

A new approach to LIBOR modeling

Antonis Papapantoleon

FAM – TU Vienna

Based on joint work with Martin Keller-Ressel and Josef Teichmann

Istanbul Workshop on Mathematical Finance
Istanbul, Turkey, 18 May 2009

Outline of the talk

- 1 Interest rate markets
- 2 LIBOR model: Axioms
- 3 LIBOR and Forward price model
- 4 Affine processes
- 5 Affine martingales
- 6 Affine LIBOR model
- 7 Example: CIR martingales
- 8 Summary and Outlook

Interest rates – Notation

- $B(t, T)$: time- t price of a zero coupon bond for T ; $B(T, T) = 1$;
- $L(t, T)$: time- t forward LIBOR for $[T, T + \delta]$;

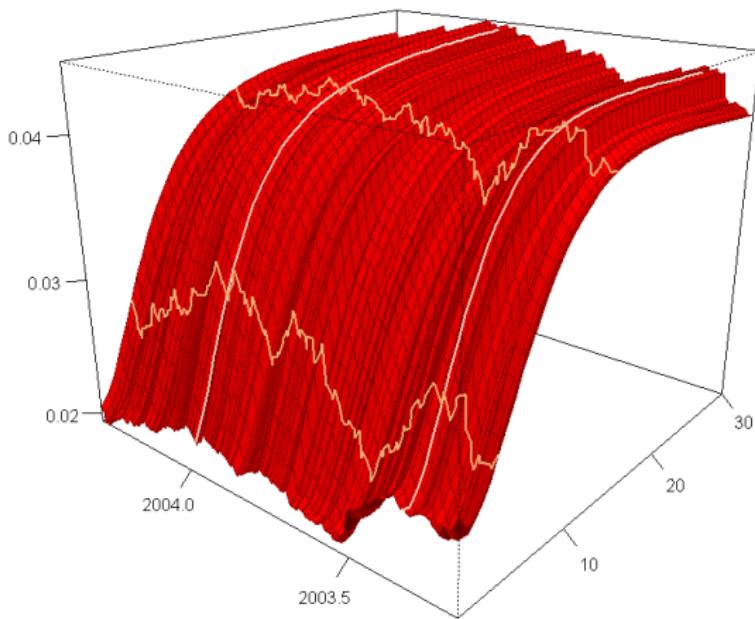
$$L(t, T) = \frac{1}{\delta} \left(\frac{B(t, T)}{B(t, T + \delta)} - 1 \right)$$

- $F(t, T, U)$: time- t forward price for T and U ; $F(t, T, U) = \frac{B(t, T)}{B(t, U)}$

“Master” relationship

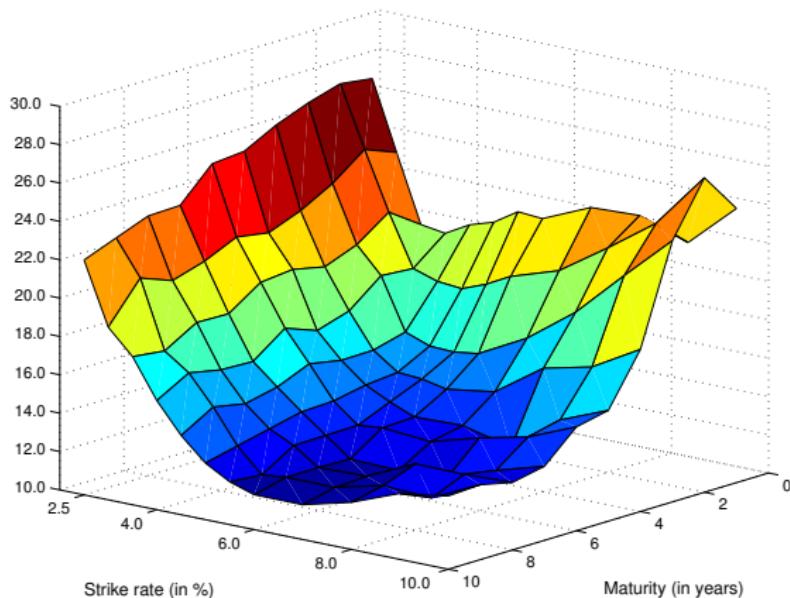
$$F(t, T, T + \delta) = \frac{B(t, T)}{B(t, T + \delta)} = 1 + \delta L(t, T) \quad (1)$$

Interest rates evolution



- Evolution of interest rate term structure, 2003 – 2004 (picture: Th. Steiner)

Calibration problems



- ① Implied volatilities are constant neither across strike nor across maturity
- ② Variance scales non-linearly over time (see e.g. D. Skovmand)

LIBOR model: Axioms

Economic thought dictates that LIBOR rates should satisfy:

Axiom 1

*The LIBOR rate should be **non-negative**, i.e. $L(t, T) \geq 0$ for all t .*

Axiom 2

*The LIBOR rate process should be a **martingale** under the corresponding forward measure, i.e. $L(\cdot, T) \in \mathcal{M}(P_{T+\delta})$.*

Practical applications require:

*Models should be **analytically tractable** (\rightsquigarrow fast calibration).*

*Models should have **rich structural properties** (\rightsquigarrow good calibration).*

- What axioms do the existing models satisfy?

LIBOR models I (Sandmann et al, Brace et al, ..., Eberlein & Özkan)

Ansatz: model the LIBOR rate as the exponential of a semimartingale H :

$$L(t, T_k) = L(0, T_k) \exp \left(\int_0^t b(s, T_k) ds + \int_0^t \lambda(s, T_k) dH_s^{T_{k+1}} \right), \quad (2)$$

where $b(s, T_k)$ ensures that $L(\cdot, T_k) \in \mathcal{M}(P_{T_{k+1}})$.

H has the $P_{T_{k+1}}$ -canonical decomposition

$$H_t^{T_{k+1}} = \int_0^t \sqrt{c_s} dW_s^{T_{k+1}} + \int_0^t \int_{\mathbb{R}} x(\mu^H - \nu^{T_{k+1}})(ds, dx), \quad (3)$$

where the $P_{T_{k+1}}$ -Brownian motion is

$$W_t^{T_{k+1}} = W_t^{T_*} - \int_0^t \left(\sum_{l=k+1}^N \frac{\delta_l L(t-, T_l)}{1 + \delta_l L(t-, T_l)} \lambda(t, T_l) \right) \sqrt{c_s} ds, \quad (4)$$

LIBOR models II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \left(\prod_{l=k+1}^N \frac{\delta_l L(t-, T_l)}{1 + \delta_l L(t-, T_l)} \left(e^{\lambda(t, T_l)x} - 1 \right) + 1 \right) \nu^{T_*}(ds, dx).$$

LIBOR models II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \left(\prod_{l=k+1}^N \frac{\delta_l L(t-, T_l)}{1 + \delta_l L(t-, T_l)} \left(e^{\lambda(t, T_l)x} - 1 \right) + 1 \right) \nu^{T_*}(ds, dx).$$

Consequences for continuous semimartingales:

- ① caplets can be priced in closed form;
- ② swaptions and multi-LIBOR products **cannot** be priced in closed form;
- ③ Monte-Carlo pricing is **very** time consuming \rightsquigarrow **coupled** high dimensional SDEs!

LIBOR models II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \left(\prod_{l=k+1}^N \frac{\delta_l L(t-, T_l)}{1 + \delta_l L(t-, T_l)} \left(e^{\lambda(t, T_l)x} - 1 \right) + 1 \right) \nu^{T_*}(ds, dx).$$

Consequences for continuous semimartingales:

- ① caplets can be priced in closed form;
- ② swaptions and multi-LIBOR products **cannot** be priced in closed form;
- ③ Monte-Carlo pricing is **very** time consuming \rightsquigarrow **coupled** high dimensional SDEs!

Consequences for general semimartingales:

- ① even caplets **cannot** be priced in closed form!
- ② ditto for Monte-Carlo pricing.

LIBOR models III

The equation for the dynamics yield the following matrix for the “dependence” structure

$$\begin{array}{cccccc} \ddots & L(t, T_{i-1}) & & & & \\ \ddots & \vdots & \ddots & \ddots & & \\ & L(t, T_{N-2}) & \dots & \dots & L(t, T_{N-2}) & \\ & L(t, T_{N-1}) & \dots & \dots & L(t, T_{N-1}) & L(t, T_{N-1}) \\ \dots & L(t, T_N) & \dots & \dots & L(t, T_N) & L(t, T_N) & L(t, T_N) \\ \hline \dots & L(t, T_i) & \dots & \dots & L(t, T_{N-3}) & L(t, T_{N-2}) & L(t, T_{N-1}) & L(t, T_N) \end{array}$$

Bottom line: LIBOR rates we wish to simulate.

LIBOR models IV: Remedies

① “Frozen drift” approximation

- Brace et al, Schrögl, Glassermann et al, ...
- replace the random terms by their deterministic initial values:

$$\frac{\delta_I L(t-, T_I)}{1 + \delta_I L(t-, T_I)} \approx \frac{\delta_I L(0, T_I)}{1 + \delta_I L(0, T_I)} \quad (5)$$

- (+) deterministic characteristics \rightsquigarrow closed form pricing
- (-) “ad hoc” approximation, no error estimates, compounded error ...

② Log-normal and/or Monte Carlo methods

- best log-normal approximation (e.g. Schoenmakers)
- interpolations and predictor-corrector MC methods
- Joshi and Stacey (2008): overview paper

LIBOR models V: Remedies

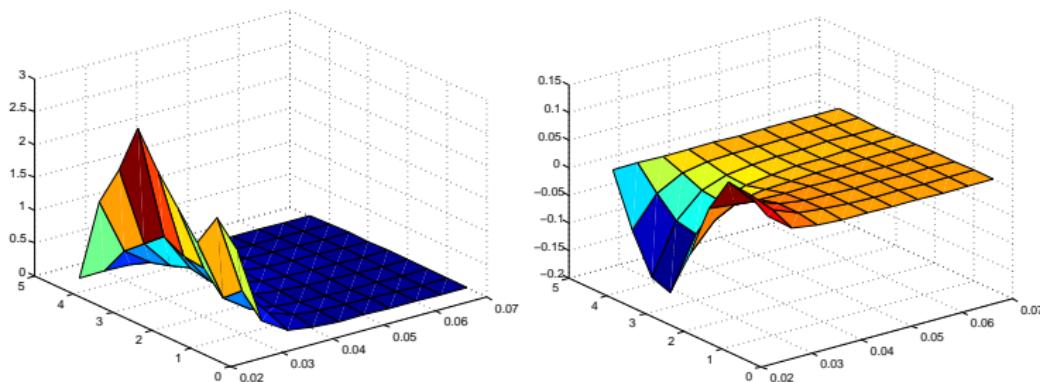
③ Strong Taylor approximation

- approximate the LIBOR rates in the drift by

$$L(t, T_I) \approx L(0, T_I) + Y(t, T_I)_+ \quad (6)$$

where Y is the (scaled) **exponential transform** of H ($Y = \mathcal{L} \log e^H$)

- theoretical foundation, error estimates, **simpler** equations for MC
- Siopacha and Teichmann; Hubalek, Papapantoleon & Siopacha



Difference in implied vols between full SDE vs frozen drift and full SDE vs strong Taylor.

Forward price model I (Eberlein & Özkan, Kluge)

Ansatz: model the **forward price** as the exponential of a semimartingale H :

$$F(t, T_k) = F(0, T_k) \exp \left(\int_0^t b(s, T_k) ds + \int_0^t \lambda(s, T_k) dH_s^{T_{k+1}} \right), \quad (7)$$

where $b(s, T_k)$ ensures that $F(\cdot, T_k) = 1 + \delta L(\cdot, T_k) \in \mathcal{M}(P_{T_{k+1}})$.
 H has the $P_{T_{k+1}}$ -canonical decomposition

$$H_t^{T_{k+1}} = \int_0^t \sqrt{c_s} dW_s^{T_{k+1}} + \int_0^t \int_{\mathbb{R}} x(\mu^H - \nu^{T_{k+1}})(ds, dx), \quad (8)$$

where the $P_{T_{k+1}}$ -Brownian motion is

$$W_t^{T_{k+1}} = W_t^{T_*} - \int_0^t \left(\sum_{l=k+1}^N \lambda(t, T_l) \right) \sqrt{c_s} ds, \quad (9)$$

Forward price model II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \exp \left(x \sum_{l=k+1}^N \lambda(t, T_l) \right) \nu^{T^*}(ds, dx).$$

Consequences:

- ① the model structure is **preserved**;
- ② caps, swaptions and multi-LIBOR products priced in **closed form**.

So, what is wrong?

Forward price model II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \exp \left(x \sum_{l=k+1}^N \lambda(t, T_l) \right) \nu^{T^*}(ds, dx).$$

Consequences:

- ① the model structure is **preserved**;
- ② caps, swaptions and multi-LIBOR products priced in **closed form**.

So, what is wrong?

Negative LIBOR rates can occur!

Forward price model II

and the $P_{T_{k+1}}$ -compensator of μ^H is

$$\nu^{T_{k+1}}(ds, dx) = \exp\left(x \sum_{l=k+1}^N \lambda(t, T_l)\right) \nu^{T^*}(ds, dx).$$

Consequences:

- ① the model structure is **preserved**;
- ② caps, swaptions and multi-LIBOR products priced in **closed form**.

So, what is wrong?

Negative LIBOR rates can occur!

Aim: design a model where the model structure is **preserved** and LIBOR rates are **positive**.

Tool: Affine processes on $\mathbb{R}_{\geq 0}^d$.

Affine processes I

Let $X = (X_t)_{0 \leq t \leq T}$ be a conservative, time-homogeneous, stochastically continuous **Markov process** taking values in $D = \mathbb{R}_{\geq 0}^d$; and $(P_x)_{x \in D}$ a family of probability measures on (Ω, \mathcal{F}) , such that $X_0 = x$, P_x -a.s. for every $x \in D$. Setting

$$\mathcal{I}_T := \left\{ u \in \mathbb{R}^d : E_x[e^{\langle u, X_T \rangle}] < \infty, \text{ for all } x \in D \right\}, \quad (10)$$

we assume that

- (i) $0 \in \mathcal{I}_T^\circ$;
- (ii) the conditional moment generating function of X_t under P_x has **exponentially-affine dependence on x** ; i.e. there exist functions $\phi_t(u) : [0, T] \times \mathcal{I}_T \rightarrow \mathbb{R}$ and $\psi_t(u) : [0, T] \times \mathcal{I}_T \rightarrow \mathbb{R}^d$ such that

$$E_x[\exp\langle u, X_t \rangle] = \exp(\phi_t(u) + \langle \psi_t(u), x \rangle), \quad (11)$$

for all $(t, u, x) \in [0, T] \times \mathcal{I}_T \times D$.

Affine processes II

The process X is a **regular affine process** in the spirit of Duffie, Filipović & Schachermayer (2003).

Using Theorem 3.18 in Keller-Ressel (2008)

$$F(u) := \frac{\partial}{\partial t} \Big|_{t=0+} \phi_t(u) \quad \text{and} \quad R(u) := \frac{\partial}{\partial t} \Big|_{t=0+} \psi_t(u) \quad (12)$$

exist for all $u \in \mathcal{I}_T$ and are continuous in u . Moreover, F and R satisfy Lévy–Khintchine-type equations:

$$F(u) = \langle b, u \rangle + \int_D (e^{\langle \xi, u \rangle} - 1) m(d\xi) \quad (13)$$

and

$$R_i(u) = \langle \beta_i, u \rangle + \left\langle \frac{\alpha_i}{2} u, u \right\rangle + \int_D (e^{\langle \xi, u \rangle} - 1 - \langle u, h^i(\xi) \rangle) \mu_i(d\xi), \quad (14)$$

where $(b, m, \alpha_i, \beta_i, \mu_i)_{1 \leq i \leq d}$ are **admissible** parameters.

Affine processes III

The time-homogeneous Markov property of X implies:

$$E_X \left[\exp \langle u, X_{t+s} \rangle \mid \mathcal{F}_s \right] = \exp \left(\phi_t(u) + \langle \psi_t(u), X_s \rangle \right), \quad (15)$$

for all $0 \leq t + s \leq T$ and $u \in \mathcal{I}_T$.

Lemma (Flow property)

*The functions ϕ and ψ satisfy the **semi-flow equations**:*

$$\begin{aligned} \phi_{t+s}(u) &= \phi_t(u) + \phi_s(\psi_t(u)) \\ \psi_{t+s}(u) &= \psi_s(\psi_t(u)) \end{aligned} \quad (16)$$

with initial condition

$$\phi_0(u) = 0 \quad \text{and} \quad \psi_0(u) = u, \quad (17)$$

for all suitable $0 \leq t + s \leq T$ and $u \in \mathcal{I}_T$.

Affine processes IV

① **Affine processes on \mathbb{R} :** the admissibility conditions yield

$$F(u) = bu + \frac{a}{2}u^2 + \int_{\mathbb{R}} (e^{zu} - 1 - uh(z)) m(dz)$$

$$R(u) = \beta u,$$

for $a \in \mathbb{R}_{\geq 0}$ and $b, \beta \in \mathbb{R}$.

- Every affine process on \mathbb{R} is an Ornstein–Uhlenbeck (OU) process.

② **Affine processes on $\mathbb{R}_{\geq 0}$:** the admissibility conditions yield

$$F(u) = bu + \int_D (e^{zu} - 1) m(dz)$$

$$R(u) = \beta u + \frac{\alpha}{2}u^2 + \int_D (e^{zu} - 1 - uh(z)) \mu(dz),$$

for $b, \alpha \in \mathbb{R}_{\geq 0}$ and $\beta \in \mathbb{R}$.

- There exist affine process on $\mathbb{R}_{\geq 0}$ which are not OU process, e.g. CIR.

Affine LIBOR model: martingales ≥ 1

Idea:

- ① insert an **affine** process in its moment generating function with **inverted** time; the resulting process is a **martingale**;
- ② if the affine process is **positive**, the martingale is **greater than one**.

Theorem

The process $M^u = (M_t^u)_{0 \leq t \leq T}$ defined by

$$M_t^u = \exp(\phi_{T-t}(u) + \langle \psi_{T-t}(u), X_t \rangle), \quad (18)$$

is a martingale. Moreover, if $u \in \mathcal{I}_T \cap \mathbb{R}_{\geq 0}^d$ then $M_t \geq 1$ a.s. for all $t \in [0, T]$, for any $X_0 \in \mathbb{R}_{\geq 0}^d$.

Affine LIBOR model: martingales ≥ 1

Proof.

Using (17) and (15), we have that:

$$\begin{aligned} E_x[M_T^u | \mathcal{F}_t] &= E_x[\exp\langle u, X_T \rangle | \mathcal{F}_t] \\ &= \exp(\phi_{T-t}(u) + \langle \psi_{T-t}(u), X_t \rangle) = M_t^u. \end{aligned}$$

Regarding $M_t^u \geq 1$ for all $t \in [0, T]$: note that if $u \in \mathcal{I}_T \cap \mathbb{R}_{\geq 0}^d$, then

$$M_t^u = E_x[\exp\langle u, X_T \rangle | \mathcal{F}_t] \geq 1. \quad (19)$$

□

Affine LIBOR model: martingales ≥ 1

Example (Lévy process)

Consider a Lévy subordinator, then

$$\begin{aligned} M_t^u &= \exp(\phi_{T-t}(u) + \langle \psi_{T-t}(u), X_t \rangle) \\ &= \exp((T-t)\kappa(u) + u \cdot X_t) \geq 1 \\ &= \exp(T\kappa(u)) \exp(u \cdot X_t - t\kappa(u)) \in \mathcal{M}, \end{aligned} \tag{20}$$

which is a martingale ≥ 1 for $u \in \mathbb{R}_{\geq 0}^d$.

Affine LIBOR model: Ansatz

Consider a discrete tenor structure $0 = T_0 < T_1 < T_2 < \dots < T_N$;
 discounted bond prices must satisfy:

$$\frac{B(\cdot, T_k)}{B(\cdot, T_N)} \in \mathcal{M}(P_{T_N}), \quad \text{for all } k \in \{1, \dots, N-1\}. \quad (21)$$

Ansatz

We model quotients of bond prices using the martingales M :

$$\frac{B(t, T_1)}{B(t, T_N)} = M_t^{u_1} \quad (22)$$

$$\vdots$$

$$\frac{B(t, T_{N-1})}{B(t, T_N)} = M_t^{u_{N-1}}, \quad (23)$$

with initial conditions: $\frac{B(0, T_k)}{B(0, T_N)} = M_0^{u_k}$, for all $k \in \{1, \dots, N-1\}$.

Affine LIBOR model: initial values

Proposition

Let $L(0, T_1), \dots, L(0, T_N)$ be a tenor structure of *non-negative* initial LIBOR rates; let X be an affine process starting at the canonical value $\mathbf{1}$.

- ① If $\gamma_X := \sup_{u \in \mathcal{I}_T \cap \mathbb{R}_{>0}^d} E_{\mathbf{1}}[e^{\langle u, X_T \rangle}] > \frac{B(0, T_1)}{B(0, T_N)}$, then there exists a *decreasing sequence* $u_1 \geq u_2 \geq \dots \geq u_N = 0$ in $\mathcal{I}_T \cap \mathbb{R}_{\geq 0}^d$, such that

$$M_0^{u_k} = \frac{B(0, T_k)}{B(0, T_N)}, \quad \text{for all } k \in \{1, \dots, N\}. \quad (24)$$

In particular, if $\gamma_X = \infty$, then the affine LIBOR model can fit *any* term structure of non-negative initial LIBOR rates.

- ② If X is one-dimensional, the sequence $(u_k)_{k \in \{1, \dots, N\}}$ is *unique*.
- ③ If all initial LIBOR rates are *positive*, the sequence $(u_k)_{k \in \{1, \dots, N\}}$ is *strictly decreasing*.

Affine LIBOR model: forward prices

Forward prices have the following form

$$\begin{aligned}
 \frac{B(t, T_k)}{B(t, T_{k+1})} &= \frac{B(t, T_k)}{B(t, T_N)} \frac{B(t, T_N)}{B(t, T_{k+1})} = \frac{M_t^{u_k}}{M_t^{u_{k+1}}} \\
 &= \exp \left(\phi_{T_N-t}(u_k) - \phi_{T_N-t}(u_{k+1}) \right. \\
 &\quad \left. + \langle \psi_{T_N-t}(u_k) - \psi_{T_N-t}(u_{k+1}), X_t \rangle \right). \quad (25)
 \end{aligned}$$

Now, $\phi_t(\cdot)$ and $\psi_t(\cdot)$ are order-preserving, i.e.

$$u \leq v \Rightarrow \phi_t(u) \leq \phi_t(v) \text{ and } \psi_t(u) \leq \psi_t(v).$$

Consequently: positive initial LIBOR rate yields positive LIBOR rates for all times.

Affine LIBOR model: forward measures

Forward measures are related via:

$$\frac{dP_{T_k}}{dP_{T_{k+1}}}\Big|_{\mathcal{F}_t} = \frac{F(t, T_k, T_{k+1})}{F(0, T_k, T_{k+1})} = \frac{B(0, T_{k+1})}{B(0, T_k)} \times \frac{M_t^{u_k}}{M_t^{u_{k+1}}} \quad (26)$$

or equivalently:

$$\frac{dP_{T_{k+1}}}{dP_{T_N}}\Big|_{\mathcal{F}_t} = \frac{B(0, T_N)}{B(0, T_{k+1})} \times \frac{B(t, T_{k+1})}{B(t, T_N)} = \frac{B(0, T_N)}{B(0, T_{k+1})} \times M_t^{u_{k+1}}. \quad (27)$$

Hence, we can easily see that

$$\frac{B(\cdot, T_k)}{B(\cdot, T_{k+1})} = \frac{M_t^{u_k}}{M_t^{u_{k+1}}} \in \mathcal{M}(P_{T_{k+1}}), \quad \text{for all } k \in \{1, \dots, N-1\}. \quad (28)$$

Affine LIBOR model: dynamics under forward measures

The moment generating function of X_t under **any** forward measure is

$$\begin{aligned} E_{P_{T_{k+1}}}[e^{vX_t}] &= M_0^{u_{k+1}} E_{P_{T_N}}[M_t^{u_{k+1}} e^{vX_t}] \\ &= \exp \left(\phi_t(\psi_{T_N-t}(u_{k+1}) + v) - \phi_t(\psi_{T_N-t}(u_{k+1})) \right. \\ &\quad \left. + \langle \psi_t(\psi_{T_N-t}(u_{k+1}) + v) - \psi_t(\psi_{T_N-t}(u_{k+1})), x \rangle \right). \end{aligned} \quad (29)$$

Denote by $\frac{M_t^{u_k}}{M_t^{u_{k+1}}} = e^{A_k + B_k \cdot X_t}$; the moment generating function is

$$\begin{aligned} E_{P_{T_{k+1}}}[e^{v(A_k + B_k \cdot X_t)}] &= \frac{B(0, T_N)}{B(0, T_{k+1})} \\ &\quad \times \exp \left(v\phi_{T_N-t}(u_k) + (1-v)\phi_{T_N-t}(u_{k+1}) \right. \\ &\quad + \phi_t(v\psi_{T_N-t}(u_k) + (1-v)\psi_{T_N-t}(u_{k+1})) \\ &\quad \left. + \langle \psi_t(v\psi_{T_N-t}(u_k) + (1-v)\psi_{T_N-t}(u_{k+1})), x \rangle \right). \end{aligned} \quad (30)$$

Affine LIBOR model: caplet pricing

We can re-write the payoff of a caplet as follows (here $\mathcal{K} := 1 + \delta K$):

$$\begin{aligned}
 \delta(L(T_k, T_k) - K)^+ &= (1 + \delta L(T_k, T_k) - 1 + \delta K)^+ \\
 &= \left(\frac{M_{T_k}^{u_k}}{M_{T_k}^{u_{k+1}}} - \mathcal{K} \right)^+ \\
 &= \left(e^{A_k + B_k \cdot X_{T_k}} - \mathcal{K} \right)^+.
 \end{aligned} \tag{31}$$

Then we can price caplets by Fourier-transform methods:

$$\begin{aligned}
 \mathbb{C}(T_k, K) &= B(0, T_{k+1}) E_{P_{T_{k+1}}} [\delta(L(T_k, T_k) - K)^+] \\
 &= \frac{\mathcal{K} B(0, T_{k+1})}{2\pi} \int_{\mathbb{R}} \mathcal{K}^{iv - R} \frac{\Lambda_{A_k + B_k \cdot X_{T_k}}(R - iv)}{(R - iv)(R - 1 - iv)} dv
 \end{aligned} \tag{32}$$

where $\Lambda_{A_k + B_k \cdot X_{T_k}}$ is given by (30).

CIR martingales

The Cox-Ingersoll-Ross (CIR) process is given by

$$dX_t = -\lambda(X_t - \theta)dt + 2\eta\sqrt{X_t}dW_t, \quad X_0 = x \in \mathbb{R}_{\geq 0}, \quad (33)$$

where $\lambda, \theta, \eta \in \mathbb{R}_{\geq 0}$. This is an affine process on $\mathbb{R}_{\geq 0}$, with

$$E_x[e^{uX_t}] = \exp\left(\phi_t(u) + x \cdot \psi_t(u)\right), \quad (34)$$

where

$$\phi_t(u) = -\frac{\lambda\theta}{2\eta} \log(1 - 2\eta b(t)u) \quad \text{and} \quad \psi_t(u) = \frac{a(t)u}{1 - 2\eta b(t)u}, \quad (35)$$

with

$$b(t) = \begin{cases} t, & \text{if } \lambda = 0 \\ \frac{1 - e^{-\lambda t}}{\lambda}, & \text{if } \lambda \neq 0 \end{cases}, \quad \text{and} \quad a(t) = e^{-\lambda t}.$$

CIR martingales: closed-form formula I

Definition

A random variable Y has **location-scale extended non-central chi-square** distribution, $Y \sim \text{LSNC-}\chi^2(\mu, \sigma, \nu, \alpha)$, if $\frac{Y-\mu}{\sigma} \sim \text{NC-}\chi^2(\nu, \alpha)$

Then we have that

$$X_t \stackrel{P_{T_N}}{\sim} \text{LSNC-}\chi^2\left(0, \eta b(t), \frac{\lambda\theta}{\eta}, \frac{xa(t)}{\eta b(t)}\right),$$

and

$$X_t \stackrel{P_{T_{k+1}}}{\sim} \text{LSNC-}\chi^2\left(0, \frac{\eta b(t)}{\zeta(t, T_N)}, \frac{\lambda\theta}{\eta}, \frac{xa(t)}{\eta b(t)\zeta(t, T_N)}\right),$$

hence

$$\log\left(\frac{B(t, T_k)}{B(t, T_{k+1})}\right) \stackrel{P_{T_{k+1}}}{\sim} \text{LSNC-}\chi^2\left(A_k, \frac{B_k \eta b(t)}{\zeta(t, T_N)}, \frac{\lambda\theta}{\eta}, \frac{xa(t)}{\eta b(t)\zeta(t, T_N)}\right).$$

CIR martingales: closed-form formula II

Then, denoting by $M = \log \left(\frac{B(T_k, T_k)}{B(T_k, T_{k+1})} \right)$ the log-forward rate, we arrive at:

$$\begin{aligned}
 \mathbb{C}(T_k, K) &= B(0, T_{k+1}) E_{P_{T_{k+1}}} \left[\left(e^M - \mathcal{K} \right)^+ \right] \\
 &= B(0, T_{k+1}) \left\{ E_{P_{T_{k+1}}} \left[e^M 1_{\{M \geq \log \mathcal{K}\}} \right] - \mathcal{K} P_{T_{k+1}} [M \geq \log \mathcal{K}] \right\} \\
 &= B(0, T_k) \cdot \bar{\chi}_{\nu, \alpha_1}^2 \left(\frac{\log \mathcal{K} - A_k}{\sigma_1} \right) - \mathcal{K}^* \cdot \bar{\chi}_{\nu, \alpha_2}^2 \left(\frac{\log \mathcal{K} - A_k}{\sigma_2} \right), \tag{36}
 \end{aligned}$$

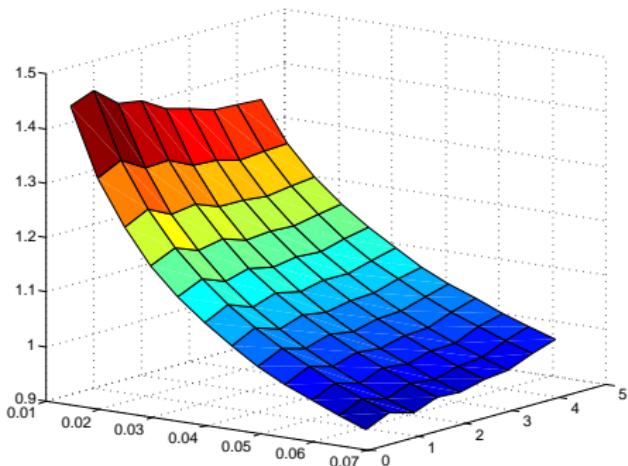
where $\mathcal{K}^* = \mathcal{K} \cdot B(0, T_{k+1})$ and $\bar{\chi}_{\nu, \alpha}^2(x) = 1 - \chi_{\nu, \alpha}^2(x)$, with $\chi_{\nu, \alpha}^2(x)$ the non-central chi-square distribution function,

$$\nu = \frac{\lambda \theta}{\eta}, \quad \sigma_{1,2} = \frac{B_k \eta b(T_k)}{\zeta_{1,2}}, \quad \alpha_{1,2} = \frac{x a(T_k)}{\eta b(T_k) \zeta_{1,2}},$$

and

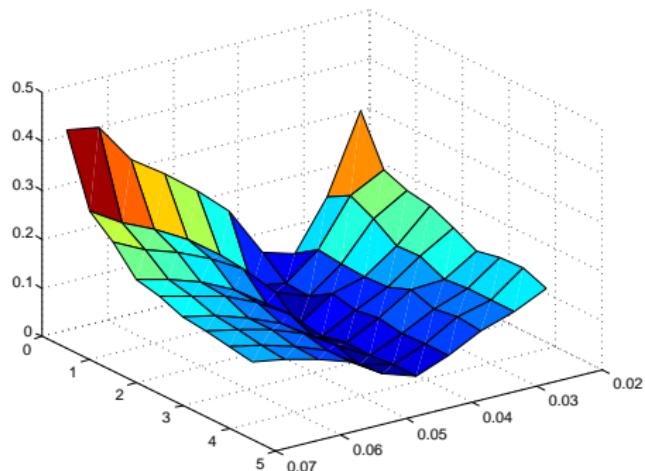
$$\zeta_1 = 1 - 2\eta b(T_k) \psi_{T_N - T_k}(u_k), \quad \zeta_2 = 1 - 2\eta b(T_k) \psi_{T_N - T_k}(u_{k+1}).$$

CIR martingales: volatility surface



Example of an implied volatility surface for the CIR martingales.

Γ -OU martingales: volatility surface



Example of an implied volatility surface for the Γ -OU martingales.

Summary and Outlook

- ① We have presented a LIBOR model that
 - is very **simple** (Axiom 0 !), and yet ...
 - captures **all** the important features ...
 - especially **positivity** and analytical **tractability**.
- ② Future work:
 - thorough empirical analysis
 - extensions: multiple currencies, default risk
- ③ M. Keller-Ressel, A. Papapantoleon, J. Teichmann (2009)
A new approach to LIBOR modeling.
Preprint, arXiv/0904.0555

Summary and Outlook

- ① We have presented a LIBOR model that
 - is very **simple** (Axiom 0 !), and yet ...
 - captures **all** the important features ...
 - especially **positivity** and analytical **tractability**.
- ② Future work:
 - thorough empirical analysis
 - extensions: multiple currencies, default risk
- ③ M. Keller-Ressel, A. Papapantoleon, J. Teichmann (2009)
A new approach to LIBOR modeling.
Preprint, arXiv/0904.0555

Thank you for your attention!