_{+}^{d}$. Our objective is

$$
V(x):=\sup \left\{\mathrm{E}[U(X)]: X \in \mathcal{A}_{T}^{X}\right\} .
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

For stating the main result we need multivariate Inada's conditions :

- Essentially smoothness (analogue of $U^{\prime}(0)=\infty$)
- Asymptotic satiability (analogue of $U^{\prime}(\infty)=0$)

Transaction costs

Existence result

Duality
Liquidation

Essential smoothness: $U^{\prime}(0)=\infty$

Definition

A utility function $U: \mathbb{R}^{d} \rightarrow[-\infty, \infty)$ is said to be essentially smooth if
$1 U$ is differentiable in the interior of \mathbb{R}_{+}^{d};
$2 \lim _{i \rightarrow \infty}\left|\nabla U\left(x_{i}\right)\right|=+\infty$ for any $x_{i} \in \mathbb{R}_{+}^{d}$ converging to a boundary point of \mathbb{R}_{+}^{d}.

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence result

Duality
Liquidation

Asymptotic satiability : $U^{\prime}(\infty)=0$

■ Let U be a utility function, and let C_{U} be its support cone. We say that a utility function U is asymptotically satiable if given any $\epsilon>0$ there exists an $x \in \operatorname{dom}(U)$ such that

$$
\partial U(x) \cap[0, \epsilon)^{d} \neq \emptyset .
$$

- Recall that the dual function of U is defined by
- One can prove that asympt. satiability of U is equivalent

Asymptotic satiability : $U^{\prime}(\infty)=0$

- Let U be a utility function, and let C_{U} be its support cone. We say that a utility function U is asymptotically satiable if given any $\epsilon>0$ there exists an $x \in \operatorname{dom}(U)$ such that

$$
\partial U(x) \cap[0, \epsilon)^{d} \neq \emptyset .
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

- Recall that the dual function of U is defined by

$$
U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}
$$

- One can prove that asympt. satiability of U is equivalent

Asymptotic satiability : $U^{\prime}(\infty)=0$

- Let U be a utility function, and let C_{U} be its support cone. We say that a utility function U is asymptotically satiable if given any $\epsilon>0$ there exists an $x \in \operatorname{dom}(U)$ such that

$$
\partial U(x) \cap[0, \epsilon)^{d} \neq \emptyset .
$$

- Recall that the dual function of U is defined by

$$
U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}
$$

■ One can prove that asympt. satiability of U is equivalent to $0 \in C_{U^{*}}:=\operatorname{cl}\left(\operatorname{dom}\left(U^{*}\right)\right)$.

Assume that $V(x)<\infty$ for some $x \in \operatorname{int}(\operatorname{dom} V)$

Theorem

Suppose that $U: \mathbb{R}^{d} \rightarrow[-\infty, \infty)$ is a utility function supported on \mathbb{R}_{+}^{d}, essentially smooth, strictly concave on \mathbb{R}_{++}^{d}, and asymptotically satiable.

Multivariate
utility
maximization under
proportional transaction costs

Luciano
Suppose in addition one of the following conditions:
$1 V$ is asymptotically satiable
$2 U^{*}$ satisfies the growth condition

$$
U^{*}\left(\epsilon x^{*}\right) \leq \zeta(\epsilon)\left(U^{*}\left(x^{*}\right)^{+}+1\right)
$$

for all $x^{*} \in \mathbb{R}_{++}^{d}, \epsilon \in(0,1]$ and for some positive function ζ (stronger that 1)
Then the optimal investment problem has a unique solution \widehat{X}_{x}. ल

Growth condition \& asymptotic elasticity I

■ One-dim. RAE : $\lim \sup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)}<1$ (e.g. $\left.U(x)=\ln x\right)$ - d-dim "natural" analogue (as in, e.g., DPT)

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
But $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does not satisfy $2-R A E$, while
$\ln x$ satisfies 1-RAE (that's why DPT assume $U(0)=0$)
Transaction
costs
Existence
result
Duality
Liquidation

Growth condition \& asymptotic elasticity I

■ One-dim. RAE : $\lim \sup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)}<1$ (e.g. $U(x)=\ln x$)
■ d-dim "natural" analogue (as in, e.g., DPT) :

$$
A E(U):=\limsup _{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x)\rangle}{U(x)}<1
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Growth condition \& asymptotic elasticity I

- One-dim. RAE : $\lim \sup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)}<1$ (e.g. $U(x)=\ln x$)

■ d-dim "natural" analogue (as in, e.g., DPT) :
Multivariate utility
maximization under
proportional
transaction costs

$$
A E(U):=\limsup _{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x)\rangle}{U(x)}<1
$$

■ But $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does not satisfy 2-RAE, while In x satisfies 1-RAE (that's why DPT assume $U(0)=0$)

- In other terms, d-RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does satisfy growth condition, so our existence result can be applied to it

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Growth condition \& asymptotic elasticity I

- One-dim. RAE : $\lim \sup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)}<1$ (e.g. $U(x)=\ln x$)

■ d-dim "natural" analogue (as in, e.g., DPT) :
Multivariate utility
maximization under
proportional
transaction costs

$$
A E(U):=\limsup _{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x)\rangle}{U(x)}<1
$$

- But $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does not satisfy 2-RAE, while In x satisfies 1-RAE (that's why DPT assume $U(0)=0$)
- In other terms, d-RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does satisfy growth condition, so our existence result can be applied to it.

Luciano
Campi, Mark Owen

Introduction
Transaction costs

Existence result

Duality
Liquidation

Growth condition \& asymptotic elasticity I

- One-dim. RAE : $\lim \sup _{x \rightarrow \infty} \frac{x U^{\prime}(x)}{U(x)}<1$ (e.g. $U(x)=\ln x$)

■ d-dim "natural" analogue (as in, e.g., DPT) :
Multivariate utility
maximization under
proportional
transaction costs

$$
A E(U):=\limsup _{|x| \rightarrow \infty} \frac{\langle x, \nabla U(x)\rangle}{U(x)}<1
$$

- But $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does not satisfy 2-RAE, while In x satisfies 1-RAE (that's why DPT assume $U(0)=0$)
- In other terms, d-RAE is not very robust wrt adding $d \geq 2$ one-dim utility functions
- Nonetheless $U\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$ does satisfy growth condition, so our existence result can be applied to it.

Campi, Mark Owen

Introduction
Transaction costs

Existence result

Duality
Liquidation

Growth condition \& asymptotic elasticity II

We need two more definitions: let U be a utility function supported on \mathbb{R}_{+}^{d}

■ U, essentially smooth, satisfies Multivariate RAE if it is bounded below and

$$
\begin{equation*}
\sup _{c \in \mathbb{R}} \liminf _{\substack{x \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \\|x| \rightarrow \infty}} \frac{U(x)+c}{\langle x, \nabla U(x)\rangle}>1 . \tag{3.1}
\end{equation*}
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
where $|x|:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$.
Transaction
costs
Existence result

Duality
$U(x+z)-U(x) \geq U\left(x^{\prime}+z\right)-U\left(x^{\prime}\right)$.
Liquidation

Growth condition \＆asymptotic elasticity II

We need two more definitions：let U be a utility function supported on \mathbb{R}_{+}^{d}

■ U ，essentially smooth，satisfies Multivariate RAE if it is bounded below and

$$
\begin{equation*}
\sup _{c \in \mathbb{R}} \liminf _{\substack{x \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \\|x| \rightarrow \infty}} \frac{U(x)+c}{\langle x, \nabla U(x)\rangle}>1 . \tag{3.1}
\end{equation*}
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi，Mark Owen

Introduction
where $|x|:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$ ．
－U is multivariate risk－averse（MVRA）if $\forall x \in \operatorname{dom}(U)$ ， $x^{\prime} \in \mathbb{R}^{d}$ s．t．$x^{\prime} \succeq_{\mathbb{R}_{+}^{d}} x$ ，and all $z \in \mathbb{R}_{+}^{d}$ we have

$$
U(x+z)-U(x) \geq U\left(x^{\prime}+z\right)-U\left(x^{\prime}\right)
$$

－If $U(x)=\sum_{i} U_{i}\left(x_{i}\right)$ additive，then concavity of each U_{i} is enough to get MVRA，but $U(x)=\sqrt{x_{1} x_{2}}$

Growth condition \& asymptotic elasticity II

We need two more definitions: let U be a utility function supported on \mathbb{R}_{+}^{d}

■ U, essentially smooth, satisfies Multivariate RAE if it is bounded below and

$$
\begin{equation*}
\sup _{c \in \mathbb{R}} \liminf _{\substack{x \in \operatorname{int}\left(\mathbb{R}_{+}^{d}\right) \\|x| \rightarrow \infty}} \frac{U(x)+c}{\langle x, \nabla U(x)\rangle}>1 . \tag{3.1}
\end{equation*}
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
where $|x|:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$.

- U is multivariate risk-averse (MVRA) if $\forall x \in \operatorname{dom}(U)$, $x^{\prime} \in \mathbb{R}^{d}$ s.t. $x^{\prime} \succeq_{\mathbb{R}_{+}^{d}} x$, and all $z \in \mathbb{R}_{+}^{d}$ we have

Existence
result

$$
U(x+z)-U(x) \geq U\left(x^{\prime}+z\right)-U\left(x^{\prime}\right)
$$

- If $U(x)=\sum_{i} U_{i}\left(x_{i}\right)$ additive, then concavity of each U_{i} is enough to get MVRA, but $U(x)=\sqrt{x_{1} x_{2}}$

Growth condition \& asymptotic elasticity III

Lemma

Let U be a utility function with $C_{U}=\mathbb{R}_{+}^{d}$, essentially smooth, strictly concave on \mathbb{R}_{++}^{d}, multivariate risk averse and asympt. satiable.
Suppose that U is bounded below and satisfies multiv. RAE.

Multivariate
utility
maximization
under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Duality I

- Define $\mathcal{C}=\mathcal{A}_{T}^{0} \cap L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\mathbb{U}_{x}: L^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow[-\infty, \infty)$ by

$$
\mathbb{U}_{x}(X)=\mathrm{E}[U(x+X)] .
$$

Then $\sup _{X \in \mathcal{C}} \mathbb{U}_{x}(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Duality I

- Define $\mathcal{C}=\mathcal{A}_{T}^{0} \cap L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\mathbb{U}_{x}: L^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow[-\infty, \infty)$ by

$$
\mathbb{U}_{x}(X)=\mathrm{E}[U(x+X)] .
$$

Then $\sup _{X \in \mathcal{C}} \mathbb{U}_{x}(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Duality I

- Define $\mathcal{C}=\mathcal{A}_{T}^{0} \cap L^{\infty}\left(\mathbb{R}^{d}\right)$ and $\mathbb{U}_{x}: L^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow[-\infty, \infty)$ by

$$
\mathbb{U}_{x}(X)=\mathrm{E}[U(x+X)] .
$$

Then $\sup _{X \in \mathcal{C}} \mathbb{U}_{x}(X) \leq V(x)$.

- Define the dual cone of \mathcal{C} by

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

$$
\mathcal{D}:=\left\{m \in \mathrm{ba}\left(\mathbb{R}^{d}\right): m(X) \leq 0 \quad \forall X \in \mathcal{C}\right\} .
$$

■ Then

$$
\begin{aligned}
\sup _{X \in \mathcal{C}} \mathbb{U}_{x}(X) & \leq \sup _{X \in L^{\infty}} \inf _{m \in \mathcal{D}}\left\{\mathbb{U}_{x}(X)-m(X)\right\} \\
& \leq \inf _{m \in \mathcal{D}} \sup _{X \in L^{\infty}}\left\{\mathbb{U}_{x}(X)-m(X)\right\}=: \inf _{m \in \mathcal{D}} \mathbb{U}_{x}^{*}(m) .
\end{aligned}
$$

Duality II

- Recall that $U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

Duality II

- Recall that $U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}$
- For any $X \in \mathcal{A}_{T}^{\times}$and $m \in \mathcal{D}$

$$
U(X) \leq U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)+\left\langle X, \frac{d m^{c}}{d \mathbb{P}}\right\rangle
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

- Taking expectation, one has

Introduction

Transaction
costs
Existence
result
Duality
Liquidation

Duality II

■ Recall that $U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}$

- For any $X \in \mathcal{A}_{T}^{X}$ and $m \in \mathcal{D}$

$$
U(X) \leq U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)+\left\langle X, \frac{d m^{c}}{d \mathbb{P}}\right\rangle
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

- Taking expectation, one has

$$
\begin{aligned}
\mathrm{E}[U(X)] & \leq \mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)+\left\langle X, \frac{d m^{c}}{d \mathbb{P}}\right\rangle\right] \\
& \leq \mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)\right]+m(x)
\end{aligned}
$$

Introduction
Transaction
costs
Existence
result
Duality
Liquidation
One can prove that $\mathbb{U}_{x}^{*}(m)=\mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)\right]+m(x)$ for
$m \in \operatorname{ba}\left(\mathbb{R}_{+}^{d}\right)$, so that $V(x) \leq \inf _{m \in \mathcal{D}}^{\mathbb{U}_{x}^{*}}(m)$.

Duality II

■ Recall that $U^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{d}}\left\{U(x)-\left\langle x, x^{*}\right\rangle\right\}$

- For any $X \in \mathcal{A}_{T}^{X}$ and $m \in \mathcal{D}$

$$
U(X) \leq U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)+\left\langle X, \frac{d m^{c}}{d \mathbb{P}}\right\rangle
$$

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark Owen

- Taking expectation, one has

$$
\begin{aligned}
\mathrm{E}[U(X)] & \leq \mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)+\left\langle X, \frac{d m^{c}}{d \mathbb{P}}\right\rangle\right] \\
& \leq \mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)\right]+m(x)
\end{aligned}
$$

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

- One can prove that $\mathbb{U}_{x}^{*}(m)=\mathrm{E}\left[U^{*}\left(\frac{d m^{c}}{d \mathbb{P}}\right)\right]+m(x)$ for $m \in \mathrm{ba}\left(\mathbb{R}_{+}^{d}\right)$, so that $V(x) \leq \inf _{m \in \mathcal{D}} \mathbb{U}_{x}^{*}(m)$.

Duality III

Proposition (Lagrange Duality Theorem)

1 If $x \in \operatorname{int}\left(C_{V}\right)$ then
$\sup _{x \in \mathcal{C}} \mathbb{U}_{x}(X)=V(x)=\min _{m \in \mathcal{D}} \mathbb{U}_{x}^{*}(m) \in \mathbb{R}$.
2 If $x \notin C_{V}$ then

$$
\sup _{X \in \mathcal{C}} \mathbb{U}_{x}(X)=V(x)=\inf _{m \in \mathcal{D}} \mathbb{U}_{x}^{*}(m)=-\infty
$$

In the first case we let $\widehat{m} \in \mathcal{D}$ denote the minimizer. Then

$$
\widehat{X}:=-\nabla U^{*}\left(\frac{d \widehat{m}^{c}}{d \mathbb{P}}\right)
$$

is the optimizer for the primal problem.

Duality IV : Sketch of the proof

Any candidate optimizer \widehat{X} must satisfy
$1 U(\widehat{X})=U^{*}\left(\frac{\mathrm{~d} \widehat{m}^{c}}{\mathrm{dP}}\right)+\left\langle\widehat{X}, \frac{\mathrm{~d} \widehat{m}^{c}}{\mathrm{dP}}\right\rangle$;
$2 \widehat{X} \in \mathcal{A}_{T}^{x}$; and
$3 \mathrm{E}\left[\left\langle\hat{X}, \frac{\mathrm{~d} \widehat{m}^{c}}{\mathrm{dP}}\right\rangle\right]=\widehat{m}(x)$.

These are equivalent to

 $m=\widehat{m}(x)$. See C. \& Schachermayer (2006)

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

> Take 1 as definition of \widehat{X}. We prove 2 by variational analysis, here the asymptotic satiability of V turns out to be crucial.

Duality IV : Sketch of the proof

Any candidate optimizer \widehat{X} must satisfy

$$
\boldsymbol{1} U(\widehat{X})=U^{*}\left(\frac{\mathrm{~d} \hat{m}^{c}}{\mathrm{dP}}\right)+\left\langle\widehat{X}, \frac{\mathrm{~d} \hat{m}^{c}}{\mathrm{dP}}\right\rangle ;
$$

$2 \widehat{X} \in \mathcal{A}_{T}^{x}$; and
$3 \mathrm{E}\left[\left\langle\hat{X}, \frac{\mathrm{~d} \widehat{m}^{c}}{\mathrm{dP}}\right\rangle\right]=\widehat{m}(x)$.

Multivariate utility
maximization under
proportional
transaction costs

Luciano

Campi, Mark
Owen

Introduction
Transaction

costs

Existence
result
Duality
Liquidation

Take 1 as definition of \widehat{X}. We prove 2 by variational analysis, here the asymptotic satiability of V turns out to be crucial.

The liquidation case : consumption vs investment assets

- Consider $U(x)=\tilde{U}\left(x_{1}\right)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_{+}, which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

Multivariate utility
maximization under
proportional
transaction costs

- Notice that $\bar{U}(x)=\tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in physical units, i.e.

Luciano
Campi, Mark Owen

Introduction

Transaction

Existence
result
Duality
Liquidation

- Consider $U(x)=\tilde{U}\left(x_{1}\right)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_{+}, which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$
\bar{U}(x):=\sup \left\{\tilde{U}(\xi):(\xi, \underline{0}) \in L_{+}^{0}\left(x-K_{T}\right)\right\}, \quad x \in \mathbb{R}^{d}
$$

- Notice that $\bar{U}(x)=\tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in physical units, i.e.

Multivariate utility
maximization under
proportional
transaction costs

Luciano
Campi, Mark
Owen

Introduction
Transaction
costs
Existence
result
Duality
Liquidation

- Consider $U(x)=\tilde{U}\left(x_{1}\right)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_{+}, which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$
\bar{U}(x):=\sup \left\{\tilde{U}(\xi):(\xi, \underline{0}) \in L_{+}^{0}\left(x-K_{T}\right)\right\}, \quad x \in \mathbb{R}^{d}
$$

- Notice that $\bar{U}(x)=\tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in physical units, i.e.

$$
I(x)=\sup \left\{\xi \in L^{0}\left(\mathbb{R}_{+}\right):(\xi, \underline{0}) \in L_{+}^{0}\left(x-K_{T}\right)\right\}
$$

```
Multivariate utility
maximization under
proportional
transaction costs
```


Luciano

```
Campi, Mark Owen
```

Introduction
Transaction costs

Existence
result

- One can prove that

- Consider $U(x)=\tilde{U}\left(x_{1}\right)$ where \tilde{U} is a u.s.c. utility function on \mathbb{R}_{+}, which corresponds to liquidation to the first asset.
- Define the liquidating utility function \bar{U} as

$$
\bar{U}(x):=\sup \left\{\tilde{U}(\xi):(\xi, \underline{0}) \in L_{+}^{0}\left(x-K_{T}\right)\right\}, \quad x \in \mathbb{R}^{d}
$$

- Notice that $\bar{U}(x)=\tilde{U}(I(x))$ where $I(\cdot)$ is the liquidation function expressed in physical units, i.e.

$$
I(x)=\sup \left\{\xi \in L^{0}\left(\mathbb{R}_{+}\right):(\xi, \underline{0}) \in L_{+}^{0}\left(x-K_{T}\right)\right\}
$$

- One can prove that

```
Multivariate utility
maximization under
proportional
transaction costs
Luciano
Campi, Mark Owen
```

Introduction
Transaction costs

Existence
result
Duality
Liquidation

$$
\sup _{X \in \mathcal{A}_{T}^{x}} \mathrm{E}[U(X)]=\sup _{X \in \mathcal{A}_{T}^{x}} \mathrm{E}\left[\tilde{U}\left(I\left(X_{T-}\right)\right)\right] .
$$

