Polynomial processes and applications to option pricing

Christa Cuchiero (joint work with M. Keller-Ressel and J. Teichmann)

Vienna University of Technology Institute for Mathematical Methods in Economics

Istanbul Workshop on Mathematical Finance May 19nd, 2009

A tractable class of Markov processes

- Polynomial processes
- Theorem Characterization
- Polynomial Feller semimartingales

2 Examples

- Affine processes
- Lévy models
- Jacobi process
- Dunkl Process

3 Applications

- Moment calculation
- Pricing and sensitivities
- Variance reduction

Introduction - Aim of this talk

We consider a class of time-homogeneous Markov processes X,...

• ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.
- ...which contains many popular models applied in mathematical Finance, such as

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.
- ...which contains many popular models applied in mathematical Finance, such as
 - Exponential Lévy models (Black Scholes, jump-diffusions, infinite activity pure jump models,...),

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.
- ...which contains many popular models applied in mathematical Finance, such as
 - Exponential Lévy models (Black Scholes, jump-diffusions, infinite activity pure jump models,...),
 - Affine Models (Heston, Bates, Vasiček, Cox-Ingersoll-Ross,...),

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.
- ...which contains many popular models applied in mathematical Finance, such as
 - Exponential Lévy models (Black Scholes, jump-diffusions, infinite activity pure jump models,...),
 - Affine Models (Heston, Bates, Vasiček, Cox-Ingersoll-Ross,...),
 - Lévy driven SDEs,

- ...with the property that the expected value of any polynomial of the process is again a polynomial of same or lower degree in the initial value X₀.
- ... where an easy and efficient computation of moments is possible even though neither the probability distribution nor the characteristic function needs to be known.
- ...which contains many popular models applied in mathematical Finance, such as
 - Exponential Lévy models (Black Scholes, jump-diffusions, infinite activity pure jump models,...),
 - Affine Models (Heston, Bates, Vasiček, Cox-Ingersoll-Ross,...),
 - Lévy driven SDEs,
 - Jacobi processes, etc.

Introduction - European option pricing

• Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.

- Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.
- Methods:

- Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.
- Methods:
 - The probability distribution of S_T is known analytically: Numerical quadrature algorithms.

- Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.
- Methods:
 - The probability distribution of S_T is known analytically: Numerical quadrature algorithms.
 - 3 The characteristic function of S_T is known analytically: Fourier pricing methods.

- Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.
- Methods:
 - The probability distribution of S_T is known analytically: Numerical quadrature algorithms.
 - **2** The characteristic function of S_T is known analytically: Fourier pricing methods.
 - The semimartingale characteristics of S_T are known: Monte Carlo simulation methods.

- Computation of the expected value of a functional of the discounted price process S_T under some martingale measure.
- Methods:
 - The probability distribution of S_T is known analytically: Numerical quadrature algorithms.
 - **2** The characteristic function of S_T is known analytically: Fourier pricing methods.
 - The semimartingale characteristics of S_T are known: Monte Carlo simulation methods.
- The class of processes which we describe ranges between 2 and 3 since European option prices can be calculated explicitly (up to matrix exponentials) for a dense set of claims.
 ⇒Variance reduction techniques.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Setting and notation

X := (X_t[×])_{t≥0, ×∈S}: time-homogeneous Markov process with state space S ⊆ ℝⁿ, a closed subset of ℝⁿ.

Setting and notation

- X := (X_t[×])_{t≥0, ×∈S}: time-homogeneous Markov process with state space S ⊆ ℝⁿ, a closed subset of ℝⁿ.
- $(P_t)_{t\geq 0}$: associated semigroup

$$P_tf(x) := \mathbb{E}[f(X_t^x)] = \int_S f(\xi)p_t(x,d\xi), \quad x \in S,$$

defined on functions $f: S \to \mathbb{R}$ where $\mathbb{E}[f(X_t^x)] < \infty$.

Setting and notation

- X := (X_t[×])_{t≥0, ×∈S}: time-homogeneous Markov process with state space S ⊆ ℝⁿ, a closed subset of ℝⁿ.
- $(P_t)_{t\geq 0}$: associated semigroup

$$\mathcal{P}_t f(x) := \mathbb{E}[f(X_t^x)] = \int_S f(\xi) p_t(x, d\xi), \quad x \in S,$$

defined on functions $f: S \to \mathbb{R}$ where $\mathbb{E}[f(X_t^{\times})] < \infty$.

• \mathcal{A} : infinitesimal generator,

$$\mathcal{A}f = \lim_{t \to 0} \frac{P_t f - f}{t}.$$

A tractable class of Markov processes Examples Applications Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Definition of polynomial processes

Pol_{≤m}(S): finite dimensional vector space of polynomials up to degree m ≥ 0 on S, that is the restriction of polynomials on ℝⁿ to S.
 Pol_{≤m}(S) is endowed with some norm || · ||_{Pol_{≤m}} and its dimension is denoted by N < ∞.

A tractable class of Markov processes Examples Applications Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Definition of polynomial processes

Pol_{≤m}(S): finite dimensional vector space of polynomials up to degree m ≥ 0 on S, that is the restriction of polynomials on ℝⁿ to S.
 Pol_{≤m}(S) is endowed with some norm || · ||_{Pol_{≤m}} and its dimension is denoted by N < ∞.

Definition

We call an *S*-valued time-homogeneous Markov process *m*-polynomial if,

 $P_t f(x) \in \operatorname{Pol}_{\leq m}(S)$

for all $f \in Pol_{\leq m}(S)$ and $t \geq 0$. If X is m-polynomial for all $m \geq 0$, then it is called polynomial.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Characterization of polynomial processes

Theorem (1)

Let X be a time-homogeneous Markov process with state space S and semigroup (P_t) , pointwise continuous at t = 0. Then, the following assertions are equivalent:

- (a) X is m-polynomial for some $m \ge 0$.
- (b) There exists a linear map A on $Pol_{\leq m}(S)$, such that (P_t) restricted to $Pol_{\leq m}(S)$ can be written as

$$P_t|_{\mathsf{Pol}_{\leq m}(S)} = e^{tA}$$

for all $t \geq 0$.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Characterization of polynomial processes

Theorem (Continuation)

- (c) The infinitesimal generator \mathcal{A} is well defined on $Pol_{\leq m}(S)$ and maps $Pol_{\leq m}(S)$ to itself.
- (d) The Kolmogorov backward equation for an initial value $f(\cdot, 0) \in \mathsf{Pol}_{\leq m}(S)$

$$\partial_t f(x,t) = \mathcal{A}f(x,t)$$

has a real analytic solution for all times $t \in \mathbb{R}$. In particular, $f(\cdot, t) \in \mathsf{Pol}_{\leq m}(S)$.

A tractable class of Markov processes Examples Applications Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Sketch of the proof

 $(a) \Rightarrow (b)$ - The semigroup

$$P_{(\cdot)}: \mathbb{R}_+ \to \mathcal{L}(\mathsf{Pol}_{\leq m}(S)) \tag{1}$$

.

satisfies for all $t, s \ge 0$ the Cauchy functional equation

$$\begin{cases} P_{t+s} = P_t P_s, \\ P_0 = Id \end{cases}$$

- Finite dimensionality of $Pol_{\leq m}(S)$ and continuity of (1) at t = 0 imply $P_t = e^{tA}$.

A tractable class of Markov processes Examples Applications Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Sketch of the proof

(b)⇒(c)

 $(a) \Rightarrow (b)$ - The semigroup

$$P_{(\cdot)}: \mathbb{R}_+ \to \mathcal{L}(\mathsf{Pol}_{\leq m}(S)) \tag{1}$$

satisfies for all $t, s \ge 0$ the Cauchy functional equation

$$\begin{cases} P_{t+s} = P_t P_s, \\ P_0 = Id \end{cases}$$

- Finite dimensionality of $Pol_{\leq m}(S)$ and continuity of (1) at t = 0 imply $P_t = e^{tA}$.

- For
$$f \in \mathsf{Pol}_{\leq m}(S)$$
 the generator is given by

<

$$\mathcal{A}f = \lim_{t \to 0} \frac{P_t f - f}{t} = \lim_{t \to 0} \frac{e^{tA} f - f}{t} = Af,$$

which is obviously well defined with respect to $\|\cdot\|_{\operatorname{Pol}_{\leq m}}$ and in $\operatorname{Pol}_{\leq m}(S)$.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Sketch of the proof

 $(c) \Rightarrow (d)$

- Since \mathcal{A} maps $\operatorname{Pol}_{\leq m}(S)$ to itself, the Kolmogorov backward equation can be understood as a linear ODE in the classical sense whose solution is $e^{tA}f(\cdot, 0)$.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Sketch of the proof

 $(c) \Rightarrow (d)$

 $(d) \Rightarrow (a)$

- Since \mathcal{A} maps $\operatorname{Pol}_{\leq m}(S)$ to itself, the Kolmogorov backward equation can be understood as a linear ODE in the classical sense whose solution is $e^{t\mathcal{A}}f(\cdot, 0)$.
 - For any initial value f in an appropriate Banach space, $P_t f$ is the unique solution of the Kolmogorov backward equation.
 - On $\operatorname{Pol}_{\leq m}(S)$ it must therefore be equal to $e^{tA}f$. $\Rightarrow P_t f \in \operatorname{Pol}_{\leq m}(S) \Rightarrow X$ is *m*-polynomial.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Corollary

Corollary

Let X be an m-polynomial process with semigroup (P_t) , continuous at t = 0 and let $f \in Pol_{\leq m}(S)$ be fixed. Then there exists a unique function $Q : \mathbb{R} \times S \to \mathbb{R}$, being real analytic in time and $Q(t, \cdot) \in Pol_{\leq m}(S)$ for all $t \in \mathbb{R}$, such that (a) Q(0, x) = f(x) and (b) $Q(t - s, X_s)$ is a martingale for $s \geq 0$. Moreover, $Q(-s, X_s)$ is a time space harmonic function for the m-polynomial process X. A tractable class of Markov processes Examples Applications Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Feller semimartingales

Aim: Find sufficient conditions for *m*-polynomial processes in terms of the infinitesimal generator of Feller processes.

- Conservative Feller semigroup (P_t) with $C_c^{\infty}(S) \subset D(\mathcal{A})$.
- There exist functions a_{kl} , b_k and a kernel $K(x, d\xi)$ such that for $u \in C_c^2(S)$ the infinitesimal generator \mathcal{A} is given by

$$\mathcal{A}u(x) = \frac{1}{2} \sum_{k,l=1}^{n} a_{kl}(x) \frac{\partial^2 u(x)}{\partial x_k \partial x_l} + \sum_{k=1}^{n} b_k(x) \frac{\partial u(x)}{\partial x_k} + \int_{\mathbb{R}^n \setminus \{0\}} \left(u(x+\xi) - u(x) - \sum_{k=1}^{n} \chi_k(\xi) \frac{\partial u(x)}{\partial x_k} \right) \mathcal{K}(x, d\xi).$$
(2)

- $\chi: \mathbb{R}^n \to \mathbb{R}^n$ some truncation function.
- The parameters satisfy admissibility conditions guaranteeing the existence of the process in *S*.

Feller semimartingales

 If X is additionally a semimartingale, then its characteristics (B, C, ν) associated with the truncation function χ(ξ) are given by

$$B_t = \int_0^t b(X_s) ds, \quad C_t = \int_0^t a(X_s) ds,$$
$$\nu(dt, d\xi) = K(X_t, d\xi) dt.$$

• (*b*, *a*, *K*) are referred as differential characteristics of *X* (see Kallsen [5]).

 \Rightarrow Specify the form of *a*, *b* and *K* such that \mathcal{A} generates an m-polynomial process.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

 $(i,i) \in J$

Conditions on the kernel $K(x, d\xi)$

Condition A The kernel $K(x, d\xi)$ is of the form $K(X_t, d\xi) := \mu_{00}(d\xi) + \sum_{i=1}^{N} X_{s,i}\mu_{i0}(d\xi) + \sum_{i=1}^{N} X_{s,i}X_{s,j}\mu_{ij}(d\xi),$

where all μ_{ij} are Lévy measures on \mathbb{R}^n with

$$\int_{\|\xi\|>1} \|\xi\|^m \mu_{ij}(d\xi) < \infty.$$

The index sets I and J are defined by $I = \{1 \le i \le n | S_i \subseteq \mathbb{R}_+\}$ and $J = \{(i,j), i \le j | S_i \times S_j \subseteq \mathbb{R}^2_+ \text{ or } S_i \times S_j \subseteq \mathbb{R}^2_-\}$, where S_i stands for the projection on the *i*th component.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Conditions on the kernel $K(x, d\xi)$

Condition B

The kernel $K(x, d\xi)$ satisfies

$$K(X_t, d\xi) := g_*^{X_t} \mu(d\xi),$$

where for each $x \in S$, $g_*^x \mu$ denotes the pushforward of the measure μ under the map g^x . Moreover, $g^x(y) = g(x, y)$ is affine in x, that is

$$g: S \times \mathbb{R}^d \to \mathbb{R}^n, (x, y) \mapsto H(y)x + h(y),$$

where $H : \mathbb{R}^d \to \mathbb{R}^{n \times n}$ and $h : \mathbb{R}^d \to \mathbb{R}^n$ some measurable functions. Furthermore, μ is a Lévy measure on \mathbb{R}^d integrating

 $\int_{\mathbb{R}^d\setminus\{0\}} \left(\|H(y)\|^k + \|h(y)\|^k \right) \mu(dy) \text{ for } 1 \le k \le m.$

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Conditions for polynomial Feller semimartingales

Theorem (2)

Let $m \ge 2$ and X_t^{\times} be a Feller semimartingale on S whose infinitesimal generator on $C_c^{\infty}(S)$ is of form (2). Assume furthermore that $\mathbb{E}\left[\|(X_t^{\times})\|^m\right] < \infty$ for all $t \in [0, 1]$. Then, X is *m*-polynomial if its differential characteristics (b, a, K) associated with the "truncation function" $\chi(\xi) = \xi$ are of the form

$$b_t = b + \sum_{i=1}^n X_{t,i}\beta_i, \quad b, \beta_i \in \mathbb{R}^n,$$

$$a_t = a + \sum_{i=1}^n X_{t,i}\alpha_{i0} + \sum_{i \le j} X_{t,i}X_{t,j}\alpha_{ij}, \quad a, \alpha_{ij} \in \mathbb{R}^{n \times n}$$

with K satisfying either Condition A or Condition B.

Polynomial processes Theorem - Characterization Polynomial Feller semimartingales

Remark on the truncation function

The characteristic *b* must be adapted to the choice of the truncation function χ :

$$\left(b_t(\chi(\xi))+\int_{\mathbb{R}^n\setminus\{0\}}\left(\xi-\chi(\xi)
ight) {\sf K}(X_t,d\xi)
ight)\in {\sf Pol}_{\leq 1}(S)$$

is an equivalent condition guaranteeing that X is m-polynomial.

Sketch of the proof of Theorem (2)

- Denote the right side of the integro-differential operator (2) literally by A[#].
- Observe that under the above conditions A[♯]f ∈ Pol_{≤m}(S) for every f ∈ Pol_{≤m}(S).
- Showing that the process

$$M^f_t := f(X^x_t) - f(x) - \int_0^t \mathcal{A}^{\sharp} f(X^x_s) ds$$

is a well-defined martingale for every $f \in \mathsf{Pol}_{\leq m}(S)$ yields $\mathcal{A} = \mathcal{A}^{\sharp}$ on $\mathsf{Pol}_{\leq m}(S)$.

• Theorem (1) then yields the assertion.

A tractable class of Markov processes **Examples** Applications Dunkl Process Dunkl Process

Affine processes

⇒ Every conservative affine process X on $S = \mathbb{R}^{p}_{+} \times \mathbb{R}^{n-p}$ (see Duffie et al. [1]) is *m*-polynomial if $\mathbb{E}[||(X_{t}^{\times})||^{m}] < \infty$ for $t \in [0, 1]$.

A tractable class of Markov processes **Examples** Applications Dunkl Process Dunkl Process

Affine processes

⇒ Every conservative affine process X on $S = \mathbb{R}^{p}_{+} \times \mathbb{R}^{n-p}$ (see Duffie et al. [1]) is *m*-polynomial if $\mathbb{E}[||(X_{t}^{\times})||^{m}] < \infty$ for $t \in [0, 1]$.

Proof.

- Every conservative affine process is a Feller semimartingale.
- On $C_c^2(S)$, the generator of an affine process is given by

$$\begin{aligned} \mathcal{A}u(x) &= \frac{1}{2} \sum_{k,l=1}^{n} \left(\mathbf{a}_{kl} + \sum_{i=1}^{p} x_i \alpha_{i0,kl} \right) \frac{\partial^2 u(x)}{\partial x_k \partial x_l} + \left\langle b + \sum_{i=1}^{n} x_i \beta_i, \nabla u(x) \right\rangle \\ &+ \int_{S \setminus \{0\}} \left(u(x+\xi) - u(x) - \left\langle \chi(\xi), \nabla u(x) \right\rangle \right) \left(\mu_{00}(d\xi) + \sum_{i=1}^{p} x_i \mu_{i0}(d\xi) \right). \end{aligned}$$

Lévy driven SDEs

- L_t : Lévy process on \mathbb{R}^d with triplet (b, a, μ) .
- V_1, \ldots, V_d : affine functions $V_i : S \to \mathbb{R}^n, x \mapsto H_i x + h_i$ with $H_i \in \mathbb{R}^{n \times n}$ and $h_i \in \mathbb{R}^n$.
- \Rightarrow A process X, which solves the stochastic differential equation of type

$$dX_t = \sum_{i=1}^d V_i(X_{t-})dL_t^i, \quad X_0 = x \in S,$$

in S, is m-polynomial $(m \ge 2)$ as soon as L admits finite m^{th} moment, that is $\int_{\|\xi\|>1} \|\xi\|^m \mu(d\xi) < \infty$.

Remark

• The moment condition $\mathbb{E}[\|(X_t^x)\|^m] < \infty$ for $t \in [0, 1]$ is automatically satisfied due to the assumption on μ .

Lévy models Jacobi process **Dunkl Process**

Exponential Lévy models

- L_t : Lévy process on \mathbb{R} with triplet (b, a, μ) .
- \Rightarrow An exponential Lévy model $X_t^x = xe^{L_t}$ is *m*-polynomial if $\int_{|y|>1} e^{my} \mu(dy) < \infty.$

Exponential Lévy models

- L_t : Lévy process on \mathbb{R} with triplet (b, a, μ) .
- ⇒ An exponential Lévy model $X_t^x = xe^{L_t}$ is *m*-polynomial if $\int_{|y|>1} e^{my} \mu(dy) < \infty$.

Sketch of the proof

• The infinitesimal generator is given by

$$\begin{aligned} \mathcal{A}u(x) &= \frac{ax^2}{2} \frac{d^2u(x)}{dx^2} + \left(b + \frac{a}{2} + \int_{\mathbb{R}} \left(e^y - 1 - \chi(y)\right) \mu(dy)\right) x \frac{du(x)}{dx} \\ &+ \int_{\mathbb{R}} \left(u\left(xe^y\right) - u(x) - x\left(e^y - 1\right) \frac{du(x)}{dx}\right) \mu(dy). \end{aligned}$$

• We are in the situation of Condition B with $g(x, y) = H(y)x = (e^{y} - 1)x$.

A tractable class of Markov processes Examples Applications Dunkl Process Jacobi process Junkl Process

Jacobi process

• The Jacobi process is the solution of

$$dX_t = -eta(X_t - heta)dt + \sigma\sqrt{X_t(1 - X_t)}dB_t, \quad X_0 = x \in [0, 1],$$

on S = [0, 1], where $\theta \in [0, 1]$ and $\beta, \sigma > 0$ (see for example Gourieroux [4]).

Jacobi process

• The Jacobi process is the solution of

$$dX_t = -\beta(X_t - \theta)dt + \sigma\sqrt{X_t(1 - X_t)}dB_t, \quad X_0 = x \in [0, 1],$$

on S = [0, 1], where $\theta \in [0, 1]$ and $\beta, \sigma > 0$ (see for example Gourieroux [4]).

- Extension by adding jumps:
 - Jump times correspond to those of a Poisson process N_t with intensity λ .
 - Jump size h(x)=1-2x, i.e. if a jump occurs, the process is reflected at $\frac{1}{2}$.

$$dX_t = -\beta(X_t - \theta)dt + \sigma\sqrt{X_t(1 - X_t)}dB_t + (1 - 2X_t)dN_t.$$

• Generator:

$$\mathcal{A}u = \frac{1}{2}\sigma^2(x(1-x))\frac{d^2u(x)}{dx^2} - \beta(x-\theta)\frac{du(x)}{dx} + \lambda(u(1-x)-u(x)).$$

• In terms of Condition B, we have here g(x, y) = -2yx + y and $\mu(dy) = \lambda \delta_1(dy)$.

Dunkl process

 Dunkl processes (see for example Gallardo and Yor [3]) are Feller processes parametrized by k ≥ 0 whose infinitesimal generator for u ∈ C²(ℝ) is given by

$$\mathcal{A}u = \frac{1}{2}\frac{d^2u(x)}{dx^2} + k\left(\frac{1}{x}\frac{du(x)}{dx} - \frac{u(x) - u(-x)}{2x^2}\right).$$

- For every $f \in \mathsf{Pol}_{\leq m}(\mathbb{R})$, we therefore have $\mathcal{A}f \in \mathsf{Pol}_{\leq m}(\mathbb{R})$.
- Dunkl processes lie in the class of polynomial processes.
- Example that the conditions of Theorem (2) are only sufficient and not necessary.

Moment calculation

- There exists a linear map A such that moments of *m*-polynomial processes can simply be calculated by computing e^{tA} .
- Choose a basis $\langle e_1, \ldots, e_N \rangle$ of $\mathsf{Pol}_{\leq m}(S)$.
- $A = (a_{ij})_{i,j=1,...N}$ is obtained by

$$\mathcal{A}e_i = \sum_{j=1}^N a_{ij}e_j.$$

• Writing f as $\sum_{k=1}^{N} \alpha_k e_k$, yields

$$P_t f = (\alpha_1, \ldots, \alpha_N) e^{tA} (e_1, \ldots, e_N)^\top.$$

Moment calculation Pricing and sensitivities Variance reduction

Generalized Method of Moments

- Let $\theta \in \Theta \subseteq \mathbb{R}^p$ be the vector of parameters to be estimated and $g: S \times \Theta \to \mathbb{R}^q$ a function such that $\mathbb{E}[g(X_t, \theta_0)] = 0$ for the true value of the parameter θ_0 .
- The Generalized Method of Moments estimator is the value of θ which minimizes

$$Q_{T}(\theta) = \left(\sum_{t=1}^{T} g(X_{t}, \theta)\right)^{\top} W_{T}\left(\sum_{t=1}^{T} g(X_{t}, \theta)\right),$$

where W_{T} is a positive semi-definite $q \times q$ matrix.

• A typical moment condition is given by

$$g(X_t,\theta) = \begin{pmatrix} X_t^{n_1}X_{t+s}^{m_1} - \mathbb{E}[X_t^{n_1}X_{t+s}^{m_1}] \\ \vdots \\ X_t^{n_q}X_{t+s}^{m_q} - \mathbb{E}[X_t^{n_q}X_{t+s}^{m_q}] \end{pmatrix}, \quad n_i, m_i \in \mathbb{N}.$$

• $\mathbb{E}[X_t^n X_{t+s}^m] = \mathbb{E}[X_t^n \mathbb{E}[X_{t+s}^m | X_t]]$ can be easily computed (see Zhou [6], Forman [2] in the one dimensional diffusion case).

Moment calculation Pricing and sensitivities Variance reduction

European option pricing - setting

- X: *m*-polynomial process.
- G: S → ℝⁿ deterministic measurable map such that the price processes are given through

$$S_t = G(X_t)$$

under a martingale measure.

 F = φ(S_T): bounded measurable European claim for some maturity T > 0 whose price at t ≥ 0 is given by

$$p_t^F = \mathbb{E}[\phi(S_T)|\mathcal{F}_t] = \mathbb{E}[(\phi \circ G)(X_T)|\mathcal{F}_t].$$

Analytically tractable claims

 Claims of the form F = f ∘ G⁻¹(S_T) for f ∈ Pol_{≤m}(S) are analytically tractable:

$$p_t^F = \mathbb{E}[(f \circ G^{-1})(S_T) | \mathcal{F}_t] = P_{T-t}f(G^{-1}(S_t))$$

= $e^{(T-t)A}f(G^{-1}(S_t))$

for $0 \leq t \leq T$.

• The sensitivities of the price process with respect to the factors of X can be calculated by

$$\nabla p_t^F = \nabla P_{T-t} f(G^{-1}(S_t)) \nabla G^{-1}(S_t).$$

Variance reduction for Monte Carlo simulation using polynomial control variates

- X^1, \ldots, X^L : L sample paths of the polynomial process X.
- Standard estimator in Monte Carlo simulation: $\pi_0^F = \frac{1}{L} \sum_{i=1}^{L} (\phi \circ G)(X_T^i).$
- Approximation of φ ∘ G by a polynomial f, E[f(X_T)] is explicitly known.
- Estimator with control variate *f*:

$$\hat{\pi}_0^F = \frac{1}{L} \sum_{i=1}^L \left((\phi \circ G)(X_T^i) - (f(X_T^i) - \mathbb{E}[f(X_T)]) \right).$$

$$\Rightarrow \hat{\pi}_0^F \stackrel{L \to \infty}{\longrightarrow} p_0^F \text{ and } Var(\hat{\pi}_0^F) < Var(\pi_0^F).$$

Method illustration: exponential Lévy model

- Price process: $S_t = S_0 e^{X_t}$.
- X_t : Lévy process with Lévy triplet (b, a, ν) .
- r: interest rate, $e^{-rt}S_t$ is a martingale.

$$\Rightarrow \int_{|y|>1} e^y \nu(dy) < \infty \text{ and } b = r - \frac{a}{2} - \int_{\mathbb{R}} \Big(e^y - 1 - y \mathbb{1}_{|y| \leq 1} \Big) \nu(dy).$$

Generator of the Lévy process:

$$\mathcal{A}u(x) = \frac{a}{2} \frac{d^2 u(x)}{dx^2} + \left(r - \frac{a}{2}\right) \frac{du(x)}{dx} + \int_{\mathbb{R}} \left(u(x+y) - u(x) - (e^y - 1) \frac{du(x)}{dx}\right) \nu(dy).$$

- Example: constant jump intensity λ, exponential jumps size distribution with parameter ¹/_c.
- Applying A to (x⁰, x¹,...,x^m) yields the following (m + 1) × (m + 1) matrix

Method illustration: exponential Lévy model

$$A = \begin{pmatrix} 0 & \dots & & \\ \kappa & 0 & \dots & & \\ a+c^2 & 2\kappa & 0 & \dots & \\ 6c^3 & 3(a+c^2) & 3\kappa & 0 & \dots & \\ & & & \ddots & & \\ & & & & \ddots & \\ m!c^m & \dots & \dots & \frac{m!}{(m-i)!}c^i & \dots & \frac{m(m-1)}{2}(a+c^2) & m\kappa & 0 \end{pmatrix}$$

where $\kappa = r - \frac{a}{2} - \frac{c^2}{1-c}$.

 $\Rightarrow \mathbb{E}\left[\sum_{k=0}^{m} \alpha_k (X_t^{\times})^k\right] = (\alpha_0, \dots, \alpha_m) e^{tA} (x^0, \dots, x^m)^\top.$

• Approximate $(S_0 e^x - K)^+$ by a polynomial f.

• Use f as control variate for variance reduction in the MC simulation.

,

Method illustration: exponential Lévy model

- Comparison: Monte Carlo simulation for European call prices with and without variance reduction.
- Ratio of the variance of the uncontrolled estimator to that of the controlled estimator: around 100 (depending on the polynomial approximation).

Example: Heston type model with volatility dependent jumps (Bates 2000)

• Price process:
$$S_t = S_0 e^{X_t}$$
, where

$$dX_t = \left(r - \frac{V_t}{2} - \lambda V_t \int_{\mathbb{R}} (e^y - 1) F(dy)\right) dt + \sqrt{V_t} dW_t^1 + dJ_t(V_t),$$

$$dV_t = -\beta(V_t - \theta) + \sigma \sqrt{V_t} dW_t^2.$$

- $J_t = \sum_{i=1}^{N_t} Z_i$, $(Z_i)_{i \ge 1}$ i.i.d sequence of random variables with probability distribution F.
- N_t : Poisson process with intensity λV_t .
- Correlation between Brownian motions ρ .

Example: Heston type model with volatility dependent jumps (Bates 2000)

Usual method:

• Solve the Ricatti equations:

$$\begin{split} \partial_t \phi(t, x, v) &= rx + \beta \theta \psi(t, x, v), \\ \partial_t \psi(t, x, v) &= \frac{1}{2} (x^2 - x) - \beta \psi(t, x, v) + \frac{1}{2} \sigma^2 \psi^2(t, x, v) \\ &+ \rho \sigma x \psi(t, x, v) \\ &+ \lambda \Big(\int_{\mathbb{R}} (e^{xy} - 1) dF(y) - x \int_{\mathbb{R}} (e^y - 1) dF(y) \Big). \end{split}$$

- Analytic solutions for ψ might be difficult to find \Rightarrow Numerical solutions must be used.
- Application of Fourier pricing methods to obtain the European call price.

Moment calculation Pricing and sensitivities Variance reduction

Example: Heston type model

- Comparison: Monte Carlo simulation for European call prices with and without variance reduction.
- Ratio of the variance of the uncontrolled estimator to that of the controlled estimator: between 300 and 400 (depending on the polynomial approximation).

Example: Basket option under a Heston type model

- Payoff function: $e^{-rT}(S_T^1 + S_T^2 K)^+$.
- Price processes: $S_t^1 = S_0^1 e^{X_t}$ and $S_t^2 = S_0^2 e^{Y_t}$.

$$\begin{split} dX_t &= \left(r - \frac{V_t}{2} - \lambda^1 V_t \int_{\mathbb{R}} (e^y - 1) F^1(dy) \right) dt + \sqrt{V_t} dW_t^1 + dJ_t^1(V_t), \\ dY_t &= \left(r - \frac{\gamma^2 V_t}{2} - \lambda^2 V_t \int_{\mathbb{R}} (e^y - 1) F^2(dy) \right) dt + \gamma \sqrt{V_t} dW_t^2 + dJ_t^2(V_t), \\ dV_t &= -\beta (V_t - \theta) + \sigma \sqrt{V_t} dW_t^3. \end{split}$$

- $J_t^j = \sum_{i=1}^{N_t^j} Z_i^j$, $(Z_i^j)_{i \ge 1}$ i.i.d sequences of random variables with probability distribution F^j , j = 1, 2.
- N_t^j : Poisson processes with intensity $\lambda^j V_t$.
- Brownian motions are correlated.

Example: Basket option under a Heston type model

- Comparison: Monte Carlo simulation for European call prices with and without variance reduction.
- Ratio of the variance of the uncontrolled estimator to that of the controlled estimator: around 150 (depending on the polynomial approximation).

Moment calculation Pricing and sensitivities Variance reduction

Conclusion

- Under certain moment conditions, processes with
 - affine drift,
 - quadratic diffusion function and
 - jump compensator which is either quadratic or the pushforward of a Lévy measure under an affine function,

are polynomial processes.

- The calculation of moments of polynomial processes only requires the computation of matrix exponentials.
- Polynomial claims can therefore be priced analytically, which leads to variance reduction techniques by using polynomial control variates approximating the payoff function well.

Moment calculation Pricing and sensitivities Variance reduction

Bibliography

- Darell Duffie, Damir Filipović, and Walter Schachermayer. Affine processes and applications in finance. Ann. Appl. Probab., 13(3):984–1053, 2003.
- [2] J.L. Forman and M. Sørensen. The Pearson diffusions: A class of statistically tractable diffusion processes. *Preprint*, 2005.
- [3] L. Gallardo and M. Yor. Some remarkable properties of the Dunkl martingales. pages 337–356. Springer, Berlin, 2006.
- Christian Gourieroux and Joann Jasiak. Multivariate Jacobi process with application to smooth transitions. *J. Econometrics*, 131(1-2):475–505, 2006.
- [5] Jan Kallsen. A didactic note on affine stochastic volatility models. In From stochastic calculus to mathematical finance, pages 343–368. Springer, Berlin, 2006.
- [6] H. Zhou.

Itô conditional moment generator and the estimation of short rate processes. *Journal of Financial Econometrics*, pages 250–271, 2003.

Thank you for your attention!