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S
Interest rates — Notation

e B(t, T): time-t price of a zero coupon bond for T; B(T,T) =1;
e L(t, T): time-t forward LIBOR for [T, T + 4];

1/ B(tT)
u“TL‘a(MnT+5y_Q

e F(t, T,U): time-t forward price for T and U; F(t, T, U) = EE:B

“Master" relationship

B(t, T)

= 1+40L(t, T) (1)
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Interest rate markets

Interest rates evolution

@ Evolution of interest rate term structure, 2003 — 2004 (picture: Th. Steiner)
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Calibration problems

" o\,

Strike rate (in %) 100 10 Maturity (in years)

© Implied volatilities are constant neither across strike nor across maturity
@ Variance scales non-linearly over time (see e.g. D. Skovmand)
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LIBOR model: Axioms

Economic thought dictates that LIBOR rates should satisfy:

The LIBOR rate should be non-negative, i.e. L(t, T) >0 for all t. l

The LIBOR rate process should be a martingale under the corresponding
forward measure, i.e. L(-, T) € M(Pr.ys).

Practical applications require:

Models should be analytically tractable (~ fast calibration). ]

Models should have rich structural properties (~ good calibration). ]

@ What axioms do the existing models satisfy?
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LIBOR and Forward price model

LIBOR models | (Sandmann et al, Brace et al, ..., Eberlein & Ozkan)

Ansatz: model the LIBOR rate as the exponential of a semimartingale H:

L(t, Tx) = L(0, Tx) exp </Ot b(s, Ty)ds + /Otx(s, Tk)stTk“> )

where b(s, Ty) ensures that L(-, Ty) € M(Pr, ).
H has the P,  -canonical decomposition

¢ t
T :/0 \/C?dWsTkH*‘/O /Rx(#H—Z/Tk“)(dS,dX)? (3)

where the Pr,  -Brownian motion is

t N
Ti+1 _ T. § : 5/L(t_> T/)
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LIBOR models Il

and the P, -compensator of uH s

N
oL(t—, Ty)
Tt — ! At T)x _ Ts
v ' k+1(ds, dx) (I_lkL T+ o,L(t—. T) (e 1) + 1> v'*(ds, dx).
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LIBOR models Il

and the P, -compensator of uH s

N
oiL(t—, T))
Tk+1 _ / » 1 )\(f,T/)X - Tx
v'k(ds, dx) = <,|k+|1 1oL T) (e 1) + 1> v'*(ds, dx).

Consequences for continuous semimartingales:
@ caplets can be priced in closed form;
@ swaptions and multi-LIBOR products cannot be priced in closed form;

© Monte-Carlo pricing is very time consuming ~~ coupled high
dimensional SDEs!
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LIBOR models Il

and the P, -compensator of uH s

N
oiL(t—, T))
Tk+1 _ / » 1 )\(f,T/)X - Tx
v'k(ds, dx) = <,|k+|1 1oL T) (e 1) + 1> v'*(ds, dx).

Consequences for continuous semimartingales:
@ caplets can be priced in closed form;
@ swaptions and multi-LIBOR products cannot be priced in closed form;

© Monte-Carlo pricing is very time consuming ~~ coupled high
dimensional SDEs!

Consequences for general semimartingales:
@ even caplets cannot be priced in closed form!

@ ditto for Monte-Carlo pricing.
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LIBOR models ||

The equation for the dynamics yield the following matrix for the
“dependence” structure

L(t, Ti—1)
Lt Ths) o oo L(t Ths)
L(t, TN—l) L(l‘7 TN—l) L(t, TN—l)
L(t, TN) - - L(f, TN) L(t, TN) L(t, TN)
L(t, T;) coe e L(t, Ty—3)  L(t, Tn—2) L(t, Tn—1) L(t, Tn)

Bottom line: LIBOR rates we wish to simulate.
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LIBOR models IV: Remedies

@ “Frozen drift” approximation
o Brace et al, Schlogl, Glassermann et al, ...

o replace the random terms by their deterministic initial values:
oL(t—,T)) _ &L(0,T)) (5)
1+oL(t—,T)  14+6L(0, T)

o (+) deterministic characteristics ~~ closed form pricing
o (—) “ad hoc" approximation, no error estimates, compounded error . ..

@ Log-normal and/or Monte Carlo methods

o best log-normal approximation (e.g. Schoenmakers)
e interpolations and predictor-corrector MC methods
o Joshi and Stacey (2008): overview paper
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LIBOR models V: Remedies

© Strong Taylor approximation
o approximate the LIBOR rates in the drift by

L(Z‘7 T/) =~ L(O, T/) + Y(t, T/)+ (6)

where Y is the (scaled) exponential transform of H (Y = Loge')
o theoretical foundation, error estimates, simpler equations for MC
o Siopacha and Teichmann; Hubalek, Papapantoleon & Siopacha

Difference in implied vols between full SDE vs frozen drift and full SDE vs strong Taylor.
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LIBOR and Forward price model

Forward price model | (Eberlein & Ozkan, Kluge)
Ansatz: model the forward price as the exponential of a semimartingale H:
t t T
F(t, Tx) = F(0, Tx)exp </ b(s, Tk)ds +/ A(s, Tx)dHs "“) , (7)
0 0

where b(s, T) ensures that F(-, Tx) =1 +0L(:, Tx) € M(PT,,)-
H has the P,  -canonical decomposition

¢ t
T :/0 \/C?dWsTkH*‘/O /Rx(#H—Z/Tk“)(dS,dX)? (8)

where the Pr,  -Brownian motion is

WTHI—WT*—/t(zN: (tT>
t = VW 1) | V/csds, 9)
0 \/=k+1
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LIBOR and Forward price model

Forward price model Il

and the P, -compensator of ut

vTk(ds, dx) = exp( Z A(t, T)) > v (ds, dx).

I=k+1
Consequences:
© the model structure is preserved;
@ caps, swaptions and multi-LIBOR products priced in closed form.

So, what is wrong? J
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LIBOR and Forward price model

Forward price model Il

and the P, -compensator of ut

v T (ds, dx) —exp< Z At, T,) “(ds, dx).

I=k+1
Consequences:
© the model structure is preserved;
@ caps, swaptions and multi-LIBOR products priced in closed form.

So, what is wrong? J

Negative LIBOR rates can occur! J
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Forward price model Il

and the P, -compensator of ut

vTk(ds, dx) = exp( Z A(t, T)) > v (ds, dx).

I=k+1
Consequences:

© the model structure is preserved;
@ caps, swaptions and multi-LIBOR products priced in closed form.

So, what is wrong?

Negative LIBOR rates can occur!

rates are positive.

J
J
Aim: design a model where the model structure is preserved and LIBOR J

Tool: Affine processes on RY,,
=




Affine processes

Affine processes |

Let X = (Xt)o<t<T be a conservative, time-homogeneous, stochastically
continuous Markov process taking values in D = Rgo; and (Px)xep a
family of probability measures on (€2, F), such that Xy = x, Px-a.s. for

every x € D. Setting

Tr = {ue R E [ < oo, forallxe D}, (10)

we assume that
(i) 0 e I3
(ii) the conditional moment generating function of X; under Py has
exponentially-affine dependence on x; i.e. there exist functions
¢e(u) : [0, T] x Ir — R and ¥¢(u) : [0, T] x I+ — R9 such that

Ex[exp(u, Xe)] = exp (¢e(u) + (¢e(u), x)), (11)

for all (t,u,x) € [0, T] x I7 x D.
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Affine processes ||

The process X is a regular affine process in the spirit of Duffie, Filipovi¢ &
Schachermayer (2003).
Using Theorem 3.18 in Keller-Ressel (2008)

F(u) := %’t20+¢)t(u) and R(u) := %‘t:0+wt(u) (12)

exist for all u € Z1 and are continuous in u. Moreover, F and R satisfy
Lévy—Khintchine-type equations:

F(u) = (b, u>+/ (el — 1)) m(d¢) (13)

D

and
Ri(u) = (61, u) + ( Fu,u) + /D (&% — 1 — (u, W () ui(de),  (14)

where (b, m, «j, Bj, j1i)1<i<d are admissible parameters.
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Affine processes

Affine processes IlI
The time-homogeneous Markov property of X implies:

Ex[exp<u>Xt+s>‘~7:5] = exp (¢t(u) + <1[)t(U),X5>), (15)
forall0<t+s<Tanduelt.

Lemma (Flow property)

The functions ¢ and i satisfy the semi-flow equations:

Pevs(u) = d1(u) + ds(Pe(v))

Berol) = Bo (¥ ()) (16)

with initial condition

¢o(u) =0 and o(u) = u, (17)

for all suitable 0 < t+s< T andu e Ir.
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Affine processes IV

O Affine processes on R: the admissibility conditions yield

F(u )—bu+2 +/R( Y —1— uh(z))m(dz)
R(u) =
forac Ry and b, 3 € R.

o Every affine process on R is an Ornstein—Uhlenbeck (OU) process.

@ Affine processes on R>(: the admissibility conditions yield
F(u) = bu —I—/ (e* — 1)m(dz)
D
R(u) = Bu + 2u —i—/ (e* — 1 — uh(z))p(dz),
D

for b,ao € Ryg and B € R.
o There exist affine process on R>q which are not OU process, e.g. CIR.
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Affine LIBOR model: martingales > 1

Idea:

@ insert an affine process in its moment generating function with
inverted time; the resulting process is a martingale;

@ if the affine process is positive, the martingale is greater than one.

The process MY = (M{)o<¢<T defined by

M = exp (¢7-e(u) + (1-e(u), X2)) , (18)

is @ martingale. Moreover, if u € It N R‘;o then M; > 1 a.s. for all
t € [0, T], for any Xy € Rio.
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Affine LIBOR model: martingales > 1

Using (17) and (15), we have that:

EX[M-‘H]-}] = Ex[exp<u,XT>|ft]
= exp (¢T—t(”) + <¢T—t(U),Xt>) =M.

Regarding My’ > 1 for all t € [0, T]: note that if u € Z1 OR‘;O, then

M{ = Ex[exp(u, XT)|F:] > 1. (19)

Ol

v
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Affine LIBOR model: martingales > 1

Example (Lévy process)

Consider a Lévy subordinator, then
My = exp (¢7—+(u) + (Y1-e(u), X¢))

=exp((T —t)s(u)+u-X¢) > 1
= exp(Tr(u))exp (u- X — tr(u)) € M, (20)

which is a martingale > 1 for u € Rio.
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Affine LIBOR model: Ansatz

Consider a discrete tenor structure 0 = To < Ty < To < - -+ < Ty;;

discounted bond prices must satisfy:
B(" Tk)

B('7 TN)

We model quotients of bond prices using the martingales M :

€ M(Pry,), forall k e {1,...,N —1}. (21)

B(t, T]_) v
B(t,Tw) (22)
B(t7 7_N—l) _ pgUn—1
B(t, TN) - Mt ’ (23)

B(0,Ty)

with initial conditions: g7y = Mg*, for all k € {1,...,N —1}.




Affine LIBOR model: initial values

Let L(0, T1),...,L(0, Ty) be a tenor structure of non-negative initial
LIBOR rates; let X be an affine process starting at the canonical value 1.
._ X B(0,T; .

Q Ifyx = supyer,rre, E1 [elwXT)] > (( Tl)) then there exists a

decreasing sequence uy > up > --- > uy =0 inZ7 N Rgo, such that

B(0, Tk)

Mok = — =2 K
s B(0, Ty)’

forallk € {1,...,N}. (24)

In particular, if yx = oo, then the affine LIBOR model can fit any
term structure of non-negative initial LIBOR rates.

Q If X is one-dimensional, the sequence (uk)xe(1,...n} s unique.

© If all initial LIBOR rates are positive, the sequence (uy)eq1,.., N} 1S
strictly decreasing.
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Affine LIBOR model: forward prices

Forward prices have the following form

B(t, Tk) . B(t, Tk) B(t, TN) . M:»Jk

B(t’ Tk+1) B(ta TN) B(tv Tk+1) B M:kﬂ

= exp (qﬁmft(uk) — OTy—t(Uk41)
 (Ureu) = ry— (U)X ). (25)
Now, ¢¢(-) and () are order-preserving, i.e.
u<v = ¢i(u) < Gr(v) and Ye(u) < e(v).

Consequently: positive initial LIBOR rate yields positive LIBOR rates for
all times.
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Affine LIBOR model: forward measures

Forward measures are related via:

dPr,
df)7}+1

_ F(t, Ti, Tiqa) _ B(O, Tier1) " M, * (26)
Foo FO, Tk, Tey1)  B(O, Tyx) — M

or equivalently:

dpP Tit1

B(0, Ty) N B(t, Tkr1)  B(0, Ty)
dPr,

7 B(0,Ter1)  B(t, Tw) B0, Teta)

x Mt (27)

Hence, we can easily see that

B(~, Tk) _ MUk
B(.’ Tk+1) - MUk+1

€ M(Pr,.,), forall k e {1,...,N—1}. (28)
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Affine LIBOR model: dynamics under forward measures

The moment generating function of X; under any forward measure is

EPTk+1 [ VXt] M(l)JkHE Pry, [MUk+1 VXt] (29)
= exp (¢t(¢TN—t(Uk+1) +v) — ¢e(Vry—t(uks1))
+ (Ve (Vry—t(ukg1) + v) — wt(¢TN7t(uk+1))aX>>'

Denote by ukﬂ = e+ BXt: the moment generating function is
B(0, T,
Ep, _[e"hBx] B0, Tw)_ (30)

B(0, Tk+1)

x exp (Vo (k) + (1= V)or, (1)
+ ¢e(vibry—e(u) + (1 = vV)U1y—e(uks1))
 (e(vim () + (1= VT —e(t4)). ).
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L
Affine LIBOR model: caplet pricing

We can re-write the payoff of a caplet as follows (here K := 1+ 0K):

S(L(T, Te) — K)T = (L +6L(Tk, Tk) — 1+ 6K) ™

Then we can price caplets by Fourier-transform methods:

C(Ti, K) = B(0, Ths1)Epr, _, [6(L(Tir Te) = K)*]

_ jCB(O’Tk'H)/:KivR Ma+8,x7 (R = iv)
o R R-—W(R—1-w)

dv (32)

where Aa, 18,.x, is given by (30).
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Example: CIR martingales

CIR martingales
The Cox-Ingersoll-Ross (CIR) process is given by
dXt = —A(Xt—e) dt+277\/ Xtth7 XO =X GRZO, (33)

where X\, 0,7 € Rxo. This is an affine process on R>q, with

Ec[e™] = exp (0e(u) + x - (), (34)
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CIR martingales: closed-form formula |

Definition

A random variable Y has location-scale extended non-central chi-square
distribution, Y ~ LSNC—x?(u, o, v, @), if Y—;E ~ NC—x?(v, a)

Then we have that

P
x: 72 LsNC (0nn(0), 2, 22
and
PTia nb(t) A0 xa(t)
X, ~" LSN
: SNEX (0 Gt ™) 0 b(D(E, Tw)
hence

B(t, Tx) PTis 9 Bknb(t) A0 xa(t)
'°g(B<t, ml)) ~ LSNC=x (Ak’ (e Tw) 1 mb(OC(, m))'
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Example: CIR martingales

CIR martingales: closed-form formula |

Then, denoting by M = log (%) the log-forward rate, we arrive at:
Iy +
<uTbK):Bw;n+gEmﬂl(e —%)

= B(O, Tk+1) {EPTk+1 [eMl{leogK}} — :KPTk+1 [M > |Og :K]}

log X — A ., [logX — A
- B(O* Tk) 'Yi,al (gk> -X 'X%,az <gk> )

o1 g2
(36)
where K* = K - B(0, Tyq1) and X2, (x) = 1 — X2 (x), with x2 ,(x) the
non-central chi-square distribution function,
)\9 Bknb( Tk) xa( Tk)
e J— o1 - 7 —

y 2 ; Q12 = —F 7 —~ .~ >
7 C1,2 nb(Ti)(1,2

14

and

G =1-=2nb(Ti)y1y—T1,(Uk), G =1—=2nb(Ti)7y—T, (Uks1)-
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CIR martingales: volatility surface

Example of an implied volatility surface for the CIR martingales.
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[-OU martingales: volatility surface

Example of an implied volatility surface for the -OU martingales.
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Summary and Outlook

Summary and Outlook

@ We have presented a LIBOR model that

o is very simple (Axiom 0 !), and yet ...

o captures all the important features . ..

o especially positivity and analytical tractability.
@ Future work:

o thorough empirical analysis

e extensions: multiple currencies, default risk

© M. Keller-Ressel, A. Papapantoleon, J. Teichmann (2009)
A new approach to LIBOR modeling.
Preprint, arXiv/0904.0555
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Summary and Outlook

Summary and Outlook

@ We have presented a LIBOR model that
o is very simple (Axiom 0 !), and yet ...
o captures all the important features . ..
o especially positivity and analytical tractability.
@ Future work:
o thorough empirical analysis
e extensions: multiple currencies, default risk
© M. Keller-Ressel, A. Papapantoleon, J. Teichmann (2009)
A new approach to LIBOR modeling.
Preprint, arXiv/0904.0555

Thank you for your attention!
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