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D
en

sity
H

y
p
o
th

esis

D
e
n
sity

H
y
p
o
th

e
sis

L
et

(Ω
,A
,
F
,
P
)

be
a

filtered
probability

space.

A
strictly

positive
and

finite
random

variable
τ

(the
default

tim
e)

is

given.

O
ur

goals
are

•
to

show
how

the
inform

ation
contained

in
the

reference
filtration

F

can
be

used
to

obtain
inform

ation
on

the
law

of
τ,

•
to

investigate
the

links
betw

een
m

artingales
in

the
different

filtrations
that

w
ill

appear.

2



D
en

sity
H

y
p
o
th

esis

W
e

assum
e

the
follow

ing
d
en

sity
h
y
p
oth

esis:
th

ere
ex

ists
a

n
on

-atom
ic

n
on

-n
egative

m
easu

re
η

su
ch

th
at,

for
an

y
tim

e
t,

th
ere

ex
ists

an
F

t ⊗
B

(R
+
)-m

easu
rab

le
fu

n
ction

(ω
,θ)→

α
t (ω

,θ)

w
h
ich

satisfi
es

P
(τ∈

d
θ|F

t )
=
α

t (θ)η(d
θ),

P−
a
.s.

T
he

conditional
distribution

of
τ

is
characterized

by
the

survival

probability
defined

by

S
t (θ)

:=
P
(τ
>
θ|F

t )
= ∫

∞θ

α
t (u)η(d

u)

L
et

S
t
:=

S
t (t)

=
P
(τ
>
t|F

t )
= ∫

∞t

α
t (u)η(d

u)

O
bserve

that
the

set
A

t
:=

{S
t
>

0}
contains

a.s.
the

event{τ
>
t}.

3



D
en

sity
H

y
p
o
th

esis

T
he

fam
ily

α
t (.)

is
called

the
con

d
ition

al
d
en

sity
of
τ

w
.r.t.

η
given

F
t .

N
ote

that

•
S

t (θ)
=

E
(S

θ |F
t )

for
any

θ≥
t

•
the

law
of
τ

is
P
(τ
>
θ)

= ∫
∞θ
α

0 (u)η(d
u)

•
for

any
t, ∫

∞0
α

t (u)η(d
u)

=
1

•
For

an
integrableF

T ⊗
σ(τ)

r.v.
Y

T
(τ),

one
has,

for
t≤

T
:

E
(Y

T
(τ)|F

t )
=

E
( ∫

∞0

Y
T
(u)α

T
(u)η(d

u)|F
t )

•
T

he
default

tim
e
τ

avoids
F
-stopping

tim
es,

i.e.,
P
(τ

=
ϑ)

=
0

for

every
F
-stopping

tim
e
ϑ.

S
t (θ

)
:=

P
(τ
>
θ|F

t )
= ∫

∞θ
α

t (u
)η

(d
u
)
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D
en

sity
H

y
p
o
th

esis

B
y

using
the

density,
w

e
adopt

an
ad

d
itive

point
of

view
to

represent

the
conditional

probability
of
τ

S
t (θ)

= ∫
∞θ

α
t (u)η(d

u)

In
the

default
fram

ew
ork,

the
“intensity”

point
of

view
is

often

preferred,
and

one
uses

a
m

u
ltip

licative
representation

as

S
t (θ)

=
exp(− ∫

θ

0

λ
t (u)η(d

u))

w
here

λ
t (u)

=
−
∂

u
ln
S

t (u)
is

the
“forw

ard
intensity”.
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C
o
m

p
u
ta

tio
n

o
f
co

n
d
itio

n
a
l
ex

p
ecta

tio
n
s

C
o
m

p
u
ta

tio
n

o
f
co

n
d
itio

n
a
l
e
x
p
e
cta

tio
n
s

L
et

D
=

(D
t )

t≥
0

be
the

sm
allest

right-continuous
filtration

such
that

τ

is
a

D
-stopping

tim
e,

and
let

G
=

F∨
D

.

A
nyG

t -m
easurable

r.v.
H

Gt
m

ay
be

represented
as

H
Gt

=
H

Ft 11{
τ
>

t}
+
H

t (τ)11{
τ≤

t}

w
here

H
Ft

is
an

F
t -m

easurable
random

variable
and

H
t (τ)

isF
t ⊗

σ(τ)

m
easurableH

Ft
=

E
[H

Gt
11{

τ
>

t} |F
t ]

S
t

a
.s.on

A
t ;

=
0

if
not

.
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C
o
m

p
u
ta

tio
n

o
f
co

n
d
itio

n
a
l
ex

p
ecta

tio
n
s

Im
m

ersion
p
rop

erty

In
the

particular
case

w
here

α
t (θ)

=
α

θ (θ),
∀
θ≤

t

one
has

S
t
=

1− ∫
t

0

α
t (θ)η(d

θ)
=

1− ∫
t

0

α
T
(θ)η(d

θ)
=

P
(τ
>
t|F

T
)
a
.s.

for
any

T
≥
t

and
P
(τ
>
t|F

t )
=

P
(τ
>
t|F

∞
).

T
his

last
equality

is

equivalent
to

the
im

m
ersion

property
(i.e.

F
m

artingales
are

G
-m

artingales).

C
onversely,

if
im

m
ersion

property
holds,

then

P
(τ
>
t|F

t )
=

P
(τ
>
t|F

∞
)

hence,the
process

S
is

decreasing
and

the
conditionalsurvivalfunctions

S
t (θ)

are
constant

in
tim

e
on

[θ,∞
),

i.e.,
S

t (θ)
=
S

θ (θ)
for

t
>
θ.

S
t

:=
P
(τ
>
t|F

t )
= ∫

∞t
α

t (u
)η

(d
u
)
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D
y
n
a
m

ic
p
o
in

t
o
f
v
iew

a
n
d

d
en

sity
p
ro

cess

D
y
n
a
m

ic
p
o
in

t
o
f
v
ie

w
a
n
d

d
e
n
sity

p
ro

ce
ss

R
egu

lar
V

ersion
of

M
artin

gales

O
ne

of
the

m
ajor

diffi
culties

is
to

prove
the

existence
of

a
universal

càdlàg
m

artingale
version

of
this

fam
ily

of
densities.

1
0
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p
o
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t
o
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v
iew

a
n
d

d
en

sity
p
ro

cess

F
-d

ecom
p
osition

s
of

th
e

su
rv

ival
p
ro

cess
S

•
T

he
D

o
ob

-M
eyer

d
ecom

p
osition

of
the

super-m
artingale

S
is

given
by

S
t
=

1
+
M

Ft − ∫
t

0

α
u (u)η(d

u)

w
here

M
F

is
the

càdlàg
square-integrable

m
artingale

defined
as

M
Ft

=
− ∫

t

0 (α
t (u)−

α
u (u) )η(d

u)
=

E
[ ∫

∞0

α
u (u)η(d

u)|F
t ]−

1.

•
L
et
ζ

F
:=

inf{t
:
S

t−
=

0}.
W

e
define

λ
Ft

:=
α

t (t)
S

t−
for

any
t≤

ζ
F

and

let
λ

Ft
=
λ

Ft∧
ζ

F
for

any
t
>
ζ

F.
T

he
m

u
ltip

licative
d
ecom

p
osition

of

S
is

given
by

S
t
=
L

Ft e − ∫
t0

λ
Fs
η
(d

s
)

w
here

d
L

Ft
=
e ∫

t0
λ

Fs
η
(d

s
)d
M

Ft
.

1
1
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L
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=

0}.
W
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ζ
F
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λ

Ft∧
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F
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t
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T

he
m

u
ltip
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p
osition
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S
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S
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L
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e ∫
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.
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D
y
n
a
m

ic
p
o
in

t
o
f
v
iew

a
n
d

d
en

sity
p
ro

cess

P
r
o
o
f
:
1)

F
irst

notice
that

( ∫
t0
α

u (u)η(d
u),t≥

0)
is

an
F
-adapted

continuous
increasing

process.
B

y
the

m
artingale

property
of

(α
t (θ),t≥

0),
for

any
fixed

t,

S
t
= ∫

∞t

α
t (u)η(d

u)
=

E
[ ∫

∞t

α
u (u)η(d

u)|F
t ],

a
.s..

From
the

properties
of

the
density,

1−
S

t
= ∫

t0
α

t (u)η(d
u)

and

M
Ft

:=
− ∫

t

0

(α
t (u)−

α
u (u))η(d

u)
=

E
[ ∫

∞0

α
u (u)η(d

u)|F
t ]−

1.

2)
B

y
definition

of
L

Ft
and

1),
w

e
have

d
L

Ft
=
e ∫

t0
λ

Fs
η
(d

s
)d
S

t +
e ∫

t0
λ

Fs
η
(d

s
)λ

Ft S
t η(d

t)
=
e ∫

t0
λ

Fs
η
(d

s
)d
M

Ft
,

w
hich

im
plies

the
result.




1
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D
y
n
a
m

ic
p
o
in

t
o
f
v
iew

a
n
d

d
en

sity
p
ro

cess

R
elation

sh
ip

w
ith

th
e

G
-in

ten
sity

D
efinition:

Let
τ

be
a

G
-stopping

tim
e.

T
he

G
-com

pensator
Λ

G
of
τ

is

the
G

-predictable
increasing

process
such

that
(11{

τ≤
t} −

Λ
Gt
,t≥

0)
is

a

G
-m

artingale.
T

he
G

-com
pensator

is
stopped

at
τ,

i.e.,
Λ

Gt
=

Λ
Gt∧

τ .

Λ
G

coincides,
on

the
set{τ≥

t},
w
ith

an
F
-predictable

process
Λ

F,
i.e.

Λ
Gt 11{

τ≥
t}

=
Λ

Ft 11{
τ≥

t} .

•
the

G
-com

pensator
Λ

G
of
τ

adm
its

a
density

given
by

λ
Gt

=
11{

τ
>

t} λ
Ft

=
11{

τ
>

t}
α

t (t)
S

t−
.

In
particular,

τ
is

a
totally

inaccessible
G

-stopping
tim

e.

•
For

any
t
<
ζ

F
and

T
≥
t,

w
e

have
α

t (T
)

=
E

[λ
GT |F

t ].

1
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D
y
n
a
m

ic
p
o
in

t
o
f
v
iew

a
n
d

d
en

sity
p
ro

cess

P
r
o
o
f
:
1)

T
he

G
-m

artingale
property

of
(11{

τ≤
t} − ∫

t0
λ

Gs
η(d

s),t≥
0)

is

equivalent
to

the
G

-m
artingale

property
of

(11{
τ
>

t} e ∫
t0

λ
Gs
η
(d

s
)
=

11{
τ
>

t} e ∫
t0

λ
Fs
η
(d

s
),t≥

0)

T
his

follow
s

from

E
[11{

τ
>

t} e ∫
t0

λ
Fs
η
(d

s
)|G

s ]
=

11{
τ
>

s}
E

[11{
τ
>

t} e ∫
t0

λ
Fs
η
(d

s
)|F

s ]
S

s

=
11{

τ
>

s}
E

[S
t e ∫

t0
λ

Fs
η
(d

s
)|F

s ]
S

s
=

11{
τ
>

s}
L

Fs

S
s
,

w
here

the
last

equality
follow

s
from

the
F
-local

m
artingale

property
of

L
F.

M
oreover,

the
continuity

of
the

com
pensator

Λ
G

im
plies

that
τ

is

totally
inaccessible.

1
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o
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t
o
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v
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a
n
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d
en

sity
p
ro

cess

2)
B

y
the

m
artingale

property
of

density,
for

any
T

≥
t,

α
t (T

)
=

E
[α

T
(T

)|F
t ].

A
pplying

1),
w

e
obtain

α
t (T

)
=

E [α
T
(T

) 11{
τ
>

T}
S

T−
|F

t ]
=

E
[λ

GT |F
t ],

∀
t
<
ζ

F,

hence,
the

value
of

the
density

can
be

partially
deduced

from
the

intensity.
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D
y
n
a
m
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p
o
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t
o
f
v
iew

a
n
d

d
en

sity
p
ro

cess

G
-m

artin
gale

ch
aracterization

A
càdlàg

process
Y

G
is

a
G

-m
artin

gale
if

and
only

if
there

exist
an

F
-adapted

càdlàg
process

Y
and

an
F

t ⊗
B

(R
+
)-optional

process
Y

t (.)

such
that

Y
Gt

=
Y

t 11{
τ
>

t}
+
Y

t (τ)11{
τ≤

t}

and
that

•
(Y

t S
t + ∫

t0
Y

s (s)α
s (s)η(d

s),
t≥

0)
is

an
F
-local

m
artingale;

•
(Y

t (θ)α
t (θ),t≥

θ)
is

an
F
-m

artingale
on

[θ,ζ
θ).

1
9
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A
ny

F
-m

artingale
Y

F
is

a
G

-sem
im

artingale.
M

oreover,
it

adm
its

the

decom
position

Y
Ft

=
M

Y
,G

t
+
A

Y
,G

t
w

here
M

Y
,G

is
a

G
-m

artingale
and

A
Y

,G
:=

A
t 11{

τ
>

t}
+
A

t (τ)11{
τ≤

t}
is

an
optional

process
w

ith
finite

variation
given

by

A
t
= ∫

t

0

d[Y
F,S

]s
S

s−
and

A
t (θ)

= ∫
t

θ

d[Y
F,α

(θ)]s
α

s (θ)
.

2
0
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y
n
a
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p
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t
o
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v
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d
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G
irsan

ov
th

eorem

L
et
Z

Gt
=
z
t 11{

τ
>

t}
+
z
t (τ)11{

τ≤
t}

be
a

positive
G

-m
artingale

w
ith

Z
G0

=
1

and
let

Z
Ft

=
z
t S

t + ∫
t0
z
t (u)α

t (u)η(d
u)

be
its

F
projection.

L
et

Q
be

the
probability

m
easure

defined
on

G
t

by
d
Q

=
Z

Gt
d
P
.

T
hen,

α
Qt (θ)

=
α

t (θ)
z

t (θ
)

Z
Ft
,

∀
t∈

[θ,ζ
θ);

and:

(i)
the

Q
-conditionalsurvivalprocess

is
defined

on
[0,ζ

F)
by

S
Qt

=
S

t
z
t

Z
Ft

(ii)
the

(F
,
Q

)-intensity
process

is
λ

F
,Q

t
=
λ

Ft

z
t (t)
z
t−

,
η(d

t)-
a.s.;

(iii)
L

F
,Q

is
the

(F
,
Q

)-local
m

artingale

L
F
,Q

t
=
L

Ft

z
t

Z
Ft

exp ∫
t

0

(λ
F
,Q

s
−
λ

Fs )η(d
s),t∈

[0,ζ
F)

2
1
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projection.

L
et

Q
be

the
probability

m
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irsan
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be
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hen,
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∀
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and:
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the

Q
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is
defined

on
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by

S
Qt

=
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t
z
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Z
Ft

(ii)
the

(F
,
Q

)-intensity
process

is
λ

F
,Q

t
=
λ

Ft

z
t (t)
z
t−

,
η(d

t)-
a.s.;

(iii)
L

F
,Q

is
the

(F
,
Q

)-local
m

artingale

L
F
,Q
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=
L

Ft

z
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Z
Ft
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(λ
F
,Q

s
−
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P
r
o
o
f
:
For

any
t∈

[0,ζ
F),

the
Q

-conditional
probability

can
be

calculated
by

S
Qt

=
Q

(τ
>
t|F

t )
=

E
[11{

τ
>

t} Z
Gt |F

t ]
Z

Ft

=
z
t
S

t

Z
Ft

and,
for

any
θ≤

t,

Q
(τ≤

θ|F
t )

=
E

P[11{
τ≤

θ} Z
Gt |F

t ]
Z

Ft

=
E

P[11{
τ≤

θ} z
t (τ)|F

t ]
Z

Ft

= ∫
θ0
z
t (u)α

t (u)η(d
u)

Z
Ft

.

T
he

density
process

is
then

obtained
by

taking
derivatives.

F
inally,

w
e

use
λ

F
,Q

t
=
α

Qt (t)/S
Qt−

and
L

F
,Q

t
=
S

Qt
e ∫

t0
λ

F
,
Q

s
η
(d

s
).

2
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p
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G
iven

a
density

process,
it

is
possible

to
construct

a
random

variable
τ

such
that

P
(τ
>
θ|F

t )
=
G

t (θ)
as

w
e

present
now

:

L
et

(Ω
,A
,
F
,
P
)

and
τ

a
random

variable
w

ith
law

P
(τ
>
t)

=
G

0 (t)
= ∫

∞t
η(d

u),
independent

ofF
∞

,
constructed

on
an

extended
probability

space,
and

α
the

given
density

process.

D
efine

d
Q|G

t
=
Q

Gt
d
P|G

t

w
ith

Q
Gt

=
11

t<
τ

1G
t ∫

∞t

α
t (u)η((d

u)
+

11
τ≤

t α
t (τ)

.

T
hen,

Q
is

a
probability

w
hich

coincides
w

ith
P

on
F

t
and

under
Q

,

α
Q

=
α
.

(N
ote

that
this

result
w

as
obtained

by
G

rorud
and

P
ontier

in
a

finite

horizon
case)

2
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is
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to
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τ

such
that
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=
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t (θ)
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w
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L
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(Ω
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,
F
,
P
)

and
τ

a
random

variable
w
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law

P
(τ
>
θ)

=
G

0 (θ)
= ∫

∞θ
η(d

u),
independent

ofF
∞

,
constructed

on
an

extended
probability

space,
and

α
the

given
density

process.

D
efine

d
Q|G

t
=
Q

Gt
d
P|G

t

w
ith

Q
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=
11

t<
τ
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t ∫
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α
t (u)η((d

u)
+
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τ≤

t α
t (τ)

.
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hen,
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w
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coincides
w
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P
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F
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,
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ote
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w
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G
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P
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G
iven

a
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is
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to
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τ
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=
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=
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= ∫
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u),
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space,
and
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=
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u)
+

11
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t (τ)

.
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hen,

Q
is

a
probability

w
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coincides
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F
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,
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=
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result
w
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G
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τ
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w
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L
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and
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w
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law
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=
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= ∫

∞t
η(d

u),
independent
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∞
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constructed
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α
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Z
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coincides
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T
he

change
of

probability
m

easure
generated

by
the

tw
o

processes

z
t
=

(L
Ft ) −

1,
z
t (θ)

=
α

θ (θ)
α

t (θ)

provides
a

m
odel

w
here

the
im

m
ersion

property
holds

true,
and

w
here

the
intensity

processes
does

not
change.

M
ore

generally,
the

only
changes

of
probability

m
easure

for
w

hich
the

im
m

ersion
property

holds
w

ith
the

sam
e

intensity
process

are
generated

by
a

process
z

such
that

(z
t L

Ft ,t≥
0)

is
an

uniform
ly

integrable

m
artingale.

3
0
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A
ssum

e
that

im
m

ersion
property

holds
under

P
.

1)
L
et

the
R

adon-N
ikodým

density
(Z

Gt
,t≥

0)
be

a
pure

jum
p

m
artingale

w
ith

only
one

jum
p

at
tim

e
τ.

T
hen,

the
(F
,
P
)-m

artingale

(Z
Ft
,t≥

0)
is

the
constant

m
artingale

equalto
1.

U
nder

Q
,the

intensity

process
is
λ

F
,Q

t
=
λ

Ft

z
t (t)
z
t
,η(d

t)-a.s.,
and

the
im

m
ersion

property
still

holds.

2)
T

he
only

changes
of

probability
m

easure
com

patible
w

ith
im

m
ersion

property
have

R
adon-N

ikodým
densities

that
are

the
product

of
a

pure

jum
p

positive
m

artingale
w

ith
only

one
jum

p
at

tim
e
τ,

and
a

positive

F
-m

artingale.

3
1



M
o
d
ellin

g
o
f
d
en

sity
p
ro

cess

M
o
d
e
llin

g
o
f
d
e
n
sity

p
ro

ce
ss

3
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g
o
f
d
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p
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cess

H
JM

fram
ew

ork
an

d
sh

ort
rate

m
o
d
els

T
o

m
odel

the
fam

ily
of

density
processes

w
e

m
ake

references
to

the

classical
interest

rate
m

odels.

W
e

suppose
in

w
hat

follow
s

that
F

is
a

B
row

nian
filtration.

S
ee

D
.C

.
B

ro
d
y

a
n
d

L
.
H

u
g
sto

n
(2

0
0
1
)

fo
r

rela
ted

a
p
p
ro

a
ch

3
3
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d
ellin

g
o
f
d
en

sity
p
ro

cess

Suppose
that

for
any

θ≥
0,

the
bounded

m
artingale

(S
t (θ),t≥

0)

satisfies

d
S

t (θ)
=
Z

t (θ)d
W

t

w
here

(Z
t (θ),t≥

0)
is

an
F
-predictable

process.
Ifthe

process
z
t (θ)

such

that
Z

t (θ)
= ∫

θ0
z
t (u)η(d

u)
is

bounded
by

an
integrable

process,
then

1.
d
α

t (θ)
=

−
z
t (θ)d

W
t .

2.
T

he
m

artingale
part

in
the

D
oob-M

eyer
decom

position
of
S

is
given

by
M

Ft
=

1− ∫
t0
Z

s (s)d
W

s .

S
ee

D
.C

.
B

ro
d
y

a
n
d

L
.
H

u
g
sto

n
(2

0
0
1
)

fo
r

rela
ted

a
p
p
ro

a
ch

3
4
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d
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g
o
f
d
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sity
p
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cess

P
r
o
o
f
:

1)
is

obvious
by

definition.
2)

is
obtained

by
using

previous

results
and

integration
by

part,
in

fact,

W
Ft

=
1− ∫

t

0

η(d
u) ∫

t

u

z
s (u)d

W
s

=
1− ∫

t

0

d
W

s ( ∫
s

0

z
s (u)η(d

u) )
.

O
bserve

in
addition

that
Z

t (0)
=

0
since

S
t (0)

=
1

for
any

t≥
0,

w
hich

im
plies

2)

S
ee

D
.C

.
B

ro
d
y

a
n
d

L
.
H

u
g
sto

n
(2

0
0
1
)

fo
r

rela
ted

a
p
p
ro

a
ch

3
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W
e

can
also

consider
(S

t (θ),t≥
0)

in
the

classical
H

JM
m

odels
w

here

its
dynam

ics
is

given
in

m
ultiplicative

form
.

W
e

also
deduce

the

dynam
ics

of
the

forw
ard

rate,
in

both
forw

ard
and

backw
ard

form
s.

T
he

density
can

then
be

calculated
as
α

t (θ)
=
λ

t (θ)S
t (θ).

S
ee

D
.C

.
B

ro
d
y

a
n
d

L
.
H

u
g
sto

n
(2

0
0
1
)

fo
r

rela
ted

a
p
p
ro

a
ch

3
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p
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cess

For
any

t,θ≥
0,

let
Ψ

(t,θ)
=

Z
t (θ

)
S

t (θ
)

and
define

ψ
(t,θ)

by

Ψ
(t,θ)

= ∫
θ0
ψ

(t,u)η(d
u).

R
ecall

the
forw

ard
rate

λ
t (θ)

of
τ

given
by

λ
t (θ)

=
−
∂

θ
ln
S

t (θ).
T

hen

1.
S

t (θ)
=
S

0 (θ)exp (∫
t0
Ψ

(s,θ)d
W

s −
12 ∫

t0 |Ψ
(s,θ)| 2d

s );

2.
λ

t (θ)
=
λ

0 (θ)− ∫
t0
ψ

(s,θ)d
W

s
+ ∫

t0
ψ

(s,θ)Ψ
(s,θ) ∗d

s;

3.
S

t
=

exp (− ∫
t0
λ

Fs η(d
s)

+ ∫
t0
Ψ

(s,s)d
W

s −
12 ∫

t0 |Ψ
(s,s)| 2d

s );

d
S

t (θ
)

=
Z

t (θ
)d
W

t
3
7
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p
ro
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For
any

t,θ≥
0,

let
Ψ

(t,θ)
=

Z
t (θ

)
S

t (θ
)

and
define

ψ
(t,θ)

by

Ψ
(t,θ)

= ∫
θ0
ψ

(t,u)η(d
u).

R
ecall

the
forw

ard
rate

λ
t (θ)

of
τ

given
by

λ
t (θ)

=
−
∂

θ
ln
S

t (θ).
T

hen

1.
S

t (θ)
=
S

0 (θ)exp (∫
t0
Ψ

(s,θ)d
W

s −
12 ∫

t0 |Ψ
(s,θ)| 2d

s );

2.
λ

t (θ)
=
λ

0 (θ)− ∫
t0
ψ

(s,θ)d
W

s
+ ∫

t0
ψ

(s,θ)Ψ
(s,θ) ∗d

s;

3.
S

t
=

exp (− ∫
t0
λ

Fs η(d
s)

+ ∫
t0
Ψ

(s,s)d
W

s −
12 ∫

t0 |Ψ
(s,s)| 2d

s );

d
S

t (θ
)

=
Z

t (θ
)d
W

t
3
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=

Z
t (θ

)
S

t (θ
)

and
define

ψ
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θ0
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forw
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λ
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of
τ

given
by

λ
t (θ)

=
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∂
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hen
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=
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s −
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(s,θ)| 2d
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λ
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=
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ψ
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W

s
+ ∫

t0
ψ

(s,θ)Ψ
(s,θ) ∗d

s;
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S

t
=

exp (− ∫
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λ
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s)

+ ∫
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Ψ
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s −
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For
any

t,θ≥
0,

let
Ψ

(t,θ)
=

Z
t (θ

)
S

t (θ
)

and
define

ψ
(t,θ)

by

Ψ
(t,θ)

= ∫
θ0
ψ

(t,u)η(d
u).

R
ecall

the
forw

ard
rate

λ
t (θ)

of
τ

given
by

λ
t (θ)

=
−
∂

θ
ln
S

t (θ).
T

hen

1.
S

t (θ)
=
S

0 (θ)exp (∫
t0
Ψ

(s,θ)d
W

s −
12 ∫

t0 |Ψ
(s,θ)| 2d

s );

2.
λ

t (θ)
=
λ

0 (θ)− ∫
t0
ψ

(s,θ)d
W

s
+ ∫

t0
ψ

(s,θ)Ψ
(s,θ) ∗d

s;

3.
S

t
=

exp (− ∫
t0
λ

Fs η(d
s)

+ ∫
t0
Ψ

(s,s)d
W

s −
12 ∫

t0 |Ψ
(s,s)| 2d

s );

d
S

t (θ
)

=
Z

t (θ
)d
W

t
4
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P
r
o
o
f
:

T
he

process
S

t (θ)
is

the
solution

of
the

equation

d
S

t (θ)
S

t (θ)
=

Ψ
(t,θ)d

W
t ,

∀
t,θ≥

0.

H
ence

1),from
w

hich
w

e
deduce

im
m

ediately
2)

by
differentiation

w
.r.t.

θ.N
ow

,
note

that
by

1),

ln
S

t
=

− ∫
t

0

λ
0 (s)η(d

s)
+ ∫

t

0

Ψ
(s,t)d

W
s −

12 ∫
t

0

|Ψ
(s,t)| 2d

s

4
1
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W
oreover,

w
e

have
by

2)
that

∫
t

0

λ
s (s)η(d

s)
=

∫
t

0

λ
0 (s)η(d

s)− ∫
t

0

η(d
s) ∫

s

0

ψ
(u
,s)d

W
u

+ ∫
t

0

η(d
s) ∫

s

0

ψ
(u
,s)Ψ

(u
,s) ∗d

u

=
∫

t

0

λ
0 (s)η(d

s)− ∫
t

0

(Ψ
(u
,t)−

Ψ
(u
,u))d

W
u

+
12
( ∫

t

0

|Ψ
(u
,t)| 2− ∫

t

0

|Ψ
(u
,u)| 2)d

u
.

O
bserve

in
addition

that
by

definition
of

the
forw

ard
rate

λ
t (θ)

and

then,
w

e
have

λ
s (s)

=
λ

Fs ,
w

hich
im

plies
3).

F
inally,

4)
is

a
direct

result

from
2).

A
s

a
conditional

survival
probability,

S
t (θ)

is
decreasing

on
θ,

w
hich

is

equivalent
to

that
λ

t (θ)
is

positive.
T

his
condition

is
sim

ilar
as

for
the

zero
coupon

bond
prices.

4
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g
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p
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cess

In
the

second
approach,

w
e

can
borrow

short
rate

m
odels

for
the

F
-intensity

λ
F

of
τ,

and
then

obtain
the

dynam
ics

of
conditional

probability
S

t (T
)

for
T

≥
t.

T
he

m
onotonicity

condition
of
S

t (T
)

on
T

is
equivalent

to
the

positivity
condition

on
λ

F.

4
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d
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sity
p
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E
x
am

p
le:

T
he

non-negativity
of
λ

is
satisfied

if

•
for

any
θ,

the
process

ψ
(θ)Ψ

(θ)
is

non
negative,

or
if
ψ

(θ)
is

non
negative;

•
for

any
θ,

the
local

m
artingale

ζ
t (θ)

=
λ

0 (θ)− ∫
t0
ψ

s (θ)d
W

s
is

a
D

oléans-D
ade

exponential
of

som
e

m
artingale,

i.e.,
is

solution
of

ζ
t (θ)

=
λ

0 (θ)
+ ∫

t

0

ζ
s (θ)b

s (θ)d
W

s
,

that
is,

if− ∫
t0
ψ

s (θ)d
W

s
= ∫

t0
b
s (θ)ζ

s (θ)d
W

s .
H

ere
the

initial
condition

is
a

positive
constant

λ
0 (θ).

λ
t (θ

)
=
λ
0
(θ

)− ∫
t0
ψ

(s,θ
)d
W

s
+ ∫

t0
ψ

(s,θ
)Ψ

(s,θ
) ∗
d
s

4
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H
ence,

w
e

set

ψ
t (θ)

=
−
b
t (θ)ζ

t (θ)
=

−
b
t (θ)λ

0 (θ)exp (∫
t

0

b
s (θ)d

W
s −

12 ∫
t

0

b
2s (θ)d

s )

w
here

λ
0

is
a

positive
intensity

function
and

b(θ)
is

a
non-positive

F
-adapted

process.
T

hen,
the

fam
ily

α
t (θ)

=
λ

t (θ)exp (− ∫
θ

0

λ
t (v)

d
v )

,

w
here

λ
t (θ)

=
λ

0 (θ)− ∫
t

0

ψ
s (θ)

d
W

s
+ ∫

t

0

ψ
s (θ)Ψ

s (θ)
d
s

satisfies
the

required
assum

ptions.

λ
t (θ

)
=
λ
0
(θ

)− ∫
t0
ψ

(s,θ
)d
W

s
+ ∫

t0
ψ

(s,θ
)Ψ

(s,θ
) ∗
d
s
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O
th

er
ex

am
p
les
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d
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p
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E
x
am

p
le:

“
C

ox
-like”

con
stru

ction
.

H
ere

•
λ

is
a

non-negative
F
-adapted

process,
Λ

t
= ∫

t0
λ

s d
s

•
Θ

is
a

given
r.v.

independent
ofF

∞
w

ith
unit

exponential
law

•
V

is
aF

∞
-m

easurable
non-negative

random
variable

•
τ

=
inf{t

:Λ
t ≥

Θ
V}.

For
any

θ
and

t,

G
t (θ)

=
P
(τ
>
θ|F

t )
=

P
(Λ

θ
<

Θ
V|F

t )
=

P (
exp−

Λ
θ

V
≥
e −

Θ ∣∣∣∣ F
t )
.

L
et

us
denote

exp(−
Λ

t /V
)

=
1− ∫

t0
ψ

s d
s,

w
ith

ψ
s

=
(λ

s /V
)

exp− ∫
s

0

(λ
u
/V

)
d
u
,

and
define

γ
t (s)

=
E

(
ψ

s |F
t ).

T
hen,

α
t (s)

=
γ

t (s)/γ
0 (s).
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g
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p
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B
ack

w
ard

con
stru

ction
of

th
e

d
en

sity

L
et
ϕ
(·,α

)
be

a
fam

ily
of

densities
on

R
+
,depending

of
som

e
param

eter

and
X

∈
F

∞
a

random
variable.

T
hen

∫
∞0

ϕ
(u
,X

)d
u

=
1

and
w

he
can

choseα
t (u)

=
E

(α
∞

(u)|F
t )

=
E

(ϕ
(u
,X

)|F
t )
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u
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M
u
ltid

e
fa

u
lts

C
om

putation
of

prices
in

case
of

m
ultidefaults

is
now

easy

•
In

a
first

step,
one

orders
the

default

•
C

om
putation

before
the

first
default

are
done

in
the

reference

filtration

•
B

etw
een

the
first

and
the

second
default,one

takes
as

new
reference

filtration
the

filtration
generated

by
the

first
default

and
the

previous
reference

filtration,
as

explained
previously

for
the

”after

default”
com

putations

•
and

w
e

continue
till

the
end

4
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L
et
τ

=
τ
1 ∧

τ
2

and
σ

=
τ
1 ∨

τ
2

and
assum

e
that

S
t (θ

1 ,θ
2 )

:=
P
(τ
>
θ
1 ,σ

>
θ
2 |F

t )
= ∫

∞θ
1 ∫

∞θ
2

α
t (u

,v)d
η(u

,v).

T
he

F
-density

of
τ

is
given

by

α
τ|F
t

(θ
1 )

= ∫
∞θ
1

α
t (θ

1 ,v)η
2 (d

v),
a
.s..

For
any

θ
2 ,t≥

0,
the

G
(1

)-density
of
σ

is
given

by

α
σ|G

(1
)

t
(θ

2 )
=

11{
τ
>

t} ∫
∞t
α

t (u
,θ

2 )η
1 (d

u)

S
τ|F
t

(t)
+

11{
τ≤

t}
α

t (τ,θ
2 )

α
τ|F
t

(τ)
,

a
.s..
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B
egin

at
the

beginning,
and

go
on

till
you

com
e

to
the

end.
T

hen,
...

Lew
is

C
arroll,

A
lice’s

A
dventures

in
W

onderland.
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M
u
ltid

efa
u
lts

B
egin

at
the

beginning,
and

go
on

till
you

com
e

to
the

end.
T

hen,
stop.

Lew
is

C
arroll,

A
lice’s

A
dventures

in
W

onderland.
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T
H

A
N

K
Y

O
U

F
O

R
Y

O
U

R
A

T
T

E
N

T
IO

N
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