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A tractable class of Markov processes
Examples

Applications

Introduction - Aim of this talk

We consider a class of time-homogeneous Markov processes X ,...

...with the property that the expected value of any polynomial
of the process is again a polynomial of same or lower degree
in the initial value X0.

... where an easy and efficient computation of moments is
possible even though neither the probability distribution nor
the characteristic function needs to be known.

...which contains many popular models applied in
mathematical Finance, such as

Exponential Lévy models (Black Scholes, jump-diffusions,
infinite activity pure jump models,...),
Affine Models (Heston, Bates, Vasiček, Cox-Ingersoll-Ross,...),
Lévy driven SDEs,
Jacobi processes, etc.
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A tractable class of Markov processes
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Applications

Introduction - European option pricing

Computation of the expected value of a functional of the
discounted price process ST under some martingale measure.

Methods:

1 The probability distribution of ST is known analytically:
Numerical quadrature algorithms.

2 The characteristic function of ST is known analytically: Fourier
pricing methods.

3 The semimartingale characteristics of ST are known: Monte
Carlo simulation methods.

The class of processes which we describe ranges between 2
and 3 since European option prices can be calculated explicitly
(up to matrix exponentials) for a dense set of claims.
⇒Variance reduction techniques.
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A tractable class of Markov processes
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Applications

Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Setting and notation

X := (X x
t )t≥0, x∈S : time-homogeneous Markov process with

state space S ⊆ Rn, a closed subset of Rn.

(Pt)t≥0: associated semigroup

Pt f (x) := E[f (X x
t )] =

∫
S

f (ξ)pt(x , dξ), x ∈ S ,

defined on functions f : S → R where E[f (X x
t )] <∞.

A: infinitesimal generator,

Af = lim
t→0

Pt f − f

t
.

15 / 57



A tractable class of Markov processes
Examples

Applications

Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Setting and notation

X := (X x
t )t≥0, x∈S : time-homogeneous Markov process with

state space S ⊆ Rn, a closed subset of Rn.

(Pt)t≥0: associated semigroup

Pt f (x) := E[f (X x
t )] =

∫
S

f (ξ)pt(x , dξ), x ∈ S ,

defined on functions f : S → R where E[f (X x
t )] <∞.

A: infinitesimal generator,

Af = lim
t→0

Pt f − f

t
.

16 / 57



A tractable class of Markov processes
Examples

Applications

Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Setting and notation

X := (X x
t )t≥0, x∈S : time-homogeneous Markov process with

state space S ⊆ Rn, a closed subset of Rn.

(Pt)t≥0: associated semigroup

Pt f (x) := E[f (X x
t )] =

∫
S

f (ξ)pt(x , dξ), x ∈ S ,

defined on functions f : S → R where E[f (X x
t )] <∞.

A: infinitesimal generator,

Af = lim
t→0

Pt f − f

t
.

17 / 57



A tractable class of Markov processes
Examples

Applications

Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Definition of polynomial processes

Pol≤m(S): finite dimensional vector space of polynomials up
to degree m ≥ 0 on S , that is the restriction of polynomials
on Rn to S .
Pol≤m(S) is endowed with some norm ‖ · ‖Pol≤m

and its
dimension is denoted by N <∞.

Definition

We call an S-valued time-homogeneous Markov process
m-polynomial if,

Pt f (x) ∈ Pol≤m(S)

for all f ∈ Pol≤m(S) and t ≥ 0. If X is m-polynomial for all
m ≥ 0, then it is called polynomial.
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Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Characterization of polynomial processes

Theorem (1)

Let X be a time-homogeneous Markov process with state space S
and semigroup (Pt), pointwise continuous at t = 0. Then, the
following assertions are equivalent:

(a) X is m-polynomial for some m ≥ 0.

(b) There exists a linear map A on Pol≤m(S), such that (Pt)
restricted to Pol≤m(S) can be written as

Pt |Pol≤m(S) = etA

for all t ≥ 0.
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Characterization of polynomial processes

Theorem (Continuation)

(c) The infinitesimal generator A is well defined on Pol≤m(S) and
maps Pol≤m(S) to itself.

(d) The Kolmogorov backward equation for an initial value
f (·, 0) ∈ Pol≤m(S)

∂t f (x , t) = Af (x , t)

has a real analytic solution for all times t ∈ R. In particular,
f (·, t) ∈ Pol≤m(S).
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Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Sketch of the proof

(a)⇒(b) - The semigroup

P(·) : R+ → L(Pol≤m(S)) (1)

satisfies for all t, s ≥ 0 the Cauchy functional equation{
Pt+s = PtPs ,
P0 = Id

.

- Finite dimensionality of Pol≤m(S) and continuity of (1) at
t = 0 imply Pt = etA.

(b)⇒(c) - For f ∈ Pol≤m(S) the generator is given by

Af = lim
t→0

Pt f − f

t
= lim

t→0

etAf − f

t
= Af ,

which is obviously well defined with respect to ‖ · ‖Pol≤m
and in

Pol≤m(S).
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Polynomial processes
Theorem - Characterization
Polynomial Feller semimartingales

Sketch of the proof

(c)⇒(d) - Since A maps Pol≤m(S) to itself, the Kolmogorov backward
equation can be understood as a linear ODE in the classical
sense whose solution is etAf (·, 0).

(d)⇒(a) - For any initial value f in an appropriate Banach space, Pt f is
the unique solution of the Kolmogorov backward equation.

- On Pol≤m(S) it must therefore be equal to etAf .
⇒ Pt f ∈ Pol≤m(S)⇒ X is m-polynomial.
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Corollary

Corollary

Let X be an m-polynomial process with semigroup (Pt),
continuous at t = 0 and let f ∈ Pol≤m(S) be fixed. Then there
exists a unique function Q : R× S → R, being real analytic in time
and Q(t, ·) ∈ Pol≤m(S) for all t ∈ R, such that

(a) Q(0, x) = f (x) and

(b) Q(t − s,Xs) is a martingale for s ≥ 0.

Moreover, Q(−s,Xs) is a time space harmonic function for the
m-polynomial process X .
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Feller semimartingales
Aim: Find sufficient conditions for m-polynomial processes in terms of
the infinitesimal generator of Feller processes.

Conservative Feller semigroup (Pt) with C∞c (S) ⊂ D(A).

There exist functions akl , bk and a kernel K (x , dξ) such that for
u ∈ C 2

c (S) the infinitesimal generator A is given by

Au(x) =
1

2

n∑
k,l=1

akl (x)
∂2u(x)

∂xk∂xl
+

n∑
k=1

bk (x)
∂u(x)

∂xk

+

∫
Rn\{0}

(
u(x + ξ)− u(x)−

n∑
k=1

χk (ξ)
∂u(x)

∂xk

)
K (x , dξ).

(2)

χ : Rn → Rn some truncation function.
The parameters satisfy admissibility conditions guaranteeing
the existence of the process in S .
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Feller semimartingales

If X is additionally a semimartingale, then its characteristics
(B,C , ν) associated with the truncation function χ(ξ) are
given by

Bt =

∫ t

0
b(Xs)ds, Ct =

∫ t

0
a(Xs)ds,

ν(dt, dξ) = K (Xt , dξ)dt.

(b, a,K ) are referred as differential characteristics of X (see
Kallsen [5]).

⇒ Specify the form of a, b and K such that A generates an
m-polynomial process.
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Conditions on the kernel K (x , dξ)

Condition A

The kernel K (x , dξ) is of the form

K (Xt , dξ) := µ00(dξ) +
∑
i∈I

Xs,iµi0(dξ) +
∑

(i,j)∈J

Xs,i Xs,jµij (dξ),

where all µij are Lévy measures on Rn with∫
‖ξ‖>1

‖ξ‖mµij (dξ) <∞.

The index sets I and J are defined by I = {1 ≤ i ≤ n|Si ⊆ R+} and
J = {(i , j), i ≤ j |Si × Sj ⊆ R2

+ or Si × Sj ⊆ R2
−}, where Si stands for the

projection on the i th component.
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Conditions on the kernel K (x , dξ)

Condition B

The kernel K (x , dξ) satisfies

K (Xt , dξ) := g Xt
∗ µ(dξ),

where for each x ∈ S, g x
∗µ denotes the pushforward of the measure µ

under the map g x . Moreover, g x (y) = g(x , y) is affine in x, that is

g : S × Rd → Rn, (x , y) 7→ H(y)x + h(y),

where H : Rd → Rn×n and h : Rd → Rn some measurable functions.
Furthermore, µ is a Lévy measure on Rd integrating∫

Rd\{0}

(
‖H(y)‖k + ‖h(y)‖k

)
µ(dy) for 1 ≤ k ≤ m.
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Conditions for polynomial Feller semimartingales

Theorem (2)

Let m ≥ 2 and X x
t be a Feller semimartingale on S whose infinitesimal

generator on C∞c (S) is of form (2). Assume furthermore that
E [‖(X x

t )‖m] <∞ for all t ∈ [0, 1]. Then, X is m-polynomial if its
differential characteristics (b, a,K ) associated with the “truncation
function” χ(ξ) = ξ are of the form

bt = b +
n∑

i=1

Xt,iβi , b, βi ∈ Rn,

at = a +
n∑

i=1

Xt,iαi0 +
∑
i≤j

Xt,i Xt,jαij , a, αij ∈ Rn×n,

with K satisfying either Condition A or Condition B.
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Remark on the truncation function

The characteristic b must be adapted to the choice of the
truncation function χ:(

bt(χ(ξ)) +

∫
Rn\{0}

(ξ − χ(ξ)) K (Xt , dξ)

)
∈ Pol≤1(S)

is an equivalent condition guaranteeing that X is m-polynomial.
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Sketch of the proof of Theorem (2)

Denote the right side of the integro-differential operator (2)
literally by A].
Observe that under the above conditions A]f ∈ Pol≤m(S) for
every f ∈ Pol≤m(S).

Showing that the process

M f
t := f (X x

t )− f (x)−
∫ t

0
A]f (X x

s )ds

is a well-defined martingale for every f ∈ Pol≤m(S) yields
A = A] on Pol≤m(S).

Theorem (1) then yields the assertion.
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Affine processes

⇒ Every conservative affine process X on S = Rp
+ × Rn−p (see

Duffie et al. [1]) is m-polynomial if E [‖(X x
t )‖m] <∞ for

t ∈ [0, 1].

Proof.

Every conservative affine process is a Feller semimartingale.

On C 2
c (S), the generator of an affine process is given by

Au(x) =
1

2

n∑
k,l=1

(
akl +

p∑
i=1

xiαi0,kl

)
∂2u(x)

∂xk∂xl
+

〈
b +

n∑
i=1

xiβi ,∇u(x)

〉

+

∫
S\{0}

(u(x + ξ)− u(x)− 〈χ(ξ),∇u(x)〉)

(
µ00(dξ) +

p∑
i=1

xiµi0(dξ)

)
.
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Lévy driven SDEs

Lt : Lévy process on Rd with triplet (b, a, µ).

V1, . . . ,Vd : affine functions Vi : S → Rn, x 7→ Hi x + hi with
Hi ∈ Rn×n and hi ∈ Rn.

⇒ A process X , which solves the stochastic differential equation of
type

dXt =
d∑

i=1

Vi (Xt−)dLi
t , X0 = x ∈ S ,

in S , is m-polynomial (m ≥ 2) as soon as L admits finite mth

moment, that is
∫
‖ξ‖>1

‖ξ‖mµ(dξ) <∞.

Remark

The moment condition E [‖(X x
t )‖m] <∞ for t ∈ [0, 1] is automatically satisfied

due to the assumption on µ.
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Exponential Lévy models

Lt : Lévy process on R with triplet (b, a, µ).

⇒ An exponential Lévy model X x
t = xeLt is m-polynomial if∫

|y |>1 emyµ(dy) <∞.

Sketch of the proof

The infinitesimal generator is given by

Au(x) =
ax2

2

d2u(x)

dx2
+

(
b +

a

2
+

∫
R

(ey − 1− χ(y))µ(dy)

)
x

du(x)

dx

+

∫
R

(
u (xey )− u(x)− x (ey − 1)

du(x)

dx

)
µ(dy).

We are in the situation of Condition B with g(x , y) = H(y)x = (ey − 1)x.
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Jacobi process

The Jacobi process is the solution of

dXt = −β(Xt − θ)dt + σ
√

Xt(1− Xt)dBt , X0 = x ∈ [0, 1],

on S = [0, 1], where θ ∈ [0, 1] and β, σ > 0 (see for example
Gourieroux [4]).

Extension by adding jumps:

Jump times correspond to those of a Poisson process Nt with intensity λ.
Jump size h(x)=1-2x, i.e. if a jump occurs, the process is reflected at 1

2
.

dXt = −β(Xt − θ)dt + σ
√

Xt (1− Xt )dBt + (1− 2Xt )dNt .

Generator:

Au =
1

2
σ2(x(1− x))

d2u(x)

dx2
− β(x − θ)

du(x)

dx
+ λ(u(1− x)− u(x)).

In terms of Condition B, we have here g(x , y) = −2yx + y and
µ(dy) = λδ1(dy).
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Dunkl process

Dunkl processes (see for example Gallardo and Yor [3]) are
Feller processes parametrized by k ≥ 0 whose infinitesimal
generator for u ∈ C 2(R) is given by

Au =
1

2

d2u(x)

dx2
+ k

(
1

x

du(x)

dx
− u(x)− u(−x)

2x2

)
.

For every f ∈ Pol≤m(R), we therefore have Af ∈ Pol≤m(R).

Dunkl processes lie in the class of polynomial processes.

Example that the conditions of Theorem (2) are only
sufficient and not necessary.
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Moment calculation

There exists a linear map A such that moments of
m-polynomial processes can simply be calculated by
computing etA.

Choose a basis 〈e1, . . . , eN〉 of Pol≤m(S).

A = (aij )i ,j=1,...N is obtained by

Aei =
N∑

j=1

aij ej .

Writing f as
∑N

k=1 αk ek , yields

Pt f = (α1, . . . , αN)etA(e1, . . . , eN)>.
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Generalized Method of Moments

Let θ ∈ Θ ⊆ Rp be the vector of parameters to be estimated and
g : S ×Θ→ Rq a function such that E[g(Xt , θ0)] = 0 for the true
value of the parameter θ0.

The Generalized Method of Moments estimator is the value of θ
which minimizes

QT (θ) =
(∑T

t=1 g(Xt , θ)
)>

WT

(∑T
t=1 g(Xt , θ)

)
,

where WT is a positive semi-definite q × q matrix.

A typical moment condition is given by

g(Xt , θ) =

 X n1
t X m1

t+s − E[X n1
t X m1

t+s ]
...

X
nq

t X
mq

t+s − E[X
nq

t X
mq

t+s ]

 , ni ,mi ∈ N.

E
[
X n

t X m
t+s

]
= E

[
X n

t E
[
X m

t+s

∣∣Xt

]]
can be easily computed (see

Zhou [6], Forman [2] in the one dimensional diffusion case).
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European option pricing - setting

X : m-polynomial process.

G : S → Rn deterministic measurable map such that the price
processes are given through

St = G (Xt)

under a martingale measure.

F = φ(ST ): bounded measurable European claim for some
maturity T > 0 whose price at t ≥ 0 is given by

pF
t = E[φ(ST )|Ft ] = E[(φ ◦ G )(XT )|Ft ].
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Analytically tractable claims

Claims of the form F = f ◦ G−1(ST ) for f ∈ Pol≤m(S) are
analytically tractable:

pF
t = E[(f ◦ G−1)(ST )|Ft ] = PT−t f (G−1(St))

= e(T−t)Af (G−1(St))

for 0 ≤ t ≤ T .

The sensitivities of the price process with respect to the
factors of X can be calculated by

∇pF
t = ∇PT−t f (G−1(St))∇G−1(St).
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Variance reduction for Monte Carlo simulation using
polynomial control variates

X 1, . . . ,X L: L sample paths of the polynomial process X .

Standard estimator in Monte Carlo simulation:
πF

0 = 1
L

∑L
i=1(φ ◦ G )(X i

T ).

Approximation of φ ◦ G by a polynomial f , E[f (XT )] is
explicitly known.

Estimator with control variate f :

π̂F
0 =

1

L

L∑
i=1

(
(φ ◦ G )(X i

T )− (f (X i
T )− E[f (XT )])

)
.

⇒ π̂F
0

L→∞−→ pF
0 and Var(π̂F

0 ) < Var(πF
0 ).
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Method illustration: exponential Lévy model

Price process: St = S0eXt .

Xt : Lévy process with Lévy triplet (b, a, ν).

r : interest rate, e−rtSt is a martingale.

⇒
∫
|y|>1

eyν(dy) <∞ and b = r − a

2
−
∫

R

(
ey − 1− y1|y|≤1

)
ν(dy).

Generator of the Lévy process:

Au(x) =
a

2

d2u(x)

dx2
+
(

r − a

2

)du(x)

dx

+

∫
R

(
u(x + y)− u(x)− (ey − 1)

du(x)

dx

)
ν(dy).

Example: constant jump intensity λ, exponential jumps size distribution
with parameter 1

c
.

Applying A to (x0, x1, . . . , xm) yields the following (m + 1)× (m + 1)
matrix
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Method illustration: exponential Lévy model

A =



0 . . .
κ 0 . . .

a + c2 2κ 0 . . .
6c3 3(a + c2) 3κ 0 . . .

. . .

m!cm . . . . . . m!
(m−i)!

c i . . . m(m−1)
2

(a + c2) mκ 0


,

where κ = r − a
2 −

c2

1−c .

⇒ E[
∑m

k=0 αk (X x
t )k ] = (α0, . . . , αm)etA(x0, . . . , xm)>.

Approximate (S0ex − K )+ by a polynomial f .

Use f as control variate for variance reduction in the MC simulation.
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Method illustration: exponential Lévy model
Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.
Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: around 100 (depending on the polynomial approximation).

49 / 57



A tractable class of Markov processes
Examples

Applications

Moment calculation
Pricing and sensitivities
Variance reduction

Example: Heston type model with volatility dependent
jumps (Bates 2000)

Price process: St = S0eXt , where

dXt =
(

r − Vt

2
− λVt

∫
R

(ey − 1)F (dy)
)

dt +
√

VtdW 1
t + dJt(Vt),

dVt = −β(Vt − θ) + σ
√

VtdW 2
t .

Jt =
∑Nt

i=1 Zi , (Zi )i≥1 i.i.d sequence of random variables
with probability distribution F .
Nt : Poisson process with intensity λVt .
Correlation between Brownian motions ρ.
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Example: Heston type model with volatility dependent
jumps (Bates 2000)

Usual method:

Solve the Ricatti equations:

∂tφ(t, x , v) = rx + βθψ(t, x , v),

∂tψ(t, x , v) =
1

2
(x2 − x)− βψ(t, x , v) +

1

2
σ2ψ2(t, x , v)

+ ρσxψ(t, x , v)

+ λ
(∫

R
(exy − 1)dF (y)− x

∫
R

(ey − 1)dF (y)
)
.

Analytic solutions for ψ might be difficult to find ⇒
Numerical solutions must be used.

Application of Fourier pricing methods to obtain the European
call price.
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Example: Heston type model
Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.
Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: between 300 and 400 (depending on the polynomial approximation).
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Example: Basket option under a Heston type model

Payoff function: e−rT (S1
T + S2

T − K )+.

Price processes: S1
t = S1

0 eXt and S2
t = S2

0 eYt .

dXt =
(

r − Vt

2
− λ1Vt

∫
R

(ey − 1)F 1(dy)
)

dt +
√

VtdW 1
t + dJ1

t (Vt),

dYt =
(

r − γ2Vt

2
− λ2Vt

∫
R

(ey − 1)F 2(dy)
)

dt + γ
√

VtdW 2
t + dJ2

t (Vt),

dVt = −β(Vt − θ) + σ
√

VtdW 3
t .

J j
t =

∑N j
t

i=1 Z j
i , (Z j

i )i≥1 i.i.d sequences of random variables
with probability distribution F j , j = 1, 2.
N j

t : Poisson processes with intensity λj Vt .
Brownian motions are correlated.
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Example: Basket option under a Heston type model
Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.
Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: around 150 (depending on the polynomial approximation).
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Conclusion

Under certain moment conditions, processes with

affine drift,
quadratic diffusion function and
jump compensator which is either quadratic or the
pushforward of a Lévy measure under an affine function,

are polynomial processes.

The calculation of moments of polynomial processes only
requires the computation of matrix exponentials.

Polynomial claims can therefore be priced analytically, which
leads to variance reduction techniques by using polynomial
control variates approximating the payoff function well.
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Affine processes and applications in finance.
Ann. Appl. Probab., 13(3):984–1053, 2003.

[2] J.L Forman and M. Sørensen.
The Pearson diffusions: A class of statistically tractable diffusion processes.
Preprint, 2005.

[3] L. Gallardo and M. Yor.
Some remarkable properties of the Dunkl martingales.
pages 337–356. Springer, Berlin, 2006.

[4] Christian Gourieroux and Joann Jasiak.
Multivariate Jacobi process with application to smooth transitions.
J. Econometrics, 131(1-2):475–505, 2006.

[5] Jan Kallsen.
A didactic note on affine stochastic volatility models.
In From stochastic calculus to mathematical finance, pages 343–368. Springer, Berlin, 2006.

[6] H. Zhou.
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Thank you for your attention!
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