

ROBUST UTILITY MAXIMIZATION PROBLEM FROM TERMINAL WEALTH AND CONSUMPTION : BSDE APPROACH

Anis Matoussi

Laboratoire Manceau des Mathématiques
Université du Maine

18-21 May, 2009

PLAN DE L'EXPOSÉ

- 1 INTRODUCTION
- 2 THE MINIMIZATION PROBLEM
- 3 COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
- 4 MAXIMIZATION OVER CONSUMPTION AND TERMINAL WEALTH

- 1 INTRODUCTION
- 2 THE MINIMIZATION PROBLEM
- 3 COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
- 4 MAXIMIZATION OVER CONSUMPTION AND TERMINAL WEALTH

- **Bordigoni G., M. A., Schweizer, M.** : A Stochastic control approach to a robust utility maximization problem. *Stochastic Analysis and Applications. Proceedings of the Second Abel Symposium, Oslo, 2005, Springer, 125-151 (2007)*.
- **Jeanblanc, M., M. A., Ngoupeyou, A.** : Robust utility maximization from terminal wealth and consumption in a discontinuous filtration. forthcoming paper.

PROBLEM

We present a problem of *utility maximization* under *model uncertainty* :

$$\sup_{\pi} \inf_Q \mathbf{U}(\pi, Q), \quad (1)$$

where

- π runs through a set of strategies (portfolios, investment decisions, ...)
- Q runs through a set of models \mathcal{Q} .

ONE KNOWN MODEL CASE

- If we have a one known model P : in this case, $\mathcal{Q} = \{P\}$ for P a given reference probability measure and $\mathbf{U}(\pi, P)$ has the form of a P -expected utility from terminal wealth and/or consumption, namely

$$\mathbf{U}(\pi, P) = \mathbb{E}(U(X_T^\pi))$$

where

- X^π is the wealth process
- and
- U is some utility function.

REFERENCES : DUAL APPROACH

- Schachermayer (2001) (one single model)
- A. Schied (2007), Schied and Wu (2005)
- H. Föllmer and A. Gundel, A. Gundel (2005)
- others missing references ... (sorry !)

REFERENCES : BSDE APPROACH

- El Karoui, Quenez and Peng (2001) : Dynamic maximum principle (one single model)
- Lazrak-Quenez (2003), Quenez (2004), $\mathcal{Q} \neq \{\mathbb{P}\}$ but one keep $\mathbf{U}(\pi, \mathbb{Q})$ as an expected utility
- Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas (2003), Schroder & Skiadas (1999, 2003, 2005) : Stochastic Differential Utility and BSDE.
- **Hansen & Sargent** : they discuss the problem of robust utility maximization when model uncertainty is penalized by a relative entropy term.
- They study the problem in Markovian settings and use mainly formal manipulations of Hamilton-Jacobi-Bellman (HJB) equations to provide the optimal investment behaviour in these situations.

- 1 INTRODUCTION
- 2 THE MINIMIZATION PROBLEM
- 3 COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
- 4 MAXIMIZATION OVER CONSUMPTION AND TERMINAL WEALTH

PRELIMINARY AND ASSUMPTIONS

Let us given :

- Final horizon : $T < \infty$
- $(\Omega, \mathcal{F}, \mathbb{F}, P)$ a filtered probability space where $\mathbb{F} = \{\mathcal{F}_t\}_{0 \leq t \leq T}$ is a filtration satisfying the usual conditions of right-continuity and \mathbb{P} -completeness.
- Possible scenarios given by

$$\mathcal{Q} := \{Q \text{ probability measure on } \Omega \text{ such that } Q \ll P \text{ on } \mathcal{F}_T\}$$

- the density process of $Q \in \mathcal{Q}$ is the càdlàg P -martingale

$$Z_t^Q = \frac{dQ}{dP} \Big|_{\mathcal{F}_t} = \mathbb{E}_P \left[\frac{dQ}{dP} \mid \mathcal{F}_t \right]$$

- we may identify Z^Q with Q .
- Discounting process : $S_t^\delta := \exp(-\int_0^t \delta_s ds)$ with a discount rate process $\delta = \{\delta_t\}_{0 \leq t \leq T}$.

PRELIMINARY

- Let $\mathcal{U}_{t,T}^\delta(Q)$ be a quantity given by

$$\mathcal{U}_{t,T}^\delta(Q) = \alpha \int_t^T \frac{S_s^\delta}{S_t^\delta} U_s ds + \alpha' \frac{S_T^\delta}{S_t^\delta} \bar{U}_T$$

- where $U = (U_t)_{t \in [0, T]}$ is a utility rate process which comes from consumption and \bar{U}_T is the terminal utility at time T which corresponds to final wealth.
- α, α' are some constant which can be used to obtain special cases.
- Let $\mathcal{R}_{t,T}^\delta(Q)$ be a penalty term

$$\mathcal{R}_{t,T}^\delta(Q) = \int_t^T \delta_s \frac{S_s^\delta}{S_t^\delta} \log \frac{Z_s^Q}{Z_t^Q} ds + \frac{S_T^\delta}{S_t^\delta} \log \frac{Z_T^Q}{Z_t^Q}.$$

for $Q \ll P$ on \mathcal{F}_T .

COST FUNCTIONAL

- We consider the cost functional

$$c(\omega, Q) := \mathcal{U}_{0,T}^\delta(Q) + \beta \mathcal{R}_{0,T}^\delta(Q).$$

with $\beta > 0$ is a constant which determines the strength of this penalty term.

- Our first goal is to

minimize the functional $Q \mapsto \Gamma(Q) := \mathbb{E}_Q[c(\cdot, Q)]$

over a suitable class of probability measures $Q \ll P$ on \mathcal{F}_T .

RELATIVE ENTROPY

- Under the reference probability P the cost functional $\Gamma(Q)$ can be written :

$$\begin{aligned}\Gamma(Q) = & \mathbb{E}_P \left[Z_T^Q \left(\alpha \int_0^T S_s^\delta U_s ds + \alpha' S_T^\delta \bar{U}_T \right) \right] \\ & + \beta \mathbb{E}_P \left[\int_0^T \delta_s S_s^\delta Z_s^\delta \log Z_s^Q ds + S_T^\delta Z_T^Q \log Z_T^Q \right].\end{aligned}$$

- The second term is a discounted relative entropy with both an entropy rate as well a terminal entropy :

$$H(Q|P) := \begin{cases} \mathbb{E}_Q \left[\log Z_T^Q \right], & \text{if } Q \ll P \text{ on } \mathcal{F}_T \\ +\infty, & \text{if not} \end{cases}$$

FUNCTIONAL SPACES AND HYPOTHESES

- D_0^{exp} is the space of progressively measurable processes $y = (y_t)$ such that

$$\mathbb{E}_P \left[\exp \left(\gamma \text{ess sup}_{0 \leq t \leq T} |y_t| \right) \right] < \infty, \quad \text{for all } \gamma > 0.$$

- D_1^{exp} is the space of progressively measurable processes $y = (y_t)$ such that

$$\mathbb{E}_P \left[\exp \left(\gamma \int_0^T |y_s| \, ds \right) \right] < \infty \quad \text{for all } \gamma > 0.$$

- **Assumption (A)** : $0 \leq \delta \leq \|\delta\|_\infty < \infty$, $U \in D_1^{\text{exp}}$ and $\mathbb{E}_P \left[\exp \left(\gamma |\bar{U}_T| \right) \right] < \infty$, for all $\gamma > 0$.

THE CASE : $\delta = 0$

- The spacial case $\delta = 0$ corresponds to the cost functional

$$\Gamma(Q) = \mathbb{E}_Q \left[\mathcal{U}_{0,T}^0 \right] + \beta H(Q|P) = \beta H(Q|P_U) - \beta \log \mathbb{E}_P \left[\exp \left(-\frac{1}{\beta} \mathcal{U}_{0,T}^0 \right) \right]$$

where $P_U \approx P$ and $\frac{dP_U}{dP} = c \exp \left(-\frac{1}{\beta} \mathcal{U}_{0,T}^0 \right)$.

- **Csiszar** (1997) have proved the existence and uniqueness of the optimal measure $Q^* \approx P_U$ which minimize the relative entropy $H(Q|P_U)$.
- **I. Csiszár** : I -divergence geometry of probability distributions and minimization problems. *Annals of Probability* **3**, p. 146-158 (1975).

CLASS OF PROBABILITY MEASURE

- Due to the assumption on δ , a simple estimation gives

$$\mathbb{E}_P \left[S_T^\delta Z_T^Q \log Z_T^Q \right] \geq -e^{-1} + e^{-\|\delta\|_\infty} H(Q|P).$$

- Hence the second term in $\Gamma(Q)$ explodes unless $H(Q|P) < \infty$.
- This explains why we only consider measures Q in $\mathcal{Q}_f :=$ the space of all probability measures Q on (Ω, \mathcal{F}) with $Q \ll P$ on \mathcal{F}_T , $Q = P$ on \mathcal{F}_0 and $H(Q|P) < \infty$.
- $\mathcal{Q}_f^e := \{Q \in \mathcal{Q}_f \mid Q \approx P \text{ on } \mathcal{F}_T\}$.

OPTIMAL MEASURE

- We have the following result :

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)

- (i) *There exists a unique $Q^* \in \mathcal{Q}_f$ which minimizes $Q \mapsto \Gamma(Q)$ over all $Q \in \mathcal{Q}_f$.*
- (ii) *The optimal measure Q^* is equivalent to P .*

DYNAMIC STOCHASTIC CONTROL PROBLEM

We embed the minimization of $\Gamma(Q)$ in a stochastic control problem :

- The minimal conditional cost

$$J(\tau, Q) := Q - \text{ess inf}_{Q' \in \mathcal{D}(Q, \tau)} \Gamma(\tau, Q')$$

with $\Gamma(\tau, Q) := \mathbb{E}_Q [c(\cdot, Q) | \mathcal{F}_\tau]$,

- $\mathcal{D}(Q, \tau) = \{Z^{Q'} | Q' \in \mathcal{Q}_f \text{ et } Q' = Q \text{ sur } \mathcal{F}_\tau\}$ and $\tau \in \mathcal{S}$.
- So, we can write our optimization problem as

$$\inf_{Q \in \mathcal{Q}_f} \Gamma(Q) = \inf_{Q \in \mathcal{Q}_f} \mathbb{E}_Q [c(\cdot, Q)] = \mathbb{E}_P [J(0, Q)].$$

- We obtain the following martingale optimality principle from stochastic control :

DYNAMIC STOCHASTIC CONTROL PROBLEM

We have obtained by following **El Karoui (1981)** :

PROPOSITION (BORDIGONI G., M. A., SCHWEIZER, M.)

- ① *The family $\{J(\tau, Q) \mid \tau \in \mathcal{S}, Q \in \mathcal{Q}_f\}$ is a submartingale system ;*
- ② *$\tilde{Q} \in \mathcal{Q}_f$ is optimal if and only if $\{J(\tau, \tilde{Q}) \mid \tau \in \mathcal{S}\}$ is a \tilde{Q} -martingale system ;*
- ③ *For each $Q \in \mathcal{Q}_f$, there exists an adapted RCLL process $J^Q = (J_t^Q)_{0 \leq t \leq T}$ which is a right closed Q -submartingale such that*

$$J_\tau^Q = J(\tau, Q)$$

SEMIMARTINGALE DECOMPOSITION

- We define for all $Q' \in \mathcal{Q}_f^e$ and $\tau \in \mathcal{S}$:

$$\tilde{V}(\tau, Q') := \mathbb{E}_{Q'} \left[\mathcal{U}_{\tau, T}^\delta \mid \mathcal{F}_\tau \right] + \beta \mathbb{E}_{Q'} \left[\mathcal{R}_{\tau, T}^\delta(Q') \mid \mathcal{F}_\tau \right]$$

- The value of the control problem started at time τ instead of 0 is :

$$V(\tau, Q) := Q - \text{ess inf}_{Q' \in \mathcal{D}(Q, \tau)} \tilde{V}(\tau, Q')$$

- By using the Bayes formula and the definition of $\mathcal{R}_{\tau, T}^\delta(Q')$, one sees that each $\tilde{V}(\tau, Q')$ depends only on the values of $Z^{Q'}$ on $]\tau, T[$ and therefore not on Q , since $Q' \in \mathcal{D}(Q, \tau)$ only says that $Z^{Q'} = Z^Q$ on $[0, \tau]$.
- So we can equally well take the ess inf under $P \approx Q$ and over all $Q' \in \mathcal{Q}_f$ and $V(\tau) \equiv V(\tau, Q')$ and one proves that V is P -special semimartingale with canonical decomposition

$$V = V_0 + M^V + A^V$$

SEMIMARTINGALE BSDE

- We need precise information on the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \leq T}$.
- Let first consider the following quadratic semimartingale BSDE with :

DEFINITION

A solution of the BSDE is a pair of processes (Y, M) such that Y is a P -semimartingale and M is a locally square-integrable locally martingale with $M_0 = 0$ such that :

$$\begin{cases} -dY_t = (\alpha U_t - \delta_t Y_t)dt - \frac{1}{2\beta} d\langle M \rangle_t - dM_t \\ Y_T = \alpha' \bar{U}_T \end{cases}$$

- Note that Y is then automatically P -special, and that if M is continuous, so is Y .

A^V AND M^V : THE CONTINUOUS FILTRATION CASE

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)

Assume that \mathbb{F} is continuous. Then the couple (V, M^V) is the unique solution in $D_0^{\text{exp}} \times \mathcal{M}_{0, \text{loc}}(P)$ of the BSDE

$$\begin{cases} -dY_t = (\alpha U_t - \delta_t Y_t)dt - \frac{1}{2\beta}d\langle M \rangle_t - dM_t \\ Y_T = \alpha' U'_T \end{cases}$$

- Moreover, $\mathcal{E}\left(-\frac{1}{\beta}M^V\right) = Z^{Q^*}$ is a P -martingale such that its supremum belongs to $L^1(P)$ where Q^* is the optimal probability.

RECURSIVE RELATION

LEMMA

Let (Y, M) be a solution of BSDE with M continuous. Assume that $Y \in D_0^{\text{exp}}$ or $\mathcal{E}\left(-\frac{1}{\beta}M\right)$ is P -martingale.

For any pair of stopping times $\sigma \leq \tau$, then we have the recursive relation

$$Y_\sigma = -\beta \log E_P \left[\exp \left(\frac{1}{\beta} \int_\sigma^\tau (\delta_s Y_s - \alpha U_s) \, ds - \frac{1}{\beta} Y_\tau \right) \mid \mathcal{F}_\sigma \right]$$

- As a consequence one gets the uniqueness result for the semimartingale BSDE.

- In the case of $\delta = 0$, $\sigma = t$ et $\tau = T$, we get from the recursive relation the explicit solution, which corresponds to the entropic process (also entropic risk measure) :

$$Y_t = -\beta \log E_P \left[\exp \left(-\frac{\alpha}{\beta} \int_t^T U_s \, ds - \frac{1}{\beta} Y_T \right) \mid \mathcal{F}_t \right]$$

REMARK

- If $\mathbb{F} = \mathbb{F}^W$, for a given Brownian motion, then the semimartingale BSDE takes the standard form of quadratique BSDE :

$$\begin{cases} -dY_t = \left(\rho_t + \delta_t Y_t - \frac{1}{2\beta} |Z_t|^2 \right) dt - Z_t \cdot dW_t \\ Y_T = \xi \end{cases}$$

- Kobyłanski (2000), Lepeltier et San Martin (1998), El Karoui and Hamadène (2003), Briand and Hu (2005).

EXISTENCE PROOF : MAIN STEPS

- ① We use the martingale optimality principle to show that (V, M^V) is solution of the BSDE. For each $Q \in \mathcal{Q}_f^e$, we have $Z^Q = \mathcal{E}(L^Q)$ for some continuous local P -martingale L^Q null at 0, and we have

$$d(\log Z^Q) = dL^Q - \frac{1}{2}d\langle L^Q \rangle.$$

The semimartingale decomposition of J^Q + Girsanov theorem + optimality imply that :

$$A^V = \int (\delta_t V_t - \alpha U_t) dt - \text{ess inf}_{Q \in \mathcal{Q}_f^e} (\langle M^V, L^Q \rangle + \frac{\beta}{2} \langle L^Q \rangle).$$

- ② We show that

$$\text{ess inf}_{Q \in \mathcal{Q}_f^e} (\langle M^V, L^Q \rangle + \frac{\beta}{2} \langle L^Q \rangle) = -\frac{1}{2\beta} \langle M^V \rangle$$

that is the ess inf is attained for $L^{Q^*} = -\frac{1}{\beta} M^V$.

- ③ $\mathcal{E}(\frac{1}{\beta} M^V)$ is a true P -martingale.

THE CASE OF NON CONTINUOUS FILTRATION

- For any $i = 1, \dots, d$, we note $H_t^i = \mathbf{1}_{\{\tau_i \leq t\}}$ the jump process associated with τ_i , where τ_i is the \mathbb{F} -stopping time representing the default time of the firm i . We assume that $P(\tau_i = \tau_j) = 0, \forall i \neq j$.
- Let also $N_t^i, i = 1, \dots, d$ be given by $N_t^i := H_t^i - \int_0^t \lambda_s^i ds$ assumed to be \mathbb{F} -martingales for a non-negative processes λ_i . Obviously, the process λ^i is null after the default time τ_i , and these stopping times are totally inaccessible.
- Any special semimartingale Y admits a canonical decomposition $Y = Y_0 + A + Y^c + Y^d$ where A is a predictable finite variation process, Y^c is a continuous martingale and Y^d is a discontinuous martingale. In our case, there exists predictable processes y and \hat{Y}^i such that

$$dY_t^c = y_t dW_t, \quad dY_t^d = \sum_{i=1}^d \hat{Y}_t^i dN_t^i.$$

SEMIMARTINGALE BSDE WITH JUMPS

- Let first consider the following quadratic semimartingale BSDE with jumps :

DEFINITION

A solution of the BSDE is a triple of processes $(Y, M^{Y,c}, \hat{Y})$ such that Y is a P -semimartingale, M is a locally square-integrable locally martingale with $M_0 = 0$ and $\hat{Y} = (\hat{Y}^1, \dots, \hat{Y}^d)$ a \mathbb{R}^d -valued predictable locally bounded process such that :

$$\begin{cases} dY_t = \left[\sum_{i=1}^d g(\hat{Y}_t^i) \lambda_t^i - \alpha U_t + \delta_t Y_t \right] dt + \frac{1}{2} d\langle M^{Y,c} \rangle_t + dM_t^{Y,c} + \sum_{i=1}^d \hat{Y}_t^i dN_t^i \\ Y_T = \bar{\alpha} \bar{U}_T \end{cases} \quad (2)$$

where $g(x) = e^{-x} + x - 1$.

EXISTENCE RESULT

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

There exists a unique triple of process

$(Y, M^{Y,c}, \hat{Y}) \in D_0^{\exp} \times \mathcal{M}_{0,loc}(P) \times (D_0^{\exp})^{\otimes d}$ solution of the semartingale BSDE with jumps. Furthermore, the optimal measure Q^* solution of our minimization problem is given :

$$dZ_t^{Q^*} = Z_{t^-}^{Q^*} dL_t^{Q^*}, \quad Z_0^{Q^*} = 1$$

where

$$dL_t^{Q^*} = -dM_t^{Y,c} + \sum_{i=1}^d \left(e^{-\hat{Y}_t^i} - 1 \right) dN_t^i.$$

- 1 INTRODUCTION
- 2 THE MINIMIZATION PROBLEM
- 3 COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
- 4 MAXIMIZATION OVER CONSUMPTION AND TERMINAL WEALTH

COMPARISON FOR SEMIMARTINGALE BSDE

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

Assume that for $k = 1, 2$, $(Y^k, M^{Y^k, c}, \widehat{Y}^k)$ is solution of the BSDE associated to $(\widetilde{U}^k, \bar{U}^k)$. Then one have

$$Y_t^1 - Y_t^2 \leq \mathbb{E}^{\mathbb{Q}^{*,2}} \left[\int_t^T \alpha \frac{S_s^\delta}{S_t^\delta} \left(\widetilde{U}_s^1 - \widetilde{U}_s^2 \right) ds + \bar{\alpha} \frac{S_T^\delta}{S_t^\delta} \left(\bar{U}_T^1 - \bar{U}_T^2 \right) \middle| \mathcal{F}_t \right]$$

where $\mathbb{Q}^{*,2}$ the probability measure equivalent to P given by

$$\frac{dZ_t^{Q^{*,2}}}{Z_{t^-}^{Q^{*,2}}} = -dM_t^{Y^2, c} + \sum_{i=1}^d \left(e^{-\widehat{Y}_t^{i,2}} - 1 \right) dN_t^i.$$

In particular, if $\widetilde{U}^1 \leq \widetilde{U}^2$ and $\bar{U}_T^1 \leq \bar{U}_T^2$, one obtains

$$Y_t^1 \leq Y_t^2, \quad dP \otimes dt\text{-a.e.}$$

CONCAVITY PROPERTY FOR THE SEMIMARTINGALE BSDE

THEOREM

Let define the map $F : D_1^{\exp} \times D_0^{\exp} \longrightarrow D_0^{\exp}$ such that for all $(\tilde{U}, \bar{U}) \in D_1^{\exp} \times D_0^{\exp}$, we have

$$F(\tilde{U}, \bar{U}) = V$$

where $(V, M^{V,c}, \hat{V})$ is the solution of BSDE associated to (\tilde{U}, \bar{U}) . Then F is concave, namely,

$$F\left(\theta \tilde{U}^1 + (1 - \theta) \tilde{U}^2, \theta \bar{U}_T^1 + (1 - \theta) \bar{U}_T^2\right) \geq \theta F(\tilde{U}^1, \bar{U}_T^1) + (1 - \theta) F(\tilde{U}^2, \bar{U}_T^2).$$

- 1 INTRODUCTION
- 2 THE MINIMIZATION PROBLEM
- 3 COMPARISON THEOREM AND REGULARITIES FOR THE BSDE
- 4 MAXIMIZATION OVER CONSUMPTION AND TERMINAL WEALTH

THE FINANCIAL MODEL : COMPLETE MARKET

- The wealth process associated to the corresponding self-financing strategy is :

$$dX_t^{x,\pi,c} = (r_t X_t + \pi_t(\mu_t - r_t \cdot \mathbf{1}) - c_t) dt + \pi_t \sigma_t dM_t$$

where M is the $d + 1$ -dimensional martingale

$$M = (N^1, \dots, N^d, W).$$

- The budget constraints reads

$$\mathbb{E}^{\tilde{P}} \left(\int_0^T c_t dt + X_T^{x,\pi,c} \right) \leq x$$

where \tilde{P} is the unique martingale measure.

- Moreover, the strategy is called *feasible* if the constraint of nonnegative wealth holds :

$$X_t^{x,\pi,c} \geq 0 \quad t \in [0, T]$$

and this condition holds if the terminal wealth is non negative.

THE FINANCIAL MODEL

- We assume now that $\tilde{U}_s = U(c_s)$ and $\overline{U}_s = \overline{U}(X_T)$.
- The main goal is to show there exists an unique pair of strategy that maximize the second part of the optimization problem :

$$\begin{cases} \sup_{\pi, c} V_0^{x, \pi, c} \\ \text{s.t } \mathbb{E}^P \left(\int_0^T c_t dt + X_T^{x, \pi, c} \right) \leq x \end{cases}$$

where V_0 is the initial value process of the problem such that $(V, M^V, M^{V..})$ is the solution of the BSDE.

UNCONSTRAINED OPTIMIZATION PROBLEM

THEOREM

There exists a constant $\nu^ > 0$ such that :*

$$u(x) = \sup_{(c,\psi)} \left\{ V_0^{(c,\psi)} + \nu^* (x - X^{(c,\psi)}) \right\}$$

and if the maximum is attained in the above constraint problem by (c^, ψ^*) then it is attained in the unconstraint problem by (c^*, ψ^*) with $X^{(c,\psi)} = x$. Conversely if there exists $\nu^0 > 0$ and (c^0, ψ^0) such that the maximum is attained in*

$$\sup_{(c,\psi)} \left\{ V_0^{(c,\psi)} + \nu^0 (x - X_0^{(c,\psi)}) \right\}$$

with $X_0^{(c,\psi)} = x$, then the maximum is attained in our constraint problem by (c^0, ψ^0)

THE MAXIMUM PRINCIPLE

- We now study for a fixed $\nu > 0$ the following optimization problem :

$$\sup_{(c,\psi)} L(c, \psi) \quad (3)$$

where the functional L is given by $L(c, \psi) = V_0^{(c, \psi)} - \nu X_0^{(c, \psi)}$

PROPOSITION (JEANBLANC, M., M. A., NGOUEPEYOU A.)

The optimal consumption plan (c^0, ψ^0) which solves (3) satisfies the following equations :

$$U'(c_t^0) = \frac{Z_t^{\tilde{P}}}{Z_t^{Q^*}} \frac{\nu}{\alpha S_t^\delta} \quad \bar{U}'(\psi^0) = \frac{Z_T^{\tilde{P}}}{Z_T^{Q^*}} \frac{\nu}{\bar{\alpha} S_T^\delta} \text{ a.s} \quad (4)$$

where Q^ is the model measure associated to the optimal consumption (c^0, ψ^0) .*

THE MAIN STEPS OF THE PROOF I

- Let consider the optimal consumption plan (c^0, ψ^0) which solve (3) and another consumption plan (c, ψ) . Consider $\epsilon \in (0, 1)$ then :

$$L(c^0 + \epsilon(c - c^0), \psi^0 + \epsilon(\psi - \psi^0)) \leq L(c^0, \psi^0)$$

Then

$$\begin{aligned} & \frac{1}{\epsilon} [V_0^{(c^0 + \epsilon(c - c^0), \psi^0 + \epsilon(\psi - \psi^0))} - V_0^{(c^0, \psi^0)}] \\ & - \nu \frac{1}{\epsilon} [X_0^{(c^0 + \epsilon(c - c^0), \psi^0 + \epsilon(\psi - \psi^0))} - X_0^{(c^0, \psi^0)}] \leq 0 \end{aligned}$$

Because $(X_t^{(c, \psi)} + \int_0^t c_s ds)_{t \geq 0}$ is a \tilde{P} martinagle we obtain :

$$\begin{aligned} & \frac{1}{\epsilon} [X_t^{(c^0 + \epsilon(c - c^0), \psi^0 + \epsilon(\psi - \psi^0))} - X_t^{(c^0, \psi^0)}] \\ & = \mathbb{E}^{\tilde{P}} \left[\int_t^T (c_s - c_s^0) ds + (\psi - \psi^0) \middle| \mathcal{F}_t \right] \end{aligned}$$

THE MAIN STEPS OF THE PROOF II

- Then the wealth process is right differential in 0 with respect to ϵ we define

$$\partial_\epsilon X_t^{(c^0, \psi^0)} = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} (X_t^{(c^0 + \epsilon(c - c^0), \psi^0 + \epsilon(c - c^0))} - X_t^{(c^0, \psi^0)})$$

- We take $\lim_{\epsilon \rightarrow 0}$ above, we obtain :

$$\partial_\epsilon V_0^{(c^0, \psi^0)} - \nu \partial_\epsilon X_0^{(c^0, \psi^0)} \leq 0$$

where $(\partial_\epsilon V^{(c^0, \psi^0)})_{t \geq 0}$ exists and it is given explicitly :

THE MAIN STEPS OF THE PROOF III

$$\left\{ \begin{array}{l} d\partial_\epsilon V_t = \left(\delta_t \partial_\epsilon V_t - U'(c_t^1)(c_t^2 - c_t^1) \right) dt + d\langle \partial_\epsilon M^{V^1, c}, M^{V^1, c} \rangle_t \\ \quad + d\partial_\epsilon M_t^{V^1, c} - \sum_{i=1}^d \partial_\epsilon \hat{V}_t^i \left(e^{-\hat{V}^{1,i}} - 1 \right) \lambda_t^i dt \\ \quad + \sum_{i=1}^d \partial_\epsilon \hat{V}^{1,i} dN_t^i. \\ \partial_\epsilon V_T = \bar{U}'(X_T^1)(X_T^2 - X_T^1) \end{array} \right.$$

THE MAIN STEPS OF THE PROOF IV

- Consider the optimal density $(Z_t^{Q_t^{*,1}})_{t \geq 0}$ where its dynamics is given by

$$\frac{dZ_t^{Q_t^{*,1}}}{Z_{t^-}^{Q_t^{*,1}}} = -dM^{V,c} + \sum_{i=1}^d \left(e^{-\hat{Y}^{1,i}} - 1 \right) dN_t^i$$

then :

$$\partial_\epsilon V_t = \mathbb{E}^{Q_t^{*,1}} \left[\frac{S_T^\delta}{S_t^\delta} \bar{U}'(X_T^1)(X_T^2 - X_T^1) + \int_t^T \frac{S_s^\delta}{S_t^\delta} U'(c_s^1)(c_s^2 - c_s^1) ds \middle| \mathcal{F}_t \right].$$

THE MAIN STEPS OF THE PROOF V

- From the last result and the explicitly expression of $(\partial_\epsilon X_t^{(c^0, \psi^0)})_{t \geq 0}$ we get :

$$\begin{aligned} & \partial_\epsilon V_0^{(c^0, \psi^0)} - \nu \partial_\epsilon X_0^{(c^0, \psi^0)} \\ &= \mathbb{E}^P [S_T^\delta Z_T^{Q^*} \bar{\alpha} \bar{U}'(\psi^0)(\psi - \psi^0) + \int_0^T S_s^\delta Z_s^{Q^*} \alpha U'(c_s^0)(c_s - c_s^0) ds] \\ & \quad - \nu \mathbb{E}^P [Z_s^{\tilde{P}}(\psi - \psi^0) + \int_0^T Z_s^{\tilde{P}}(c_s - c_s^0) ds] \end{aligned} \tag{5}$$

- Using the equality above we get :

$$\begin{aligned} & \mathbb{E}^P [(S_T^\delta Z_T^{Q^*} \bar{\alpha} \bar{U}'(\psi^0) - \nu Z_s^{\tilde{P}})(\psi - \psi^0) \\ & \quad + \int_0^T (S_s^\delta Z_s^{Q^*} \alpha U'(c_s^0) - \nu Z_s^{\tilde{P}})(c_s - c_s^0) ds] \leq 0 \end{aligned} \tag{6}$$

THE MAIN STEPS OF THE PROOF VI

- Let define the set $A := \{(Z^{Q^*} \bar{\alpha} \bar{U}'(\psi^0) - \nu Z^{\tilde{P}})(\psi - \psi^0) > 0\}$ taking $c = c^0$ and $\psi = \psi^0 + \mathbf{1}_A$ then using (6) $P(A) = 0$ and we get :

$$(Z^{Q^*} \bar{\alpha} \bar{U}'(\psi^0) - \nu Z^{\tilde{P}}) \leq 0 \quad a.s$$

- Let define for each $\epsilon > 0$

$$B := \{(Z^{Q^*} \bar{\alpha} \bar{U}'(\psi^0) - \nu Z^{\tilde{P}})(\psi - \psi^0) < 0, \psi^0 > \epsilon\}$$

- because $\{\psi^0 > 0\}$ due to Inada assumption, we can define $\psi = \psi^0 - \mathbf{1}_B$ then due to (6) $P(B) = 0$ and we get

$$(Z^{Q^*} \bar{\alpha} \bar{U}'(\psi^0) - \nu Z^{\tilde{P}}) \geq 0 \quad a.s$$

We find the optimal consumption with similar arguments.