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PROBLEM

We present a problem of utility maximization under model uncertainty :

sup
π

inf
Q

U(π,Q), (1)

where

π runs through a set of strategies (portfolios, investment
decisions, . . .)

Q runs through a set of models Q.
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ONE KNOWN MODEL CASE

If we have a one known model P : in this case, Q = {P} for P a
given reference probability measure and U(π,P) has the form of a
P-expected utility from terminal wealth and/or consumption,
namely

U(π,P) = E
(
U(Xπ

T )
)

where
Xπ is the wealth process

and
U is some utility function.
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REFERENCES : DUAL APPROACH
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A. Schied (2007), Schied and Wu (2005)

H. Föllmer and A. Gundel, A. Gundel (2005)
others missing references . . . (sorry !)
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REFERENCES : BSDE APPROACH

El Karoui, Quenez and Peng (2001) : Dynamic maximum principle
(one single model)

Lazrak-Quenez (2003), Quenez (2004), Q 6= {P} but one keep
U(π,Q) as an expected utility

Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas
(2003), Schroder & Skiadas (1999, 2003, 2005) : Stochastic
Differential Utility and BSDE.

Hansen & Sargent : they discuss the problem of robust utility
maximization when model uncertainty is penalized by a relative
entropy term.
They study the problem in Markovian settings and use mainly
formal manipulations of Hamilton-Jacobi-Bellman (HJB) equations
to provide the optimal investment behaviour in these situations.
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PRELIMINARY AND ASSUMPTIONS

Let us given :

Final horizon : T <∞

(Ω,F ,F,P) a filtered probability space where F = {Ft}0≤t≤T is a
filtration satisfying the usual conditions of right-continuity and
P-completness.

Possible scenarios given by

Q := {Q probability measure on Ω such that Q � P on FT}
the density process of Q ∈ Q is the càdlàg P-martingale

Z Q
t =

dQ
dP

∣∣
Ft

= EP
[dQ

dP
∣∣ Ft

]
we may identify Z Q with Q.

Discounting process : Sδ
t := exp(−

∫ t
0 δs ds) with a discount rate

process δ = {δt}0≤t≤T .
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PRELIMINARY

Let Uδt ,T (Q) be a quantity given by

Uδt ,T (Q) = α

∫ T

t

Sδ
s

Sδ
t

Us ds + α′
Sδ

T

Sδ
t

UT

where U = (Ut )t∈[0,T ] is a utility rate process which comes from
consumption and UT is the terminal utility at time T which
corresponds to final wealth.

α, α′ are some constant which can be used to obtain special
cases.

Let Rδt ,T (Q) be a penalty term

Rδt ,T (Q) =

∫ T

t
δs

Sδ
s

Sδ
t

log
Z Q

s

Z Q
t

ds +
Sδ

T

Sδ
t

log
Z Q

T

Z Q
t
.

for Q � P on FT .
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COST FUNCTIONAL

We consider the cost functional

c(ω,Q) := Uδ0,T (Q) + βRδ0,T (Q) .

with β > 0 is a constant which determines the strength of this
penalty term.
Our first goal is to

minimize the functional Q 7−→ Γ(Q) := EQ
[
c(.,Q)

]
over a suitable class of probability measures Q � P on FT .
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RELATIVE ENTROPY

Under the reference probability P the cost functional Γ(Q) can be
written :

Γ(Q) = EP

[
Z Q

T

(
α

∫ T

0
Sδ

sUs ds + α′Sδ
T UT

)]

+ βEP

[∫ T

0
δsSδ

sZ δ
s log Z Q

s ds + Sδ
T Z Q

T log Z Q
T

]
.

The second term is a discounted relative entropy with both an
entropy rate as well a terminal entropy :

H(Q|P) :=

EQ

[
log Z Q

T

]
, if Q � P on FT

+∞, if not
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FUNCTIONAL SPACES AND HYPOTHESES

Dexp
0 is the space of progressively measurable processes y = (yt )

such that

EP

[
exp

(
γ ess sup0≤t≤T |yt |

) ]
<∞, for all γ > 0 .

Dexp
1 is the space of progressively measurable processes y = (yt )

such that

EP

[
exp

(
γ

∫ T

0
|ys|ds

) ]
<∞ for all γ > 0 .

Assumption (A) : 0 ≤ δ ≤ ‖δ‖∞ <∞, U ∈ Dexp
1 and

EP
[

exp
(
γ|UT |

) ]
<∞, for all γ > 0.
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THE CASE : δ = 0

The spacial case δ = 0 corresponds to the cost functional

Γ(Q) = EQ

[
U0

0,T

]
+βH(Q|P) = βH(Q|PU )−β log EP

[
exp

(
−1
β
U0

0,T

)]
.

where PU ≈ P and
dPU
dP

= c exp
(
−1
β
U0

0,T

)
.

Csiszar (1997) have proved the existence and uniqueness of the
optimal measure Q∗ ≈ PU which minimize the relative entropy
H(Q|PU ).

I. Csiszár : I-divergence geometry of probability distributions and
minimization problems. Annals of Probability 3, p. 146-158 (1975).

A. Matoussi (Le Mans) Istanbul Workshop on Mathematical Finance 18-21 May, 2009 15 / 43



CLASS OF PROBABILITY MEASURE

Due to the assumption on δ, a simple estimation gives

EP

[
Sδ

T Z Q
T log Z Q

T

]
≥ −e−1 + e−‖δ‖∞H(Q|P) .

Hence the second term in Γ(Q) explodes unless H(Q|P) <∞.
This explains why we only consider measures Q in Qf := the
space of all probability measures Q on (Ω,F) with Q � P on FT ,
Q = P on F0 and H(Q|P) <∞.

Qe
f := {Q ∈ Qf |Q ≈ P on FT}.
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OPTIMAL MEASURE

We have the following result :

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)
(i) There exits a unique Q∗ ∈ Qf which minimizes Q 7→ Γ(Q) aver all
Q ∈ Qf .

(ii) The optimal measure Q∗ is equivalent to P.
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DYNAMIC STOCHASTIC CONTROL PROBLEM

We embed the minimization of Γ(Q) in a stochastic control problem :
The minimal conditional cost

J(τ,Q) := Q − ess infQ′∈D(Q,τ)Γ(τ,Q′)

withΓ(τ,Q) := EQ [c(·,Q) | Fτ ],
D(Q, τ) = {Z Q′ |Q′ ∈ Qf et Q′ = Q sur Fτ} and τ ∈ S.

So, we can write our optimization problem as

inf
Q∈Qf

Γ(Q) = inf
Q∈Qf

EQ [c(·,Q)] = EP [J(0,Q)].

We obtain the following martingale optimality principle from
stochastic control :
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DYNAMIC STOCHASTIC CONTROL PROBLEM

We have obtained by following El Karoui (1981) :

PROPOSITION (BORDIGONI G., M. A., SCHWEIZER, M.)
1 The family {J(τ,Q) | τ ∈ S,Q ∈ Qf} is a submartingale system ;

2 Q̃ ∈ Qf is optimal if and only if {J(τ, Q̃) | τ ∈ S} is a Q̃-martingale
system ;

3 For each Q ∈ Qf , there exists an adapted RCLL process
JQ = (JQ

t )0≤t≤T which is a right closed Q-submartingale such that

JQ
τ = J(τ,Q)
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SEMIMARTINGALE DECOMPOSITION

We define for all Q′ ∈ Qe
f and τ ∈ S :

Ṽ (τ,Q′) := EQ′
[
Uδτ,T |Fτ

]
+ βEQ′

[
Rδτ,T (Q′) |Fτ

]
The value of the control problem started at time τ instead of 0 is :

V (τ,Q) := Q − ess infQ′∈D(Q,τ)Ṽ (τ,Q′)

By using the Bayes formula and the definition of Rδτ,T (Q′), one
sees that each Ṽ (τ,Q′) depends only on the values of Z Q′ on
]τ,T [ and therefore not on Q, since Q′ ∈ D(Q, τ) only says that
Z Q′ = Z Q on [0, τ ].
So we can equally well take the ess inf under P ≈ Q and over all
Q′ ∈ Qf and V (τ) ≡ V (τ,Q′) and one proves that V is P-special
semimartingale with canonical decomposition

V = V0 + MV + AV
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SEMIMARTINGALE BSDE

We need precise information on the filtration F = (Ft )t≤T .

Let first consider the following quadratic semimartingale BSDE
with :

DEFINITION

A solution of the BSDE is a pair of processes (Y ,M) such that Y is a
P-semimartingale and M is a locally square-integrable locally
martingale with M0 = 0 such that :−dYt = (αUt − δtYt )dt − 1

2β
d < M >t − dMt

YT = α′UT

Note that Y is then automatically P-special, and that if M is
continuous, so is Y .
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AV AND MV : THE CONTINUOUS FILTRATION CASE

THEOREM (BORDIGONI G., M. A., SCHWEIZER, M.)

Assume that F is continuous. Then the couple (V ,MV ) is the unique
solution in Dexp

0 ×M0,loc(P) of the BSDE−dYt = (αUt − δtYt )dt − 1
2β

d < M >t − dMt

YT = α′U ′T

Moreover, E
(
− 1
βMV

)
= Z Q∗ is a P−martingale such that it’s

supremum belongs to L1(P) where Q∗ is the optimal probability.
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RECURSIVE RELATION

LEMMA

Let (Y ,M) be a solution of BSDE with M continuous. Assume that
Y ∈ Dexp

0 or E
(
− 1
βM
)

is P−martingale.
For any pair of stopping times σ ≤ τ , then we have the recursive
relation

Yσ = −β log EP

[
exp

(
1
β

∫ τ

σ
(δsYs − αUs) ds − 1

β
Yτ

) ∣∣∣ Fσ]

As a consequence one gets the uniqueness result for the
semimartingale BSDE.
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δ = 0 : THE ENTROPIC SOLUTION

In the case of δ = 0, σ = t et τ = T , we get from the recursive
relation the explicit solution, which corresponds to the entropic
process (also entropic risk measure) :

Yt = −β log EP

[
exp

(
−α
β

∫ T

t
Us ds − 1

β
YT

) ∣∣∣ Ft

]
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BSDE : BROWNIAN FILTRATION

REMARK

If F = FW , for a given Brownian mtotion, then the semimartingale
BSDE takes the standard form of quadratique BSDE : − dYt =

(
ρt + δtYt −

1
2β
|Zt |2

)
)dt − Zt · dWt

YT = ξ

Kobylanski (2000), Lepletier et San Martin (1998), El Karoui and
Hamadène (2003), Briand and Hu (2005).
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EXISTENCE PROOF : MAIN STEPS

1 We use the martingale optimality principle to show that (V ,MV ) is
solution of the BSDE. For each Q ∈ Qe

f , we have Z Q = E(LQ) for
some continuous local P-martingale LQ null at 0, and we have

d(log Z Q) = dLQ − 1
2

d〈LQ〉.

The semimartingale decomposition of JQ + Girsanov theorem +
optimality imply that :

AV =

∫
(δtVt − αUt )dt − ess inf

Q∈Qe
f

(
〈MV ,LQ〉+

β

2
〈LQ〉

)
.

2 We show that

ess inf
Q∈Qe

f

(
〈MV ,LQ〉+

β

2
〈LQ〉

)
= − 1

2β
〈MV 〉

that is the ess inf is attained for LQ∗ = − 1
βMV .

3 E
( 1
βMV ) is a true P-martingale.
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THE CASE OF NON CONTINUOUS FILTRATION

For any i = 1, . . . ,d , we note H i
t = 1{τi≤t} the jump process

associated with τi , where τi is the F-stopping time representing the
default time of the firm i . We assume that P(τi = τj) = 0,∀i 6= j .

Let also N i , i = 1, . . . ,d be given by N i
t := H i

t −
∫ t

0 λ
i
sds assumed

to be F-martingales for a non-negative processes λi . Obviously,
the process λi is null after the default time τi , and these stopping
times are totally inaccessible.

Any special semimartingale Y admits a canonical decomposition
Y = Y0 + A + Y c + Y d where A is a predictable finite variation
process, Y c is a continuous martingale and Y d is a discontinuous
martingale. In our case, there exists predictable processes y and
Ŷ i such that

dY c
t = ytdWt , dY d

t =
d∑

i=1

Ŷ i
t dN i

t .
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SEMIMARTINGALE BSDE WITH JUMPS

Let first consider the following quadratic semimartingale BSDE
with jumps :

DEFINITION

A solution of the BSDE is a triple of processes (Y ,MY ,c , Ŷ ) such that
Y is a P-semimartingale, M is a locally square-integrable locally
martingale with M0 = 0 and Ŷ = (Ŷ 1, · · · , Ŷ d ) a Rd -valued predictable
locally bounded process such that :

dYt = [
d∑

i=1

g(Ŷ i
t )λi

t − αUt + δtYt ]dt +
1
2

d〈MY ,c〉t + dMY ,c
t +

d∑
i=1

Ŷ i
t dN i

t

YT = ᾱŪT
(2)

where g(x) = e−x + x − 1.
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EXISTENCE RESULT

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)
There exists a unique triple of process
(Y ,MY ,c , Ŷ ) ∈ Dexp

0 ×M0,loc(P)×
(
Dexp

0

)⊗d solution of the
semartingale BSDE with jumps. Furthermore, the optimal measure Q∗

solution of our minimization problem is given :

dZ Q∗
t = Z Q∗

t− dLQ∗
t , Z Q∗

0 = 1

where

dLQ∗
t = −dMY ,c

t +
d∑

i=1

(
e−Ŷ i

t − 1
)

dN i
t .
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COMPARISON FOR SEMIMARTINGALE BSDE

THEOREM (JEANBLANC, M., M. A., NGOUPEYOU A.)

Assume that for k = 1,2, (Y k ,MY k ,c , Ŷ k ) is solution of the BSDE
associated to (Ũk , Ūk ). Then one have

Y 1
t − Y 2

t ≤ EQ∗,2
[∫ T

t
α

Sδ
s

Sδ
t

(
Ũ1

s − Ũ2
s

)
ds + ᾱ

Sδ
T

Sδ
t

(
Ū1

T − Ū2
T

) ∣∣∣Ft

]

where Q∗,2 the probability measure equivalent to P given by

dZ Q∗,2
t

Z Q∗,2
t−

= −dMY 2,c
t +

d∑
i=1

(
e−Ŷ i,2

t − 1
)

dN i
t .

In particular, if Ũ1 ≤ Ũ2 and Ū1
T ≤ Ū2

T , one obtains

Y 1
t ≤ Y 2

t , dP ⊗ dt-a.e.
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CONCAVITY PROPERTY FOR THE SEMIMARTINGALE

BSDE

THEOREM

Let define the map F : Dexp
1 × Dexp

0 −→ Dexp
0 such that for all

(Ũ, Ū) ∈ Dexp
1 × Dexp

0 , we have

F (Ũ, Ū) = V

where (V ,MV ,c , V̂ ) is the solution of BSDE associated to (Ũ, Ū). Then
F is concave ,namely,

F
(
θŨ1 + (1− θ)Ũ2, θŪ1

T + (1− θ)Ū2
T

)
≥ θF (Ũ1, Ū1

T )+(1−θ)F (Ũ2, Ū2
T ).
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THE FINANCIAL MODEL : COMPLETE MARKET

The wealth process associated to the corresponding self-financing
strategy is :

dX x ,π,c
t = (rtXt + πt (µt − rt .1)− ct ) dt + πtσtdMt

where M is the d + 1-dimensional martingale
M = (N1, . . . ,Nd ,W ).

The budget constraints reads

EP̃

(∫ T

0
ctdt + X x ,π,c

T

)
≤ x

where P̃ is the unique martingale measure.
Moreover, the strategy is called feasible if the constraint of
nonnegative wealth holds :

X x ,π,c
t ≥ 0 t ∈ [0,T ]

and this condition holds if the terminal wealth is non negative.
A. Matoussi (Le Mans) Istanbul Workshop on Mathematical Finance 18-21 May, 2009 34 / 43



THE FINANCIAL MODEL

We assume now that Ũs = U(cs) and Us = U(XT ).
The main goal is to show there exists an unique pair of strategy
that maximize the second part of the optimization problem :{

supπ,c V x ,π,c
0

s.t EP̃
(∫ T

0 ctdt + X x ,π,c
T

)
≤ x

where V0 is the initial value process of the problem such that
(V ,MV ,MV ,.) is the solution of the BSDE.
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UNCONSTRAINTED OPTIMIZATION PROBLEM

THEOREM

There exists a constant ν∗ > 0 such that :

u(x) = sup
(c,ψ)

{
V (c,ψ)

0 + ν∗
(

x − X (c,ψ)
)}

and if the maximum is attained in the above constraint problem by
(c∗, ψ∗) then it is attained in the unconstraint problem by (c∗, ψ∗) with
X (c,ψ) = x. Conversely if there exists ν0 > 0 and (c0, ψ0) such that the
maximum is attained in

sup
(c,ψ)

{
V (c,ψ)

0 + ν0
(

x − X (c,ψ)
0

)}
with X (c,ψ)

0 = x, then the maximum is attained in our constraint
problem by (c0, ψ0)
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THE MAXIMUM PRINCIPLE

We now study for a fixed ν > 0 the following optimization problem :

sup
(c,ψ)

L(c, ψ) (3)

where the functional L is given by L(c, ψ) = V (c,ψ)
0 − νX (c,ψ)

0

PROPOSITION (JEANBLANC, M., M. A., NGOUPEYOU A.)

The optimal consumption plan (c0, ψ0) which solves (3) satisfies the
following equations :

U ′(c0
t ) =

Z P̃
t

Z Q∗
t

ν

αSδ
t

Ū ′(ψ0) =
Z P̃

T

Z Q∗
T

ν

ᾱSδ
T

a.s (4)

where Q∗ is the model measure associated to the optimal
consumption (c0, ψ0).
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THE MAIN STEPS OF THE PROOF I

Let consider the optimal consumption plan (c0, ψ0) which solve (3)
and another consumption plan (c, ψ). Consider ε ∈ (0,1) then :

L(c0 + ε(c − c0), ψ0 + ε(c − c0)) ≤ L(c0, ψ0)

Then
1
ε

[
V (c0+ε(c−c0),ψ0+ε(ψ−ψ0))

0 − V (c0,ψ0)
0

]
− ν 1

ε

[
X (c0+ε(c−c0),ψ0+ε(ψ−ψ0)

0 − X (c0,ψ0)
0

]
≤ 0

Because
(

X (c,ψ)

t +
∫ t

0 csds
)

t≥0
is a P̃ martinagle we obtain :

1
ε

[
X (c0+ε(c−c0),ψ0+ε(ψ−ψ0)

t − X (c0,ψ0)
t

]
= EP̃

[∫ T

t
(cs − c0

s )ds + (ψ − ψ0)
∣∣∣Ft

]
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THE MAIN STEPS OF THE PROOF II

Then the wealth process is right differential in 0 with respect to ε
we define

∂εX
(c0,ψ0)
t = lim

ε→0

1
ε

(X (c0+ε(c−c0),ψ0+ε(c−c0))
t − X (c0,ψ0)

t )

We take limε→0 above, we obtain :

∂εV
(c0,ψ0)
0 − ν∂εX (c0,ψ0)

0 ≤ 0

where (∂εV (c0,ψ0))t≥0 exists and it is given explicitly :
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THE MAIN STEPS OF THE PROOF III



d∂εVt =
(
δt∂εVt − U ′(c1

t )(c2
t − c1

t )
)

dt + d〈∂εMV 1,c ,MV 1,c〉t

+ d∂εM
V 1,c
t −

d∑
i=1

∂εV̂ i
t

(
e−V̂ 1,i − 1

)
λi

tdt

+
d∑

i=1

∂εV̂ 1,idN i
t .

∂εVT = Ū ′(X 1
T )(X 2

T − X 1
T )
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THE MAIN STEPS OF THE PROOF IV

Consider the optimal density (Z Q∗,1t )
t≥0 where its dynamics is

given by

dZ Q∗,1
t

Z Q∗,1
t−

= −dMV ,c +
d∑

i=1

(
e−Ŷ 1,i − 1

)
dN i

t

then :

∂εVt = EQ∗,1
[Sδ

T

Sδ
t

Ū ′(X 1
T )(X 2

T − X 1
T ) +

∫ T

t

Sδ
s

Sδ
t

U ′(c1
s )(c2

s − c1
s )ds

∣∣∣Ft

]
.
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THE MAIN STEPS OF THE PROOF V

From the last result and the explicitly expression of (∂εX
(c0,ψ0

t )t≥0
we get :

∂εV
(c0,ψ0)
0 − ν∂εX (c0,ψ0)

0

= EP[Sδ
T Z Q∗

T ᾱŪ ′(ψ0)(ψ − ψ0) +

∫ T

0
Sδ

sZ Q∗
s αU ′(c0

s )(cs − c0
s )ds

]
− νEP[Z P̃(ψ − ψ0) +

∫ T

0
Z P̃

s (cs − c0
s )ds

]
(5)

Using the equality above we get :

EP[(Sδ
T Z Q∗

T ᾱŪ ′(ψ0)− νZ P̃)(ψ − ψ0)

+

∫ T

0

(
Sδ

sZ Q∗
s αU ′(c0

s )− νZ P̃
s
)
(cs − c0

s )ds
]
≤ 0

(6)
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THE MAIN STEPS OF THE PROOF VI

Let define the set A := {(Z Q∗ᾱŪ ′(ψ0)− νZ P̃)(ψ − ψ0) > 0} taking
c = c0 and ψ = ψ0 + 1A then using (6) P(A) = 0 and we get :

(Z Q∗ᾱŪ ′(ψ0)− νZ P̃) ≤ 0 a.s

Let define for each ε > 0

B := {(Z Q∗ᾱŪ ′(ψ0)− νZ P̃)(ψ − ψ0) < 0, ψ0 > ε}

because {ψ0 > 0} due to Inada assumption, we can define
ψ = ψ0 − 1B then due to (6) P(B) = 0 and we get

(Z Q∗ᾱŪ ′(ψ0)− νZ P̃) ≥ 0 a.s

We find the optimal consumption with similar arguments.
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