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Introduction - European option pricing

o Computation of the expected value of a functional of the
discounted price process St under some martingale measure.
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Introduction - European option pricing

o Computation of the expected value of a functional of the
discounted price process St under some martingale measure.
@ Methods:

© The probability distribution of St is known analytically:
Numerical quadrature algorithms.

@ The characteristic function of St is known analytically: Fourier
pricing methods.

© The semimartingale characteristics of St are known: Monte
Carlo simulation methods.

@ The class of processes which we describe ranges between 2
and 3 since European option prices can be calculated explicitly
(up to matrix exponentials) for a dense set of claims.
=-Variance reduction techniques.
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A tractable class of Markov processes Polynomial processes

Theorem - Characterization
Polynomial Feller semimartingales

Setting and notation

@ X 1= (X{);~0 xes: time-homogeneous Markov process with
state space S C R", a closed subset of R".
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Setting and notation

@ X 1= (X{);~0 xes: time-homogeneous Markov process with
state space S C R", a closed subset of R".

@ (P¢)t>0: associated semigroup

Pef(x) = E[F(X2)] = /5 F(€)pelx.d€), x €S,

defined on functions f : S — R where E[f(X})] < oc.

e A: infinitesimal generator,

Af = tim D1

t—0
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Definition of polynomial processes

@ Pol<,(S): finite dimensional vector space of polynomials up
to degree m > 0 on S, that is the restriction of polynomials
on R" to S.

Pol<m(S) is endowed with some norm || - ||poi.,, and its
dimension is denoted by N < co. -
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Definition of polynomial processes

@ Pol<,(S): finite dimensional vector space of polynomials up
to degree m > 0 on S, that is the restriction of polynomials
on R" to S.

Pol<m(S) is endowed with some norm || - ||poi.,, and its
dimension is denoted by N < co. -

Definition
We call an S-valued time-homogeneous Markov process
m-polynomial if,

P:f(x) € Pol<m(S)

for all f € Pol<,(S) and t > 0. If X is m-polynomial for all
m > 0, then it is called polynomial.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Characterization of polynomial processes

Theorem (1)

Let X be a time-homogeneous Markov process with state space S
and semigroup (P:), pointwise continuous at t = 0. Then, the
following assertions are equivalent:

(a) X is m-polynomial for some m > 0.
(b) There exists a linear map A on Pol<,(S), such that (P;)

restricted to Pol<,(S) can be written as

A
Pt|pol(5) = €

for all t > 0.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Characterization of polynomial processes

Theorem (Continuation)

(c) The infinitesimal generator A is well defined on Pol<n,(S) and
maps Pol<y(S) to itself.

(d) The Kolmogorov backward equation for an initial value
f(-,0) € Pol<(S)

Bef(x, t) = Af(x, t)

has a real analytic solution for all times t € R. In particular,
f(-,t) € Pol<m(S).
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Sketch of the proof
(a)=(b) - The semigroup
Pey Ry — L(Pol<m(5)) (1)
satisfies for all t,s > 0 the Cauchy functional equation

Pt+s:PtPsa
Py=1Id

- Finite dimensionality of Pol<,(S) and continuity of (1) at
t =0 imply P, = e,
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Sketch of the proof

(a)=(b) - The semigroup
Pey Ry — L(Pol<m(5)) (1)
satisfies for all t,s > 0 the Cauchy functional equation
Pt+s = PtPsa
Po=Id

- Finite dimensionality of Pol<,(S) and continuity of (1) at
t =0 imply P, = e,

(b)=(c) - For f € Pol<,,(S) the generator is given by
P.f —f PAf — f
Af = lim == — lim S — Af,
t—0 t t—0 t
which is obviously well defined with respect to || - ||poi,, and in
Pol— m(S).
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Sketch of the proof

(c)=>(d) - Since A maps Pol<,(S5) to itself, the Kolmogorov backward
equation can be understood as a linear ODE in the classical
sense whose solution is ef(-,0).
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Sketch of the proof

(c)=>(d) - Since A maps Pol<,(S5) to itself, the Kolmogorov backward
equation can be understood as a linear ODE in the classical
sense whose solution is ef(-,0).

(d)=(a) - For any initial value f in an appropriate Banach space, P.f is
the unique solution of the Kolmogorov backward equation.
- On Pol<,(S) it must therefore be equal to e*f.
= P:f € Pol<,(S) = X is m-polynomial.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Corollary

Corollary

Let X be an m-polynomial process with semigroup (P¢),
continuous at t = 0 and let f € Pol<,(S) be fixed. Then there
exists a unique function Q : R x S — R, being real analytic in time
and Q(t,-) € Pol<m(S) for all t € R, such that

(a) Q(0,x) = f(x) and

(b) Q(t —s,Xs) is a martingale for s > 0.

Moreover, Q(—s, X;) is a time space harmonic function for the
m-polynomial process X.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Feller sesmimartingales

Aim: Find sufficient conditions for m-polynomial processes in terms of
the infinitesimal generator of Feller processes.

@ Conservative Feller semigroup (P;) with C°(S) C D(A).

@ There exist functions ay, by and a kernel K(x, d§) such that for
u € C2(S) the infinitesimal generator A is given by

=15 5 0
. du(x)
+ /}Rn\{o} (u(x +&) — u(x) — ;Xk(ﬁ) e ) K(x, d¢).
(2)

e x : R” — R” some truncation function.
e The parameters satisfy admissibility conditions guaranteeing
the existence of the process in S.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Feller sesmimartingales

e If X is additionally a semimartingale, then its characteristics
(B, C,v) associated with the truncation function x(§) are
given by

t t
B, = /O b(X.)ds, Cp— /O 2(X.)ds,
V(dt, d€) = K(Xe, d€)dt.

@ (b, a, K) are referred as differential characteristics of X (see
Kallsen [5]).

= Specify the form of a, b and K such that A generates an
m-polynomial process.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Conditions on the kernel K(x, d¢)

Condition A
The kernel K(x, d§) is of the form

K(Xe, d€) := poo(d€) + > Xeimio(d€) + D> XeiXsjuyi(dS),

iel (iJ)ed
where all pj; are Lévy measures on R" with
[ lelmns(de) < oc.
Jlgl>1
The index sets | and J are defined by | = {1 < i< n|S; CR,} and

J={(i,)), i <jl|Six S CR2 or S; x S; CR2}, where S; stands for the
projection on the it component.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Conditions on the kernel K(x, d¢)

Condition B
The kernel K(x, d§) satisfies

K(X:, d€) = g% u(dg),

where for each x € S, gXu denotes the pushforward of the measure p
under the map g*. Moreover, g*(y) = g(x,y) Is affine in x, that is

g:SxRY =R (x,y) — H(y)x + h(y),

where H : RY — R"™ " and h: R? — R" some measurable functions.
Furthermore, i is a Lévy measure on RY integrating

[ UHOIF + 1B aay) for 1 < k< m
Jen\ (0}
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A tractable class of Markov processes Polynomial processes

Theorem - Characterization
Polynomial Feller semimartingales

Conditions for polynomial Feller semimartingales

Theorem (2)

Let m > 2 and X be a Feller semimartingale on S whose infinitesimal
generator on C°(S) is of form (2). Assume furthermore that
E[I(XX)|™] < oo for all t € [0,1]. Then, X is m-polynomial if its
differential characteristics (b, a, K) associated with the “truncation
function” x(§) = & are of the form

be=b+> XeiBi, b, pieR",
i=1

n
nxn
ar=a+ g Xeictio + g XeiXejaij, a, ajp € R,
= =

with K satisfying either Condition A or Condition B.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Remark on the truncation function

The characteristic b must be adapted to the choice of the
truncation function :

(bt(x(@) o €MDK d5)> € Pol<s ()

is an equivalent condition guaranteeing that X is m-polynomial.
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A tractable class of Markov processes Polynomial processes
Theorem - Characterization

Polynomial Feller semimartingales

Sketch

of the proof of Theorem (2)

Denote the right side of the integro-differential operator (2)
literally by A*.

Observe that under the above conditions A*f € Pol<,(S) for
every f € Pol<p(S).

Showing that the process
ME = F(XX) — f(x / APF(XY)d
is a well-defined martingale for every f € Pol<p,(S) yields

A = A* on Pol<,(S).

Theorem (1) then yields the assertion.
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Affine processes

Lévy models
Examples y

Jacobi process
Dunkl Process

Affine processes

= Every conservative affine process X on S = Ri X R"P (see
Duffie et al. [1]) is m-polynomial if E [||(X?)]|™] < oo for
t e [0,1].
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Affine processes

Lévy models
Examples y

Jacobi process
Dunkl Process

Affine processes

= Every conservative affine process X on S = Ri X R"P (see
Duffie et al. [1]) is m-polynomial if E [||(X?)]|™] < oo for
t e [0,1].

Proof.

@ Every conservative affine process is a Feller semimartingale.

@ On C2(S), the generator of an affine process is given by

AU(X 2 Z (ak/ + Z XiQjg k/) 8?( (6X) <b aF Z XIBH VU(X)>

k,I=1

+ /5\{0} (u(x + &) — u(x) — (x(&), Vu(x))) (Moo(df) T inu;o(dg)) .

i=1
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Affine processes

Examples Lévy models

Jacobi process
Dunkl Process

Lévy driven SDEs

@ L;: Lévy process on RY with triplet (b, a, 11).
e Vi,...,Vy: affine functions V; : S — R", x — H;x + h; with
H; € R™" and h; € R".
= A process X, which solves the stochastic differential equation of

type
d

dXe =) Vi(Xe)dLl, Xo=x€S,
i=1
in S, is m-polynomial (m > 2) as soon as L admits finite m*
moment, that is [, _, [|€]|™u(d§) < oo.

Remark

@ The moment condition E[||(X¥)||] < co for t € [0,1] is automatically satisfied
due to the assumption on L.
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Affine processes

Examples Lévy models

Jacobi process
Dunkl Process

Exponential Lévy models
@ L;: Lévy process on R with triplet (b, a, ).

= An exponential Lévy model XX = xelt is m-polynomial if
f‘y|>1 e™ u(dy) < oo.
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Affine processes

Examples Lévy models

Jacobi process
Dunkl Process

Exponential Lévy models

@ L;: Lévy process on R with triplet (b, a, ).
= An exponential Lévy model XX = xelt is m-polynomial if
f‘y|>1 e™ u(dy) < oo.

Sketch of the proof

@ The infinitesimal generator is given by

Aulx) = %5 ddi(;) * (b +3+ /R (" =1=x(») u(dy)) XdL:I(XX)

-l-/R <u (x€”) — u(x) — x (e’ — 1) dL:jE(X)) p(dy).

@ We are in the situation of Condition B with g(x,y) = H(y)x = (¢’ — 1)x.

v
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Affine processes

Lévy models
Examples y

Jacobi process
Dunkl Process

Jacobi process

@ The Jacobi process is the solution of

dXt = —5(Xt—9)dt+0\/ Xt(]- _Xt)dBt, XO =X E [0,1]7

on S =[0,1], where # € [0,1] and 3,0 > 0 (see for example
Gourieroux [4]).
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Affine processes

Lévy models
Examples y

Jacobi process
Dunkl Process

Jacobi process

@ The Jacobi process is the solution of

dXt = —5(Xt—9)dt+0'\/ Xt(]- _Xt)dBt, XO =X E [0,1]7

on S =[0,1], where # € [0,1] and 3,0 > 0 (see for example
Gourieroux [4]).

@ Extension by adding jumps:
@ Jump times correspond to those of a Poisson process N; with intensity .
@ Jump size h(x)=1-2x, i.e. if a jump occurs, the process is reflected at %
dXe = —B(Xe — 0)dt + o/ Xe(1 — Xe)dBe + (1 — 2X¢)dN.
o Generator:

1 d?u(x
Au = 50'2(X(1 —x)) dx(2 )

80 0) 20D 4 \w(1 20— ).

@ In terms of Condition B, we have here g(x,y) = —2yx + y and
u(dy) = Adi(dy).
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Affine processes

Lévy models
Examples y

Jacobi process
Dunkl Process

Dunkl process

@ Dunkl processes (see for example Gallardo and Yor [3]) are
Feller processes parametrized by k > 0 whose infinitesimal
generator for u € C?(R) is given by

Ay = 2L (1 du(x) _ u(x) - u(—x)) |

T2 dx? x dx 2x2

o For every f € Pol<,(R), we therefore have Af € Pol<n,(R).
@ Dunkl processes lie in the class of polynomial processes.

e Example that the conditions of Theorem (2) are only
sufficient and not necessary.
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Moment calculation

@ There exists a linear map A such that moments of
m-polynomial processes can simply be calculated by
computing eA.

@ Choose a basis (ey, ..., en) of Pol<y(S).

o A= (ajj)ij=1,..n is obtained by

N
Ae; = E ajjej.
j=1

e Writing f as 22\121 agek, yields

tA(

P:f = (cu,...,an)e” (e1,. .., en)
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Generalized Method of Moments

@ Let § € © C IRP be the vector of parameters to be estimated and
g : S x © — R a function such that E[g(X;,6p)] = 0 for the true
value of the parameter 6q.

@ The Generalized Method of Moments estimator is the value of 6
which minimizes

Qr(0) = (S, 8(%.0)) Wr (ST, 8(%.0)).

where W is a positive semi-definite g x g matrix.
@ A typical moment condition is given by

thlthj—ls - E[thlxtﬂ—ls]
g(Xt,H) = : ,  nj,m; €N.

X{OXT ~ BIX[ X

o E[X!X[1,| =E[X[E[X/[1,|X:]] can be easily computed (see
Zhou [6], Forman [2] in the one dimensional diffusion case).

43/57



Moment calcul
Pricing and sen

Applications Variance reduci

European option pricing - setting

@ X: m-polynomial process.

@ G :S — R" deterministic measurable map such that the price
processes are given through

Se = G(Xy)

under a martingale measure.

e F = ¢(St): bounded measurable European claim for some
maturity T > 0 whose price at t > 0 is given by

pf = E[6(S7)|Fe] = E[(¢ 0 G)(X7)|F].
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Analytically tractable claims

o Claims of the form F = f o G~1(S7) for f € Pol<,(S) are
analytically tractable:

pf =E[(f o G 1)(S7)| 7] = Prf(G7X(S:))
= o(T-9A7(G(5,))

for0<t<T.

@ The sensitivities of the price process with respect to the
factors of X can be calculated by

Vpt = VPr_f (G H(S))VG H(Sy).
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Variance reduction for Monte Carlo simulation using
polynomial control variates

o X1 ... XL L sample paths of the polynomial process X.
° Standard estimator in Monte Carlo simulation:
6 =1 Xima(¢o G)(XF).
@ Approximation of ¢ o G by a polynomial £, E[f(X7)] is
explicitly known.

@ Estimator with control variate f:

L

A= 13 (60 6)YXE) — (FOXF) — EIF(X7)]).
i=1
= 7§ g ps and Var(#f) < Var(zf).
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Method illustration: exponential Lévy model

@ Price process: S = Spe*t.
@ X:: Lévy process with Lévy triplet (b, a,v).
@ r: interest rate, e~ 'S, is a martingale.
= ev(dy) <ooand b=r— 2_ / (ey -1 —yl\ylgl)V(d}’)-
Jiyi>1 2 Jr
@ Generator of the Lévy process:
_ad’u(x) a\ du(x)
Au) =5 g T (r N 2) dx
du(x)

+/R(u(x+)/)—u(x)—(ey_1) dx )V(d)’)‘

@ Example: constant jump intensity A, exponential jumps size distribution
with parameter %

@ Applying A to (x°, x*,...,x™) yields the following (m 4 1) x (m + 1)
matrix
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Method illustration: exponential Lévy model

0 e
K 0
a+c? 2K 0 .
6c  3(a+c?) 3k 0
A= ;
mlc™ (m”l'l), c' m(";1)(3 +c?) mk 0

2
— _a __ _¢c
where K =r — 3 — 1=—.

c
= E[} 1o ak(XF)K] = (o, ..., am)e(x%...,x™)".

@ Approximate (Spe* — K)™* by a polynomial f.
@ Use f as control variate for variance reduction in the MC simulation.
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Method illustration: exponential Lévy model

@ Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.

@ Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: around 100 (depending on the polynomial approximation).

European Call price - Exp Levy

g ‘1 ‘z ‘3 k4 ‘5
10 10 10 10 10
Number of Iterations (Logarithmic scale)
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Example: Heston type model with volatility dependent
jumps (Bates 2000)

@ Price process: Sy = Spe*Xt, where

V,
dX, = (r - 5 - /\Vt/(ey = 1)F(dy)) dt + \/VedW}E + dJ (),
R

dVy = —B(Vi — 0) + o/ VedW?.
o Jy = Z 1Zi, (Zi)i>1 i.i.d sequence of random variables
with probablllty distribution F.

e N;: Poisson process with intensity A V4.
e Correlation between Brownian motions p.
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Example: Heston type model with volatility dependent
jumps (Bates 2000)

Usual method:
@ Solve the Ricatti equations:

Orp(t, x,v) = rx + BOY(t, x, v),

Det(t.x,v) = (2 = x) — Bu(t,x,v) + 507 (t )
+ poxip(t, x, v)

+ A(/R(exy ~1)dF(y) - X/R(ey - 1)dF(y)).

@ Analytic solutions for ¥ might be difficult to find =
Numerical solutions must be used.

@ Application of Fourier pricing methods to obtain the European
call price.
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Moment calculation
Pricing and sensitivities

Applications Variance reduction

Example: Heston type model

@ Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.

@ Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: between 300 and 400 (depending on the polynomial approximation).
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Example: Basket option under a Heston type model

o Payoff function: e="T (S} + S2 — K)*.
o Price processes: S} = SteXt and S? = SZe™:.

dX, = (r - % -\ Vt/(ey - 1)F1(dy)) dt + /' VedW; + dJ} (V),
R

2
d, = (r- %% — NV, /(ey ~ 1)F(dy) ) dt + W VidW] + dIE(Ve),
R

dVi = —B(Vi — 0) + o/ VidW,.

o M= Zf\il Z/, (Z))i>1 i.i.d sequences of random variables
with probability distribution Fi,j=1,2.

o N: Poisson processes with intensity V V;.

e Brownian motions are correlated.
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Example: Basket option under a Heston type model
@ Comparison: Monte Carlo simulation for European call prices with and without
variance reduction.

@ Ratio of the variance of the uncontrolled estimator to that of the controlled
estimator: around 150 (depending on the polynomial approximation).

-

Price basket option - Heston type model
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Conclusion

@ Under certain moment conditions, processes with
o affine drift,
e quadratic diffusion function and
e jump compensator which is either quadratic or the
pushforward of a Lévy measure under an affine function,

are polynomial processes.

@ The calculation of moments of polynomial processes only
requires the computation of matrix exponentials.

@ Polynomial claims can therefore be priced analytically, which
leads to variance reduction techniques by using polynomial
control variates approximating the payoff function well.
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