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A Monte Carlo Method for Fully nonlinear PDEs

Financial and nonfinancial motivations

Dynamic portfolio optimization

I Price: dSt
St

= µdt + σdWt .

I Bank account with interest rate = r .

I Choose an admissible portfolio strategy. Self-financing
portfolio: dX x ,θ = θtdSt + (X x ,θ − Stθt)rdt.

I Change of numéraire: dX x ,θ = θt ((µ− r)dt + σdWt).

I To maximize E
[
U(X θ

T )|X0 = x
]

over all admissible portfolio.

I DPP approach:

v(t, x) := sup
θ·

E
[
U(X θ

T )|Xt = x
]
.

I H-J-B equation:

−∂v

∂t
− sup

θ

{
θ(µ− r)

∂v

∂x
+

1

2
θ2σ2∂

2v

∂x2

}
= 0

v(T , ·) = U(·).
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A Monte Carlo Method for Fully nonlinear PDEs

Financial and nonfinancial motivations

Dynamic portfolio optimization

I The equation is parabolic and fully nonlinear.

−∂v

∂t
+

(µ− r)2
(
∂v
∂s

)2

2σ2 ∂2v
∂s2

= 0

v(T , x) = U(x).

I Jump in price: dSt
St−

= µdt + σdWt +
∫

R∗ η(z)J̃(dt, dz).

I Fully nonlinear nonlocal parabolic PDE:

−
∂v

∂t
− sup

θ

8><>:θ(µ− r)
∂v

∂x
+

1

2
θ2σ2 ∂

2v

∂x2
+

Z
{|z|≥1}

(v(t, x + θη(z))− v(t, x)) dν(z)

9>=>; = 0

v(T , ·) = U(·).
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A Monte Carlo Method for Fully nonlinear PDEs

Financial and nonfinancial motivations

Simulation of coupled FBSDEs

I Non financial motivation: coupled FBSDE (Markovian case).

Xt = x +

∫ t

0
b(s,Xs ,Ys)ds +

∫ t

0
σ(s,Xs ,Ys)dWs

Yt = g(XT ) +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs

I Simulation:

- 4 step scheme ([Ma, Protter, Yong, 1994]).
- Picard type iteration ([Zhang, Bender] or [Menozzi,

Delarue]).
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A Monte Carlo Method for Fully nonlinear PDEs

Financial and nonfinancial motivations

Simulation of coupled FBSDEs

4 step scheme

I Quasi-linear PDE:

−
∂v

∂t
− tr[σσT (t, x , v)D2v ] + Dv · b(t, x , v) + f (t, x , v ,Dvσ(t, x , v)) = 0

v(T , ·) = g(·).

I Yt = v(t,Xt) and Zt = Dv(t,Xt)σ(t, x ,Yt).

I A Monte Carlo method could be used in 4 step scheme.

I Despite iterative methods, 4 step scheme is not practically
implementable in great dimensions.
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A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

Fully nonlinear parabolic PDE

−LX v(t, x)− F
(
t, x , v(t, x),Dv(t, x),D2v(t, x)

)
= 0, on[0,T )× Rd ,

v(T , ·) = g ,

where

LXϕ(t, x) :=
(∂ϕ
∂t

+ µ · Dϕ+
1

2
a · D2ϕ

)
(t, x)

Separation of linear and non linear part is to some extent arbitrary.

Arash Fahim 8/32 A Monte Carlo Method for Fully nonlinear PDEs



A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

Scheme idea

Scheme idea

Let X be the diffusion corresponding to LX . If the solution v is
smooth enough by Itô lemma:

Eti ,x [v (ti+1,Xti+1 )] = v (ti , x) + Eti ,x

[∫ ti+1

ti

LX v(t,Xt)dt

]
= v(ti , x)− Eti ,x

[∫ ti+1

ti

F (·, v ,Dv ,D2v)(t,Xt)dt

]

v(ti , x) ≈ Eti ,x [v (ti+1,Xti+1 )]

+ hF
(
·,Eti ,xv(ti+1,Xti+1 ),Eti ,xDv(ti+1,Xti+1 ),Eti ,xD

2v(ti+1,Xti+1 )
)
.

The choice of linear operator = the choice of diffusion process
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A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

Scheme idea

Scheme

X̂ is Euler discretization of X .

vh(T , .) := g and vh(ti , x) := Th[vh](ti , x),

where

Th[vh] (ti , x) := Eti ,x

[
v
(
ti+1, X̂ti+1

)]
+ hF

(
·,Eti ,xv(ti+1, X̂ti+1 ),Eti ,xDv(ti+1, X̂ti+1 ),Eti ,xD

2v(ti+1, X̂ti+1 )
)
.
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A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

Derivative calculation

Integration by part

Let

H0
h = 1, H1

h =
(
σT
)−1 Wh

h , H2
h =

(
σT
)−1 WhW

T
h − hId
h2

σ−1.

For every function ϕ : QT → R with exponential growth, we have:

E[D(k)ϕ(ti+1, X̂
ti ,x
h )] = E[ϕ(ti+1, X̂

ti ,x
h )Hk

h (ti , x)],

I This result gives an Monte Carlo approximation for the
derivatives.
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A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

2BSDE

2BSDE I

I If the solution v is smooth enough by applying Itô lemma to
Yt := v(t,Xt) and Zt := Dv(t,Xt):

Yt = g(XT ) +

∫ T

t
F (s,Xs ,Ys ,Zs , Γs)sd −

∫ T

t
ZsdXs

dZt = Atdt + ΓtdWt

I (Yt ,Zt , Γt ,At) =
(v(t,Xt),Dv(t,Xt),D2v(t,Xt),LDv(t,Xt)).

I No existance result. Uniqueness due to
[Cheridito-Soner-Touzi-Victoir].
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A Monte Carlo Method for Fully nonlinear PDEs

Scheme and 2BSCDs

2BSDE

2BSDE II

I ti = ih. Discretization gives:

Zi =
1

h
Ei [Yi+1∆Wi+1] , Γi =

1

h
Ei [Zi+1∆Wi+1]

Yi = Ei [Yi+1h + F (ti ,Xi ,Yi ,Zi , Γs)] , Ai = ....

I Suggested by [Cheridito-Soner-Touzi-Victoir]. Different from
Th−scheme.

Th-scheme : D(2)ϕ ≈ E[ϕ(ti+1, X̂
ti ,x
h )H2

h ]

CSTV-scheme : D(k)ϕ ≈ E[ϕ(ti+1, X̂
ti ,x
h )H1

h
2

H1
h
2

]
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A Monte Carlo Method for Fully nonlinear PDEs

Main results

Convergence

Convergence I

Assumption for convergence

The nonlinearity F is Lipschitz-continuous with respect to (r , p, γ)
uniformly in (t, x), Lipschitz continuous on x uniformly on other
variables, 1/2−Hölder on t uniformly on other variables and
|F (t, x , 0, 0, 0)|∞ <∞. Moreover, F is uniformly elliptic and
dominated by the diffusion of the linear operator LX , i.e.

εId ≤ ∇γF ≤ a on Rd × R× Rd × Sd for some ε > 0.

Arash Fahim 14/32 A Monte Carlo Method for Fully nonlinear PDEs



A Monte Carlo Method for Fully nonlinear PDEs

Main results

Convergence

Convergence II

Convergence Theorem(F., Touzi, Warin)

Assume that the fully nonlinear PDE has comparison for bounded
functions. Then for every bounded Lipschitz function g , there
exists a bounded function v so that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solution of the
problem.

Regularity

v is lipschitz on x and 1/2−Hölder on t.
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A Monte Carlo Method for Fully nonlinear PDEs

Main results

Rate of convergence

Rate of convergence I

Assumption for rate of convergence: HJB

The Lipschitz nonlinearity F is of the Hamilton-Jacobi-Bellman
type:

F (t, x , r , p, γ) = inf
α∈A
{Lα(t, x , r , p, γ)}

Lα(t, x , r , p, γ) :=
1

2
Tr [σασαT(t, x)γ] + bα(t, x)p + cα(t, x)r + f α(t, x)

where the functions µ, σ, σα, bα, cα and f α satisfy:

|µ|∞ + |σ|∞ + sup
α∈A

(|σα|1 + |bα|1 + |cα|1 + |f α|1) < ∞.
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A Monte Carlo Method for Fully nonlinear PDEs

Main results

Rate of convergence

Rate of convergence II
HJB+
The nonlinearity F satisfies HJB, and for any δ > 0, there exists a
finite set {αi}Mδ

i=1 such that for any α ∈ A:

inf
1≤i≤Mδ

|σα − σαi |∞ + |bα − bαi |∞ + |cα − cαi |∞ + |f α − f αi |∞ ≤ δ.

Rate of convergence Theorem(F., Touzi, Warin)

Assume that the final condition g is bounded Lipschitz-continuous.
Then, there is a constant C > 0 such that:

(i) under Assumption HJB, we have v − vh ≤ Ch1/4,

(ii) under the stronger condition HJB+, we have
−Ch1/10 ≤ v − vh ≤ Ch1/4.
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Conditional expectation

Conditional expectation

I Method is backward. We can calculate vh(t, x) if we know
vh(t + h, ·) at any point.

I Shoud we do simulate many paths at each piont to estimate
vh(t, x)? [Touzi, Bouchard] and [Longstaff, Schwartz]

I E[ϕ(X x
h )] = E[ϕ(Xti+1)|Xti = x ].

I For the second conditional expectation, we do not need to use
the paths which satisfies Xti = x .

I Weighting the sample paths with their ti time distance from x .

E[ϕ(Xti+1)|Xti = x ] ≈
∑N

l=1 ϕ(X l
ti+1

)κ(X l
ti
− x)∑N

l=1 κ(X l
ti − x)

.
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Non-financial test problem

Mean curvature I

Mean curvature flow

vt −∆v +
Dv · D2vDv

|Dv |2
= 0 and v(0, x) = g(x)
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Numerical results

Non-financial test problem

Mean curvature II

Figure: Solution of the mean curvature flow for the sphere problem
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Non-financial test problem

Figure: Mean curvature flow problem for different time step and
diffusion: scheme 1
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Non-financial test problem

Figure: Mean curvature flow problem for different time step and
diffusions: scheme 2
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Non-financial test problem

Figure: Mean curvature flow problem in 2D
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Financial subsolution

Portfolio optimization

Two dimensional
Heston model:

dSt = µStdt +
√

YtStdW
(1)
t

dYt = k(m − Yt)dt + c
√

Yt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
.

HJB PDE

v(T , x , y) = −e−ηx

0 = −vt − k(m − y)vy − 1
2c2yvyy − supθ∈R

(
1
2θ

2yvxx + θ(µvx + ρcyvxy

)
= −vt − k(m − y)vy − 1

2c2yvyy +
(µvx +ρcyvxy )2

2yvxx
.
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Financial subsolution

Figure: Difference between calculation and reference for scheme one and
two
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Financial subsolution

Portfolio optimization

Five dimensional
Vasicek model:

drt = κ(b − rt)dt + ζdW
(0)
t .

CEV-SV model and Heston model.

dS
(i)
t = µiS

(i)
t dt + σi

√
Y

(i)
t S

(i)
t

βi
dW

(i ,1)
t , β2 = 1,

dY
(i)
t = ki

(
mi − Y

(i)
t

)
dt + ci

√
Y

(i)
t dW

(i ,2)
t
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A Monte Carlo Method for Fully nonlinear PDEs

Numerical results

Financial subsolution

Figure: Five dimensional financial problem and its results for different
volatilities with 3 millions and 30 millions particles
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A Monte Carlo Method for Fully nonlinear PDEs

Nonlocal PDEs

Nonlocal parabolic fully nonlinear PDE

−LX v(t, x)− F
`
t, x , v(t, x),Dv(t, x),D2v(t, x), v(t, ·)

´
= 0, on [0,T )× Rd ,

v(T , ·) = g , on ∈ Rd .

LXϕ(t, x) :=
`∂ϕ
∂t

+ µ · Dϕ+
1

2
a · D2ϕ

´
(t, x)

+

Z
Rd
∗

`
ϕ(t, x + η(t, x , z))− ϕ(t, x)− 11{|z|≤1}Dϕ(t, x)η(t, x , z)

´
dν(z).
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A Monte Carlo Method for Fully nonlinear PDEs

Nonlocal PDEs

Compound Poisson process approximation

Discretization

X̂ t,x ,κ
h = x + µ(t, x)h + σ(t, x)Wh +

∫
{|z|≥κ}

η(z)J̃([0, h], dz),

X̂ x ,κ
ti+1

= X̂
ti ,X̂

x,κ
ti

,κ

h and X̂ x ,κ
0 = x .

Nκ
t =

∫
{|z|≥κ}

J̃([0,T ], dz).

Notice that Nκ
t has intensity equal to λκ :=

∫
{|z|≥κ} ν(dz).

X̂ t,x ,κ
h = x + (µ− λκ) h + σWh +

Nh∑
i=1

η(Yi ),

where Yi s are i.i.d. Rd
∗−valued random variables, independent of

W distributed as 1
λκ
ν(dz).
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Nonlocal PDEs

Integral term approximation

Integration by part

We can choose κ dependent on h such that hλκ = λ for some
constant λ.

ν̂κh (ψ)(t, x) := E

[∫
{|z|≥κ}

ψ(t + h, X̂ x
h + η(z))dν(z)

]
.

Lemma
For every function ϕ : Rd → R with exponential growth, we have:

ν̂κh (ψ)(t, x) =
1

h
E[ψ(t + h, X̂ t,x ,κ

h )Nκ
h ].

Nκ
h is a Poisson process with parameter λ.
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Nonlocal PDEs

Integral term approximation

Integral operator

I[t, x , r , p, ψ] :=

∫
Rd
∗

(
ψ(t, x + η(t, x , z))− ψ(t, x)

−11{|z|≤1}Dψ(t, x)η(t, x , z)
)
dν(z)

Iκh [t, x , r , p, ψ] := ν̂κh (ψ)(t, x)− λr − λp · E
[
11{|Y |≤1}η(Y )

]
.
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Conclusions

Final remarks

I The convergence is in L∞−norm.

I despite the convergence is established on uniform ellipticity
assumption, the numerical tests shows the convergence in not
uniformly elliptic cases.

I The rate of convergence may not be optimal. It is shown in
[F., Touzi, Warin] that the rate for linear equation is 1/2 from
both sides.

I Rate of convergence is derived for convex(concave)
nonlinearities.

I The proofs in nonlocal case do not change dramatically.

I Possible extensions: Elliptic problems, Obstacle problem.
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