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Trading and liquidation

• Understanding trade execution strategies:

key issue for market practitioners

growing attention from academic researchers

• Liquidation of large block orders of shares

I Challenging problem due to the following dilemma:

Quick trading → higher costs due to market impact ↔ depth
of the limit order book
=⇒ Break up a large order into smaller blocks
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Liquidation problem: cost/risk tradeoff

However, more gradual trading over time
→ risk of price depreciation in an uncertain environment
during the trading horizon

I Considerable interest in the literature on such liquidity effects,
taking into account permanent and/or temporary price impact:

Bertsimas and Lo (1998), Almgren and Criss (01), Platen and
Schweizer (98), Bank and Baum (04), Cetin, Jarrow and Protter
(04), Obizhaeva and Wang (05), He and Mamayski (05), Ly Vath,
Mnif and P. (07), Schied and Schöneborn (08), Rogers and Singh
(08), Cetin, Soner and Touzi (08), etc ....
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Discrete vs continuous-time trading

• Discrete-time formulation

fixed deterministic times

exogenous random times (e.g. associated to buy/sell arrivals)

discrete times decided optimally by the investor: impulse
control formulation

→ one usually assumes the existence of a fixed transaction fee
paid at each trading
→ this ensures that strategies do not accumulate in time and
occur really at discrete points in time, so that the problem is
well-posed.
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Continuous-time trading

• Continuous-time formulation

not realistic in practice

but commonly used due to the tractability and powerful
theory of stochastic calculus

in perfect liquid markets (without transaction costs and
market impact), this is often justified by arguing that
continuous-time trading is a limit approximation of
discrete-time trading when time step goes to zero.

I Validity of such assertion in the presence of liquidity effects?

I Under illiquidity cost, it is not clear and suitable how to define
the portfolio value of a position in stock shares. And this is a
crucial issue given the bank regulation and solvency constraints!
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Our illiquidity market modelling

• Continuous-time framework taking into account the main
liquidity features and risk/cost tradeoff of portfolio execution:

bid-ask spread in the limit order book

temporary market price impact penalizing rapid execution
trades

• However, we do not assume continuous-time trading strategies

instead, real trading in discrete-time

without assuming ad hoc any any fixed transaction fee, in
accordance with practitioner literature
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Our illiquidity modelling via impulse control

I This is formulated through an impulse control problem including
the lag variable tracking the time interval between trades:

→ Combine the advantages of stochastic calculus techniques, and
the realistic modelling of liquidity constraints

I We study the optimal portfolio execution problem for an
investor seeking to liquidate an initial position in stock shares over
a finite horizon.

I Important result: we show that nearly optimal execution
strategies in this modelling lead actually to a finite number of
trading times
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Notations and state variables

• Uncertainty and information: (Ω,F , (Ft)t ,P), W 1-dim BM,
trading interval [0,T ].

• Market stock price process: P = (Pt) without permanent price
impact, and with BS dynamics

dPt = Pt(bdt + σdWt).

• Amount of money (cash holdings): X = (Xt)

• Cumulated number of shares: Y = (Yt)

• Time interval between trades: Θ = (Θt)

→ Relevant state variables: (Z ,Θ) = (X ,Y ,P,Θ).
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Trading strategies

• Trading strategies: impulse control α = (τn, ζn)n≥0:

0 ≤ . . . ≤ τn ≤ τn+1 ≤ . . . T : stopping times representing
the intervention times of the investor

ζn Fτn -measurable real-valued random variable: number of
stocks traded at time τn

→ Dynamics of Y :

Yt = Yτn , τn ≤ t < τn+1, Yτn+1 = Yτ−n+1
+ ζn+1, n ≥ 0.

• Lag variable: Θt = inf{t − τn, τn ≤ t}, evolves according to

Θt = t − τn, τn ≤ t < τn+1, Θτn+1 = 0, n ≥ 0.
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Cost of illiquidity

If the current market price is p, and the time lag from the last
order is θ, then the price the investor get for an order of size e is:

Q(e, p, θ) = pf
(e
θ

)
,

where f is a temporary price impact function from R into (0,∞),
with the convention 0/0 = 0 in f (e/θ), satisfying:

(H1f) f (0) = 1, and f is nondecreasing,

(H2f) (i) f (−∞) = 0, and (ii) f (∞) = ∞,

(H3f) κb := f (0−) < 1 and κa := f (0+) > 1.
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Cost of illiquidity and bid-ask spread

• A usual form, suggested by empirical studies, see Lillo, Farmer
and Mantagna (03), Potters and Bouchaud (03), Almgren, Thum,
Hauptmann and Li (05), is:

f (η) = eλ|η|
βsgn(η)

(
κa1η>0 + 1η=0 + κb1η<0

)
,

where 0 < κb < 1 < κa, κa − κb is the bid-ask spread parameter,
λ > 0 is the temporary price impact factor, and β > 0 is the price
impact exponent.
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Cash holdings

• Assuming zero interest rate, bank account is constant between
two trading times;

Xt = Xτn , τn ≤ t < τn+1, n ≥ 0.

• When a trading (τn+1, ζn+1) occurs, this results in a variation of
cash holdings by:

Xτn+1 = Xτ−n+1
− ζn+1Q(ζn+1,Pτn+1 ,Θτ−n+1

)

= Xτ−n+1
− ζn+1Pτn+1f

( ζn+1

τn+1 − τn

)
, n ≥ 0.
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Remarks

• We do not assume fixed transaction fee to be paid at each
trading

• We can then not exclude a priori trading strategies with
immediate trading times, i.e. Θτ−n+1

= τn+1 − τn = 0.

• However, under condition (H2f), an immediate sale does not
increase the cash holdings, i.e. Xτn+1 = Xτ−n+1

= Xτn , while an

immediate purchase leads to a bankruptcy, i.e. Xτn+1 = −∞.
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Liquidation value and solvency constraint

• No-short sale constraint:

Yt ≥ 0, ∀t.

• Nonnegative liquidation value (portfolio value by a single block
trade):

L(Xt ,Yt ,Pt ,Θt) := Xt + YtPt f
(−Yt

Θt

)
≥ 0, ∀t.

I Liquidation solvency region

S =
{

(z , θ) = (x , y , p, θ) ∈ R× R+ × R∗+ × [0,T ] :

y > 0 and L(z , θ) := x + ypf
(−y

θ

)
> 0
}
,

and S̄ = S ∪ ∂S.
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Graph of S in the plan (x , y)
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Graph of S in 3-dim (x , y , p) for fixed θ
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Admissible trading strategies

Given (t, z , θ) ∈ [0,T ]× S̄, we say that the impulse control
strategy α = (τn, ζn)n is admissible, denoted by α ∈ A(t, z , θ), if
the associated state process (Z ,Θ), starting from (z , θ) at t stays
in S̄ for all t ≤ s ≤ T .

Remark:
The impulse control strategy consisting in liquidating immediately
all stock shares, and then doing no more trading, is admissible:
→ A(t, z , θ) 6= ∅.
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Portfolio liquidation problem

• Utility function U : R+ → R, nondecreasing, concave, with U(0)
= 0, and s.t. there exists K ≥ 0 and γ ∈ [0, 1):

(HU) 0 ≤ U(x) ≤ Kxγ , ∀x ∈ R+.

I Value function:

v(t, z , θ) = sup
α∈A`(t,z,θ)

E
[
U(XT )

]
, (t, z , θ) ∈ [0,T ]× S̄,

where A`(t, z , θ) =
{
α ∈ A(t, z , θ) : YT = 0

}
.
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Remark: remove the terminal liquidation constraint

Define the terminal liquidation utility by:

UL(z , θ) = U(L(z , θ)), (z , θ) ∈ S̄.

Then, the value function is written equivalently in

v(t, z , θ) = sup
α∈A(t,z,θ)

E
[
UL(ZT ,ΘT )

]
, (t, z , θ) ∈ [0,T ]× S̄.
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Remark: continuous-time trading version

• Trading strategy in terms of instantaneous trading rate (η)t :

dYt = ηtdt,

dXt = −ηtPt f (ηt)dt.

• We may define the portfolio value in absence of liquidity cost:

Xt + YtPt ,

But how to define the liquidation value under illiquidity cost in
continuous-time!
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Well posedness of the problem

Property 0.
The value function is bounded by the Merton bound:
For all (t, z = (x , y , p), θ) ∈ [0,T ]× S̄, we have

v(t, z , θ) ≤ v0(t, z) := E[U(x + yPt,p
T )]

≤ Keρ(T−t)(x + yp)γ

where ρ ≥ γ
1−γ

b2

2σ2 .
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Finiteness of the total amount traded

Property 1.
Under the existence of a bid-ask spread, the total number of shares
and amount in absolute value associated to an admissible trading
strategy is finite:

For any α = (τn, ζn)n ∈ A(t, z , θ), we have∑
n

|ζn| < ∞, and
∑
n

|ζn|Pτn f
( ζn

Θτ−n

)
< ∞, a.s.
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Nearly optimal strategies → finite number of trading times

Property 2.

v(t, z , θ) = sup
α∈Ab

`(t,z,θ)

E[U(XT )], (t, z , θ) ∈ [0,T ]× S̄,

where

Ab
` (t, z , θ) =

{
α = (τn, ζn)n ∈ A`(t, z , θ) :

NT (α) :=
∑
n

1τn≤T <∞ a.s.

and τn < τn+1 a.s., 0 ≤ n ≤ NT (α)− 1
}
.
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Viscosity properties

Quasi-Variational dynamic programming equation

The QVI associated to the optimal portfolio liquidation problem is:

min
[
− ∂v

∂t
− ∂v

∂θ
− Lv , v −Hv

]
= 0, in [0,T )× S̄,(1)

together with the relaxed terminal condition:

min
[
v − UL , v −Hv

]
= 0, in {T} × S̄, (2)

dividing the time-space liquidation solvency region into:
• A no-trade region

NT =
{

(t, z , θ) ∈ [0,T ]× S̄ : v > Hv
}

• An impulse trading region

IT =
{

(t, z , θ) ∈ [0,T ]× S̄ : v = Hv
}
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Viscosity properties

Local and nonlocal operators of the QVI

• L is the second order local operator associated to the
no-trading strategy:

Lv = bp
∂v

∂p
+

1

2
σ2p2∂

2v

∂p2

• H is the nonlocal operator associated to the jumps of (Z ,Θ) for
an impulse trading:

Hv(t, x , y , p, θ) = sup
e∈C(z,θ)

v(t, x − epf (e/θ), y + e, p, 0)

and C(z , θ) is the admissible transaction set:

C(z , θ) =
{
e ∈ R : (x − epf (e/θ), y + e, p, 0) ∈ S̄

}
.
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Viscosity properties

Viscosity properties for the value function

Theorem.
The value function v is a constrained viscosity solution to (1)-(2).

Remark for uniqueness and comparison principle.

• A first key argument for proving a comparison principle in
obstacle problem is to produce a strict viscosity supersolution.

• However, in our model, this is not possible! and the reason is the
absence of a fixed cost in the impulse transaction operator H.
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Approximation problem with fixed transaction fee

A model with fixed transaction cost

• We consider a small variation of the original model by adding a
fixed transaction fee ε > 0 at each trading:

X ε
τn+1

= X ε
τ−n+1
− ζn+1Pτn+1f

( ζn+1

Θτ−n+1

)
−ε.

I Modified liquidation function:

Lε(x , y , p, θ) = max[x , L(x , y , p, θ)− ε].

and solvency region:

Sε =
{

(z , θ) = (x , y , p, θ) ∈ R× R+ × R∗+ × [0,T ] :

y > 0 and Lε(z , θ) > 0
}
,

S̄ε = Sε ∪ ∂Sε.
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Approximation problem with fixed transaction fee

Graph of Sε in the plan (x , y)
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Approximation problem with fixed transaction fee

Graph of S in 3-dim (x , y , p) for fixed θ
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Approximation problem with fixed transaction fee

Optimal portfolio liquidation in the approximating problem

• Admissible trading strategies: given (t, z , θ) ∈ [0,T ]× S̄ε, we
say that the impulse control strategy α = (τn, ζn)n is admissible,
denoted by α ∈ Aε(t, z , θ), if the associated state process (Z ε,Θ),
starting from (z , θ) at t stays in S̄ε for all t ≤ s ≤ T .

Remark. The set Aε(t, z , θ) is nonempty.

• Value function:

vε(t, z , θ) = sup
α∈Aε(t,z,θ)

E
[
ULε(Z ε

T ,ΘT )
]
, (t, z , θ) ∈ [0,T ]× S̄ε.

Remark
For ε = 0, v0 = v .
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Approximation problem with fixed transaction fee

Convergence of the approximation problem

Proposition.
The sequence (vε)ε is nonincreasing, and converges pointwise on
[0,T ]× (S̄ \ ∂LS) towards v as ε goes to zero, where

∂LS =
{

(z , θ) ∈ S̄ : L(z , θ) = 0
}
.
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Approximation problem with fixed transaction fee

Dynamic programming equation

The QVI associated to the approximating problem is

min
[
− ∂v

∂t
− ∂v

∂θ
− Lv , v −Hεv

]
= 0, in [0,T )× S̄ε,(3)

min
[
v − ULε , v −Hεv

]
= 0, in {T} × S̄ε, (4)

where

Hεv(t, x , y , p, θ) = sup
e∈Cε(z,θ)

v(t, x − epf (e/θ)− ε, y + e, p, 0)

and Cε(z , θ) is the admissible transaction set:

Cε(z , θ) =
{
e ∈ R : (x − epf (e/θ)− ε, y + e, p, 0) ∈ S̄ε

}
.
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Approximation problem with fixed transaction fee

Viscosity characterization

Theorem.
For any ε > 0, the value function vε is the unique constrained
viscosity solution to (3)-(4), satisfying the growth condition:

|vε(t, z , θ)| ≤ K (1 + (x + yp)γ), (t, z , θ) ∈ [0,T ]× S̄ε,

for some K > 0, and the boundary condition on the corner line D0

of S̄ε:

lim
(t′,z ′,θ′)→(t,z,θ)

vε(t
′, z ′, θ′) = U(0), (t, z = (0, 0, p), θ) ∈ [0,T ]× D0.

Remark.
With respect to usual uniqueness and comparison results, there are
some technical difficulties coming from the nonregularity of the
solvency boundary (corners), and so we have to specify here the
boundary data on D0, which forms a right angle of S̄ε.
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Concluding remarks

• We propose a continuous-time model of illiquidity market with
bid-ask spread and temporary price impact penalizing speedy
trades

Suitable for defining liquidation value under illiquidity cost

Discrete nature of trading times is justified by the presence of
illiquidity cost

• The value function of the optimal portfolio liquidation problem is
the limit of value functions characterized as unique constrained
viscosity solutions of an approximation of the dynamic
programming equation

Convergence result useful for numerical purpose
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