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Density Hypothesis

Density Hypothesis

Let (2, A,F,P) be a filtered probability space.
A strictly positive and finite random variable 7 (the default time) is
given.

Our goals are

e to show how the information contained in the reference filtration IF

can be used to obtain information on the law of 7,

e to investigate the links between martingales in the different

filtrations that will appear.




Density Hypothesis

We assume the following density hypothesis: there exists a
non-atomic non-negative measure n such that, for any time ¢,
there exists an F; ® B(R™)-measurable function (w, ) — as(w, )

which satisfies
P(r € dO|F:) = a(0)n(db), P —a.s.

The conditional distribution of 7 is characterized by the survival
probability defined by

Si(0) :=P(r > 0|F;) = \moo oz (u)n(du)

Let
Sy =8 (t) =P(r > t|F) = \ﬁ o (u)n(du)

Observe that the set A; := {S; > 0} contains a.s. the event {17 > t}.




Density Hypothesis

The family ay(.) is called the conditional density of 7 w.r.t. n given
Fi.
Note that

o S:(0) =E(Sy|F:) for any 0 >t

o the law of 7 is P(7 > 0) = [ ap(u)n(du)

0

o for any ¢, [, au(u)n(du) =1

St(0) :=P(1 > 0|F) = [,° ar(u)n(du) 4



Density Hypothesis

The family ay(.) is called the conditional density of 7 w.r.t. n given
Fi.
Note that

o S:(0) =E(Sy|F:) for any 0 >t

o the law of 7 is P(t > 0) = [~ ap(u)n(du)

e for any ¢, %ooo oy (w)n(du) =

e For an integrable Fr ® o(7) r.v. Yp(7), one has, for t < T
B(Yr(nIF) =B( | Ye(uar(un(du)\

e The default time 7 avoids F-stopping times, i.e., P(7 =) = 0 for
every [F-stopping time 9.

St(0) :=P(1 > 0|Fr) = %moo at(u)n(du) 5



Density Hypothesis

By using the density, we adopt an additive point of view to represent

the conditional probability of 7

ma%ﬂmgssgas

In the default framework, the “intensity” point of view is often

preferred, and one uses a multiplicative representation as

)
@afnazlxwzggasv

where \;(u) = —0, In S¢(u) is the “forward intensity”.




Computation of conditional expectations

Computation of conditional expectations

Let D = (D;)¢>0 be the smallest right-continuous filtration such that =
is a D-stopping time, and let G = F Vv D.

Any G;-measurable r.v. H® may be represented as
NHNM@ — WNWH,T.V&, —+ mwAﬁvHﬁﬂMS,

where H is an F;-measurable random variable and Hy(7) is F; ® o(7)

measurable




Computation of conditional expectations

Computation of conditional expectations

Let D = (D;)¢>0 be the smallest right-continuous filtration such that =
is a D-stopping time, and let G = F Vv D.

Any G;-measurable r.v. H® may be represented as
NHQ@ — WNWH,T.V&, —+ mwAﬁvHﬁﬂMS,

where H is an F;-measurable random variable and Hy(7) is F; ® o(7)

measurable

@Tﬂ@@wﬁﬂv& ZHL

HY —
St

a.s.on A;; =0 if not.




Computation of conditional expectations

Immersion property
In the particular case where
au(8) = ag(8), VO <t

one has

Sy =1-— \o a;(0)n(dd) =1 — \o ar(0)n(dd) =P(1t > t|Fr) a.s.

for any T' > t and P(7 > t|F;) = P(7 > t|Fs ). This last equality is
equivalent to the immersion property (i.e. F martingales are

G-martingales).
Conversely, if immersion property holds, then
P(r > t|F;) = P(1 > t|Fso)

hence, the process S is decreasing and the conditional survival functions
S¢(0) are constant in time on [#, ), i.e., S¢(0) = Sp(0) for t > 6.

St = P(r > t|Fr) = boo at(u)n(du) 9



Dynamic point of view and density process

Dynamic point of view and density process

Regular Version of Martingales

One of the major difficulties is to prove the existence of a universal

cadlag martingale version of this family of densities.
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Dynamic point of view and density process

F-decompositions of the survival process S

e The Doob-Meyer decomposition of the super-martingale S is

given by
¢
S, =1+ M, I\ o, (u)n(du)
0

where M" is the cadlag square-integrable martingale defined as

M == [ (aulw) — aula))ndn) = B[ |~ auun(dn)iF] - 1
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Dynamic point of view and density process

F-decompositions of the survival process S

e The Doob-Meyer decomposition of the super-martingale S is

given by
¢
S, =1+ M, I\ o, (u)n(du)
0

where M" is the cadlag square-integrable martingale defined as

M == [ (aulw) — aula))ndn) = B[ |~ auun(dn)iF] - 1

o Let (" :=inf{t:S;_ = 0}. We define \} := omhv for any ¢t < ¢¥ and

let A = >w> cF for any ¢t > (¥. The multiplicative decomposition of

S is given by

Sy = Lie” JoXsn(ds)  where dLF = elo ymi%v&iw.

12



Dynamic point of view and density process

PROOF: 1) First notice that CM o, (u)n(du),t > 0) is an F-adapted
continuous increasing process. By the martingale property of
(a¢(0),t > 0), for any fixed ¢,

Sy = \ﬂoo oz (u)n(du) = E\ﬂoo a (w)n(du)|Fe], a.s..

From the properties of the density, 1 — .S; = h o (u)n(du) and

MF = - \ (0e(0) — au(w)))(du) = E \ e (w)(du)| o] — 1.

2) By definition of L and 1), we have
dLF = eJo \/Wi%v&@ 1+ elo ymi%;w@wi&v — oo &Mi%v&ﬁﬁ

which implies the result.
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Dynamic point of view and density process

Relationship with the G-intensity

Definition: Let 7 be a G-stopping time. The G-compensator A® of T is
the G-predictable increasing process such that (1i;<4 — AP t>0) is a
G-martingale. The G-compensator is stopped at T, i.e., >mm = >w@>q.

A® coincides, on the set {T > t}, with an F-predictable process A¥, i.e.

A2y = ALy

14



Dynamic point of view and density process

Relationship with the G-intensity

Definition: Let 7 be a G-stopping time. The G-compensator A® of T is
the G-predictable increasing process such that (1i;<4 — AP t>0) is a
G-martingale. The G-compensator is stopped at T, i.e., >Mm = >w@>ﬁ.
A® coincides, on the set {7 > t}, with an F-predictable process A, i.e.
A2y = ALy

e the G-compensator A® of 7 is absolutely continuous w.r.t. n with

o (t
ym H H?vﬁyw = liron UWA v

In particular, 7 is a totally inaccessible G-stopping time.

15



Dynamic point of view and density process

Relationship with the G-intensity

Definition: Let 7 be a G-stopping time. The G-compensator A® of T is
the G-predictable increasing process such that (1i;<4 — AP t>0) is a
G-martingale. The G-compensator is stopped at T, i.e., >Mm = >w@>q.
A® coincides, on the set {T > t}, with an F-predictable process A, i.e.
A2y = ALy

e the G-compensator A® of 7 is absolutely continuous w.r.t. n with

87 va
mwl .

ym — fﬁvﬁyw — fqvﬁ

In particular, 7 is a totally inaccessible G-stopping time.
e For any t < (¥ and T > ¢, we have oy (T) = E[N%|F].

16



Dynamic point of view and density process

PROOF: 1) The G-martingale property of (11,<4 — \;@w Aon(ds),t > 0) is

equivalent to the G-martingale property of

Jo Asn(ds) _ Jo ywi%ﬁu > 0)

AH,T.VS,Q H_..T.Vﬁvm

This follows from
ﬁ??vﬁm& Xon(ds) TﬁL
S

E[Sielo Xen(ds)| F,) LE
o H_.,T.Vmw S, — H,T.Vmwmv

H_w:ﬁﬂvﬁwm%% v,md?ﬁmv_m,w_ — H.T.Vmw

where the last equality follows from the F-local martingale property of
L¥. Moreover, the continuity of the compensator A® implies that 7 is

totally inaccessible.

17



Dynamic point of view and density process

2) By the martingale property of density, for any T > ¢,
a;(T) = Elar(T)|F]. Applying 1), we obtain

Lir
D@AMJV =K -QQAQV%_.ﬂw = ﬁﬁy%i,ﬂwf <~w < A%g

hence, the value of the density can be partially deduced from the
intensity:. VAN

18



Dynamic point of view and density process

G-martingale characterization

A cadlag process Y© is a G-martingale if and only if there exist an
F-adapted cadlag process Y and an F; ® B(R™)-optional process Y;(.)
such that

5@ =Yilisn +Yi(7) 1<y

and that
o (V;5; + %% Ys(s)as(s)n(ds), t > 0) is an F-local martingale;
o (Yi(0)ay(0),t > 0) is an F-martingale on [0, ¢?).

19



Dynamic point of view and density process

Any F-martingale Y is a G-semimartingale. Moreover, it admits the
decomposition Y = NSM\ et x_w\ ‘© where MYC is a G-martingale and
AV = Algrsey + A¢(7)1i7<4) is an optional process with finite
variation given by

- [P dYF S, P dYF a(0))s
xrwl\o S and A.(0) I\m o)

20



Dynamic point of view and density process

Girsanov theorem

Let ZF = 2elirsey + 2¢(7)1 <4 be a positive G-martingale with
ZF =1andlet 7 = z,5; + \m zi(uw)ag (u)n(du) be its F projection.
Let Q be the probability measure defined on G; by dQ = Z*dP.

21



Dynamic point of view and density process

Girsanov theorem

Let ZF = 2elirsey + 2¢(7)1 <4 be a positive G-martingale with
ZF =1andlet 7 = z,5; + \m zi(uw)ag (u)n(du) be its F projection.
Let Q be the probability measure defined on G; by dQ = Z*dP.

Then, QmA%v = ¢ (0) NWA%VV vt € [0,¢%);

and;:
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Dynamic point of view and density process

Girsanov theorem

Let ZF = 2elirsey + 2¢(7)1 <4 be a positive G-martingale with
ZF =1andlet 7 = z,5; + \m zi(uw)ag (u)n(du) be its F projection.
Let Q be the probability measure defined on G; by dQ = Z*dP.

Then, QmA%v = ¢ (0) NWA%VV vt € [6,¢%);

and:
(i) the Q-conditional survival process is defined on [0, (") by MM@ =7

2t va

2t
F
Nﬁ

(ii) the (F,Q)-intensity process is ;"% = AF , n(dt)- a.s.;
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Dynamic point of view and density process

Girsanov theorem

Let ZF = 2elirsey + 2¢(7)1 <4 be a positive G-martingale with
ZF =1andlet 7 = z,5; + \m zi(uw)ag (u)n(du) be its F projection.
Let Q be the probability measure defined on G; by dQ = Z*dP.

Then, QmA%v = ¢ (0) NWA%V“ vt € [6,¢%);

and;:

(i) the Q-conditional survival process is defined on [0, (") by MM@ =7

2t va

2t
F
Nﬁ

(ii) the (F,Q)-intensity process is ;"% = AF , n(dt)- a.s.;

(iii) L¥© is the (F,Q)-local martingale

ﬁ
LF% = 1 e exp | (482 Nyn(ds).t € [0.)
t

24



Dynamic point of view and density process

PROOF: For any t € [0, ("), the Q-conditional probability can be
calculated by

ﬁﬁ?vﬁNﬁ,ﬂL St

S tF,) = _ Pt

@Aﬂ > _ wv Nm@ Zt NWJ

and, for any 6 <'t,

or < 017, = Bllir=nZ8F] _ Ellgna(n)IF] _ Jy 2@orwn(dy)
< t ZF ZF NWTJ

The density process is then obtained by taking derivatives. Finally, we
use A2 = a2(¢)/S2 and L@ = %/ Astn(ds),

25



Dynamic point of view and density process

Given a density process, it is possible to construct a random variable 7

such that P(7 > 0|F;) = G¢(0) as we present now:
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Dynamic point of view and density process

Given a density process, it is possible to construct a random variable 7
such that P(7 > 0|F;) = G¢(0) as we present now:

Let (2, A,F,P) and 7 a random variable with law

P(r > 6) = Go(0) = [, n(du), independent of F,, constructed on an

extended probability space, and o the given density process.
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Dynamic point of view and density process

Given a density process, it is possible to construct a random variable 7

such that P(7 > 0|F;) = G¢(0) as we present now:

Let (2, A,F,P) and 7 a random variable with law
P(T >t) = Go(t) = [, n(du), independent of Fs, constructed on an

extended probability space, and « the given density process.

Define
dQlg, = Z; dP|g,

with
H_y o0
Nm — EA%N Q%Si%& + H_ﬁmﬁo&?v .
t Jt

28



Dynamic point of view and density process

Given a density process, it is possible to construct a random variable 7

such that P(7 > 0|F;) = G¢(0) as we present now:

Let (2, A,F,P) and 7 a random variable with law
P(r >t) = Go(t) = [, n(du), independent of Fu,, constructed on an

extended probability space, and o the given density process.

Define
dQ|g, = Z; dP|g,

with

H_, ©.@)
Qﬂ t
Then, Q is a probability which coincides with P on F; and under Q,

7% =1Ty4er a(u)n(du) + Lr<poy(7)
o = a.

(Note that this result was obtained by Grorud and Pontier in a finite

horizon case)

29



Dynamic point of view and density process

The change of probability measure generated by the two processes

QQAQV
o (0)

provides a model where the immersion property holds true, and where

2y = Ahwv|ﬁ 24(0) =

the intensity processes does not change.

More generally, the only changes of probability measure for which the
immersion property holds with the same intensity process are generated
by a process z such that (z;LY,¢ > 0) is an uniformly integrable

martingale.

30



Dynamic point of view and density process

Assume that immersion property holds under P.
1) Let the Radon-Nikodym density (Z%,t > 0) be a pure jump
martingale with only one jump at time 7. Then, the (I, P)-martingale

(ZF,t > 0) is the constant martingale equal to 1. Under Q, the intensity
2 (t)
<t

process is yﬁ@ = A7 ,n(dt)-a.s., and the immersion property still
holds.

2) The only changes of probability measure compatible with immersion
property have Radon-Nikodym densities that are the product of a pure
jump positive martingale with only one jump at time 7, and a positive

F-martingale.
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Modelling of density process

Modelling of density process

32



Modelling of density process

HJM framework and short rate models

To model the family of density processes we make references to the

classical interest rate models.

We suppose in what follows that [ is a Brownian filtration.

See D.C. Brody and L. Hugston (2001) for related approach 33



Modelling of density process

Suppose that for any 8 > 0, the bounded martingale (5:(0),t > 0)

satisfies
dS:(0) = Z:(0)dW,

where ANLS t > 8 is an F-predictable process. If the process z;(6) such
that Z;(0 f\o z¢(u)n(du) is bounded by an integrable process, then

1. day(6) = —2z:(0)dW5.

2. The martingale @8& in the Doob-Meyer decomposition of S is given
by Mf =1 — f\o )dWs.

See D.C. Brody and L. Hugston (2001) for related approach 34



Modelling of density process

PROOF: 1) is obvious by definition. 2) is obtained by using previous

results and integration by part, in fact,

WE =1 \OJES \M 2o(w)dW, = 1 — \oﬁ %ﬁm\ow izvi%vv.

Observe in addition that Z;(0) = 0 since S¢(0) = 1 for any ¢ > 0, which
implies 2)

See D.C. Brody and L. Hugston (2001) for related approach 35



Modelling of density process

We can also consider (5¢(0),t > 0) in the classical HJM models where
its dynamics is given in multiplicative form. We also deduce the
dynamics of the forward rate, in both forward and backward forms.
The density can then be calculated as a;(0) = A\ (6)S:(0).

See D.C. Brody and L. Hugston (2001) for related approach 36



Modelling of density process

For any t,6 > 0, let W(t,0) = 575! and define (¢, 0) by

U(t,0) = «\% Y(t,u)n(du). Recall the forward rate \;(6) of 7 given by
At(0) = —0p In S;(6).

dS:(0) = Z,(0)dW, 37



Modelling of density process

For any t,6 > 0, let W(t,0) = 5754 and define ¢(t,0) b

%o n(du). Recall the forward rate A\;(#) of 7 given by
?AS = —0pIn m%%v. Then

1. S,(8) = So() exp Qm 5,0)dW, — L [F1D(s %%%v

dS:(0) = Z,(0)dW, 38



Modelling of density process

For any t,6 > 0, let W(t,0) = 5754 and define ¢(t,0) b

%o n(du). Recall the forward rate A\;(#) of 7 given by
?AS = —0pIn m%%v. Then

1. S,(8) = So() exp Q% 5,0)dW, — L [F1D(s QV_M%V

2. \(0) = — 2 ab(s,0)dWs + [ (s, 0)W(s,0)*ds;

Sy (0) = Z,(0)dW, 39



Modelling of density process

For any t,6 > 0, let W(t,0) = 5754 and define ¢(t,0) b

%o n(du). Recall the forward rate A\;(6) of 7 given by
?AS = —0pIn m%mv. Then

1. S,(8) = So() exp Cm 5,0)dW, — L [F1D(s QV_M%V
2. A (0) = — [Ta(s,0)dWs + [ (s, 0)T(s,0)*ds:

3. @H@%A c\,oy% (ds) |_|%o (s,8)dWy ||¢\Jo W (s, m:w&mv

Sy (0) = Z,(0)dW, 40



Modelling of density process

PRrROOF: The process S;(6) is the solution of the equation

dSi(9)
W) Yt 0)dW,, V.0 > 0.
%wA%v A v t

Hence 1), from which we deduce immediately 2) by differentiation w.r.t.

6.
Now, note that by 1),

t t H t
InS, = |\ g@i%i\ (s, £)dIV, — m\ (s, 1) 2ds
O O O

41



Modelling of density process

Woreover, we have by 2) that

[ tomtas) = [ xotomas) - [ ats) [ viusia
\ &m\ﬂs:m U(u,s) du

— \oyo?vi&mvl\oAQA?SIGA?:VV&S\:
1t
I_Il

[ e - [ 1w

Observe in addition that by definition of the forward rate A\;(8) and
then, we have \;(s) = A, which implies 3). Finally, 4) is a direct result
from 2).

As a conditional survival probability, S;(#) is decreasing on 6, which is
equivalent to that \;(0) is positive. This condition is similar as for the

zero coupon bond prices.

42



Modelling of density process

In the second approach, we can borrow short rate models for the
F-intensity A¥ of 7, and then obtain the dynamics of conditional

probability Sy(7T") for T' > t. The monotonicity condition of S;(T") on T

is equivalent to the positivity condition on AF.

43



Modelling of density process

Example: The non-negativity of A is satisfied if

e for any 6, the process ()W (0) is non negative, or if ¥ () is
non negative;

e for any 6, the local martingale (;(6) = \g(6) — %% Ys(0)dWy is

a Doléans-Dade exponential of some martingale, i.e., is solution of
t
Gt (0) = Ao(0) +\ Cs(0)bs(0)dWy ,
0

that is, if — \m Vs (0)dW, = %% bs(0)(s(0)dW,. Here the initial condition

is a positive constant A\g(0).

At(0) = Xo(0) — [ (s, 0)dWs + [ 4(s,0)U(s,0)*ds 44



Modelling of density process

Hence, we set

(0) = b (0)G0) = ~bi(Odo@)exp [ bO)aW. — 5 [ 12(0)is

where )\g is a positive intensity function and b(f) is a non-positive

F-adapted process. Then, the family

0
au®) = M) exp (~ [ Moo,
0
where

A(0) = Mo(0) — \o $4(0) AW, + \o $4(0) T, (6) ds

satisfies the required assumptions.

At(0) = Xo(0) — [ (s, 0)dWs + [ 4(s,0)U(s,0)*ds 45



Modelling of density process

Other examples

46



Modelling of density process

Example: “Cox-like” construction. Here
e ) is a non-negative F-adapted process, A; = fﬁ AsdsS
e O is a given r.v. independent of F,, with unit exponential law

e VV is a F,, -measurable non-negative random variable

o T =inf{t: Ay > OV}
For any 6 and ¢,

A
QuA%v — %V?l > %i'ﬂ.wv — %UA\/% < @a\;.ﬂ.ﬂv =P A@NU|% N ml@

ﬁv |
Let us denote exp(—A;/V) =1 — f\% sds, with

%m — Aym\a\v ®N©|\omAy§\<v &Qu

and define y(s) = E (95| F¢). Then, ai(s) = v:(s)/70(s).

47



Modelling of density process

Backward construction of the density
Let ¢(-, @) be a family of densities on R, depending of some parameter

and X € F. a random variable. Then

\ o(u, X)du =1
0

and whe can chose

48



Multidefaults

Multidefaults

Computation of prices in case of multidefaults is now easy
e In a first step, one orders the default

e Computation before the first default are done in the reference

filtration

e Between the first and the second default, one takes as new reference
filtration the filtration generated by the first default and the
previous reference filtration, as explained previously for the ”after

default” computations

e and we continue till the end

49



Multidefaults

Let =71 A 1 ando = 71 V 75 and assume that

Si(01,02) :=P(1 > 01,0 > 02| F;) = \ \ oy (u, v)dn(u, v).
0, Jo,

The F-density of 7 is given by

ﬁ_f?v \moo a(01,v)n2(dv), a.s..

1

For any 6s,t > 0, the G()-density of o is given by

q_ﬁE (6,) = boo o (u, 02)n1 (du) a(T,02)
Mv H_r T I_I H_. quA ’ a.s..
s T el ()

50



Multidefaults

Begin at the beginning, and go on till you come to the end. Then, .

Lewis Carroll, Alice’s Adventures in Wonderland.
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Multidefaults

Begin at the beginning, and go on till you come to the end. Then, stop.

Lewis Carroll, Alice’s Adventures in Wonderland.
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Multidefaults

THANK YOU FOR YOUR ATTENTION
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