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A Little History

• Stock markets date back to at least 1531 in Antwerp, Belgium

• There are over 150 stock market exchanges world wide, of
which the most significant count 103:

• There are 34 in Europe, including 5 in the U.K. and 4 in
France

• There are 20 in North America (7 in Canada, 12 in the U.S.,
and 1 in Mexico)

• There are 5 in the Middle East: (Amman, Beirut, Istanbul,
Palestine, and Tel Aviv)

• 3 in Africa; 26 in Asia, Australia, and New Zealand; 15 in
Central and South America, Caribbean islands



Why do Stock Markets Exist?

• In the U.S., for example, the railroads needed vast amounts of
capital to build their tracks, and created the need for a stock
exchange

• The Dow Jones Industrial Average officially began in 1896

• In 1884, 12 years earlier, its predecessor began: Customer’s
Afternoon Letter which contained 11 stocks, 9 of which
were railroads

• In 1885, there are 12 railroads and 2 industrials in the Dow
Jones letter

• In 1886, there were 10 railroads and 2 industrials in the Dow
Jones letter



The Dow Jones Industrial Average in January, 1896

*American Sugar Chicago, Burlington & Quincy
Chicago, Milwaukee & St. Paul Chicago & North Western
Chicago, Rock Island & Pacific Delaware & Hudson Canal
Delaware, Lackawanna & Western Louisville & Nashville
Missouri Pacific Northern Pacific preferred
Union Pacific *Western Union

*Indicates an industrial (not a railroad)



The initial Dow Jones Industrial Average without
Railroads (May 26, 1896)

American Cotton Oil American Sugar
American Tobacco Chicago Gas
Distilling & Cattle Feeding General Electric
Laclede Gas National Lead
North American Tennessee Coal & Iron
U.S. Leather preferred U.S. Rubber

North American was replaced by US. Cordage Preferred, and
Distilling & Cattle Feeding became American Spirits, in August,
1896



Basic Mathematical Models for Asset Pricing
Finance

• Let S = (St)0≤t≤T represent the (nonnegative) price process
of a risky asset (e.g., the price of a stock, a commodity such
as “pork bellies,” a currency exchange rate, etc.)

• The present is often thought of as time t = 0. One is
interested in the unknown price at some future time T , and
thus ST constitutes a “risk.”



• Example: An American company contracts at time t = 0 to
deliver machine parts to Germany at time T . Then the
unknown price of Euros at time T (in dollars) constitutes a
risk for that company.

• In order to reduce this risk, one may use “derivatives”: one
can purchase — at time t = 0 — the right to buy Euros at
time T at a price that is fixed at time 0, and which is called
the “strike price.”

• If the price of Euros is higher at time T , then one exercises
this right to buy the Euros, and the risk is removed. This is
one example of a derivative, called a call option.

• More generally, a derivative is any financial security whose
value is derived from the price of another asset, financial
security, or commodity.



Call and Put Options

• A call option with strike price K , and payoff at time T can
be represented mathematically as

C = (ST − K )+

where x+ = max(x , 0).

• Analogously, the payoff to a put option with strike price K at
time T is

P = (K − ST )+

and this corresponds to the right to sell the security at price
K at time T .

• Calls and Puts are related, and we have

ST − K = (ST − K )+ − (K − ST )+.

This relation is known as put – call parity.



More complicated simple options

• We can calls and puts as building blocks for more complicated
derivatives.

• For example, if
V = max(K ,ST )

then
V = ST + (K − ST )+ = K + (ST − K )+.

• More generally, if f : R+ → R+ is convex then

f (x) = f (0) + f ′+(0)x +

∫ ∞

0
(x − y)+µ(dy) (1)

where f ′+(x) is the right continuous version of the
(mathematical) derivative of f , and µ is a positive measure on
R with µ = f ′′, where the mathematical derivative is in the
generalized function sense.



Thus if f is convex, and if

V = f (ST )

is our financial derivative, then V is a portfolio consisting of a
continuum of European call options:

V = f (0) + f ′+(0)ST +

∫ ∞

0
(ST − K )+µ(dK ).



Other kinds of derivatives

• We can also have path dependent derivatives.

V = F (S)T

= F (St ; 0 ≤ t ≤ T )

which are functionals of the paths of S .

• For example if S has càdlàg paths (càdlàg is a French
acronym for “right continuous with left limits”) then
F : D → R+, where D is the space of functions
f : [0,T ] → R+ which are right continuous with left limits.



The time value of money

• Inflation makes money worth less as time goes on

• Deflations makes it worth more

• Evaluating a claim that pays off $D at time T , when current
time is zero, can be done in time T dollars, or in time 0
dollars; if we use time T dollars for the payoff, but time 0
dollars for the evaluation, we must discount the payoff by the
rate of inflation (deflation)

• Suppose we have $D at time 0, and invest it in a bank which
pays interest rate r for one time unit (eg, one year). After one
year, we have $(D + rD).



• If we are paid interest every 3 months , or 1/4 year, and leave
the interest in the bank, we have $D + Dr/4 after the first
quarter, $D(1 + r/4)2 after the second, and $D(1 + r/4)4

after one year.

• If we compound n times in one year and leave the money in
the bank, we have $D(1 + r/n)n

• Taking limits limn→∞ $D(1 + r/n)n = $Der ; for t time units
analogously the limit = $Dert , which solves the ODE

dRt

Rt
= r ; R0 = D

• In general if r is a stochastic process (rt)t≥0, then

Rt = D +

∫ t

0
rsRsds ⇒ Rt = De

∫ t
0 rsds .



A simple Portfolio

• A simple portfolio has a varying quantity of shares of a stock,
plus a varying amount of money in a liquid, risk-free money
account.

• The value of a portfolio, V , depends on the trading strategy a
for stocks, and b for the money account

• A trading strategy is a vector of stochastic processes (a, b)

• Following a strategy (a, b) gives a dynamic portfolio value
process:

Vt(a, b) = atSt + btRt .

• A trading strategy (a, b) is called self-financing if

atSt + btRt = a0S0 + b0R0 +

∫ t

0
asdSs +

∫ t

0
bsdRs



Comments on self-financing

atSt + btRt = a0S0 + b0R0 +

∫ t

0
asdSs +

∫ t

0
bsdRs (2)

• Intuitively Self-financing means that we do not consume
money for other purposes, or add new money; we will soon
give a heuristic justification of equation (2)

• S is taken, by assumption, to have sample paths which are
right continuous and have left limits (càdlàg), and R is
continuous; hence the right side of (2) is at least càdlàg

• This creates implicit restrictions on the illusory arbitrariness of
the choice of a (predictable) and b (right continuous)

• If r ≡ 0 then (Rt)t≥0 ≡ 1, hence dRt = 0 and (2) becomes

atSt + bt = a0S0 + b0 +

∫ t

0
asdSs (3)

• This means once we have chosen strategy a, then b is
determined



Heuristic justification of self-financing
• Suppose a, b,S are all three semimartingales, and that R ≡ 1.

Then we have:

(at+dt − at)St+dt = −(bt+dt − bt) (4)

which says that the change in stock holdings creates a
corresponding change in the money account.

• Equation (4) becomes

(at+dt − at)(St+dt − St) + (at+dt − at)St = −(bt+dt − bt)

≈ d [a,S ]t + St−dat = −bt (5)

• By Integration by parts, (5) becomes

atSt = a0S0 + b0 +

∫ t

0
asdSs +

∫ t

0
Ss−das + [a,S ]t

⇒ d(atSt)− at−dSt = −dbt

≡ atSt + bt = a0S0 + b0 +

∫ t

0
asdSs . (6)



What is Arbitrage?

• In language: Arbitrage is the chance, no matter how small, to
make a profit without taking any risk

• Definition
A model is arbitrage free on [0, 1] if there does not exist a
self-financing strategy (a, b) such that

V0(a, b) = 0, VT (a, b) ≥ 0, P(VT (a, b) > 0) > 0. (7)

• We want to convert this idea into useful mathematics

• Folk Theorem: There is no arbitrage if and only if there
exist a new probability Q, equivalent to P (ie, same sets of
probability zero, written Q ∼ P), such that S is a martingale.

• The above folk theorem is based on it being true in simple
cases (eg, finite probability space Ω [J.M. Harrison & S.R.
Pliska])



Martingales, local martingales, and sigma
martingales

• We assume given a complete, filtered probability space
(Ω,F , F,P), where F = (Ft)t≥0

• A stochastic process M is a martingale if E (|Mt |) < ∞, and
for s ≤ t, E (Mt |Fs) = Ms a.s.

• Martingales are insufficient; for example:
• If X is a submartingale, we want a decomposition of

X = M + A, where M is a martingale and A is an increasing,
predictably measurable process. This is not true in general,
instead we need the concept of local martingale.

• If N is a martingale, we would like the stochastic integral∫ t

0
HsdNs to be a martingale, too. This is not true in general,

but instead (if X has continuous paths) it is a local martingale.
• In general, if N is a martingale, then the stochastic integral∫ t

0
HsdNs is a σ martingale



Definitions

• A stochastic process Xwith X0 = 0 is a local martingale if
there exists a sequence of stopping times (Tn)n≥1 with
limn→∞ Tn = ∞ a.s., such that Xt∧Tn is a martingale for
every n ≥ 1

• A stochastic process Xwith X0 = 0 is a σ martingale if there
exists a martingale M and a predictable process H such that
Xt =

∫ t
0 HsdMs for all t ≥ 0

• Note: Martingales ⊂ Local Martingales ⊂ σ Martingales

• If X is a nonnegative (or just bounded from below) σ
martingale, then it is a local martingale. So X ≥ 0 ⇒ Local
Martingales = σ Martingales

• Stochastic integration is closed for σ martingales

• For continuous processes, stochastic integration is closed for
local martingales



One way local martingales can arise

• Let X be the unique weak solution of the stochastic
differential equation

dXt = σ(Xt)dBt , X0 = 1

where B is a standard Brownian motion

• (Blei-Engelbert)If there exists an α ∈ (0, 1) such that∫ ∞

α

1

σ(y)2
dy < ∞

then X is a local martingale, and not a martingale. We call
such a process a strict local martingale



The Canonical Example of a Local Martingale

• Let Bt = (B1
t ,B2

t ,B3
t ) be standard 3 dimensional Brownian

motion, with B0 = (1, 0, 0).

• Let u : R3\{(0, 0, 0)} → R+ be given by

u(x) =
1

‖ x ‖

• Xt = u(Bt) is a positive real valued local martingale, with
E (X0) = 1; X is called the inverse Bessel process

• X is not a martingale, because one can show that

lim
t→∞

E (Xt) = 0

and therefore it is not constant

• The inverse Bessel process satisfies the SDE

dXt = −(Xt)
2dBt , X0 = x0 > 0



The Canonical Example of a σ martingale

• τ is an exponential r.v. with parameter λ = 1

• U is independent of τ and P(U = 1) = P(U = −1) = 1
2

• Xt = U1{t≥τ}; then X is a martingale

• Let Hs = 1
s for s > 0, and let Mt =

∫ t
0 HsdXs

• Note that M has unbounded positive and negative jumps

• E (|Mν |) = ∞ for every stopping time ν with P(ν > 0) > 0,
so M is not a martingale, and not a local martingale, but M
is in fact a σ martingale.



Semimartingales and arbitrage

• Suppose S has continuous paths and is a semimartingale with
decomposition St = S0 + Mt + At , with M0 = A0 = 0, and
Q ∼ P; take

Zt = EP(
dQ

dP
|Ft)

which is a martingale

• By Girsanov’s theorem the decomposition of S under Q is
given by

St = (Mt −
∫ t

0

1

Zs−
d [Z ,M]s) + (At +

∫ t

0

1

Zs−
d [Z ,M]s);



• Therefore if Z can be chosen so that

At = −
∫ t

0

1

Zs−
d [Z ,M]s , (8)

we have that S is a Q-local martingale.

• By the Kunita-Watanabe inequality, from (8) we have

d [Z ,M]t �
{

d [Z ,Z ]t
d [M,M]t



• Recall (8):

At = −
∫ t

0

1

Zs−
d [Z ,M]s ,

therefore we must have that

dAt � d [M,M]t

in order for M to be martingale or local martingale under Q.

• This is not always the case; for example by Tanaka’s formula,
if

St = 1 + |Bt | = 1 +

∫ t

0
sign(Bs)dBs + L0

t (9)

= 1 + βt + L0(B)t ,

then d [β, β]t = dt, but dL0
t 6� dt.

• Therefore 6 ∃Q ∼ P for (9) such that S is a Q (local)
martingale



What if S is continuous and not a semimartingale?

• If there exists a Q ∼ P such that S is a local martingale under
Q, then let Yt = EQ( dP

dQ |Ft)

• By Girsanov,

St = (St +

∫ t

0

1

Ys
d [Y ,S ]s)−

∫ t

0

1

Ys
d [Y ,S ]s

is a P decomposition of S . Therefore S is a P
semimartingale, a contradiction

• Thus a necessary condition for Q ∼ P is that S be a P
semimartingale



Why are (local) martingales so important?

• Martingales model fair gambling games

• A price process which is a model under the risk neutral
measure should have constant expectation

• Martingales have the property that t 7→ E (Mt) is constant

• Theorem A stochastic process X is a martingale if and only if
E (Mτ ) = E (M0) for every bounded stopping time τ .

• Thus, M has constant expectation not just for fixed times,
but for stopping times as well.



The First Fundamental Theorem of Asset Pricing
• First Version: J. M. Harrison and S. R. Pliska, circa 1979

showed that a finite probability space (Ω,F , (Sn)n=0,1,2,...,P)
has No Arbitrage if and only if there exists another
probability measure Q ∼ P such that S is a martingale

• Second Version: David Kreps, circa 1981 realized that No
Arbitrage was not a strong enough condition to guarantee
such a result in a more general case. He created a new
condition and called it No Free Lunch

• Ignoring admissibility conditions for now, Kreps said that S
admits a Free Lunch on [0,T ] if there exists a function
f ∈ L∞+ (Ω,F ,P) such that P(f > 0) > 0, and a net

(fα)α∈I = (gα − hα)α∈I , with hα ≥ 0 and gα =
∫ T
0 Hα

s dSs , for
admissible Hα. And also fα → f in the Mackey topology on
L∞ induced by L1

• The Mackey topology is often written as σ(L∞, L1), which
means that for a sequence (Xn)n≥1 ∈ L∞, then Xn → X , if for
any Y ∈ L1, E (XnY ) → E (XY ).



Economic intuition of No Free Lunch

• Often we think of f as being of the form f =
∫ T
0 HsdSs

• Kreps saw that f could not in general be restricted to this
form for an admissible process H. (If it were, one could follow
this trading strategy H and replicated f , and have classical
arbitrage [starting with 0 and ending with f ≥ 0])

• But suppose f can be approximated by (fα)α∈I in a suitable
topology

• Let (hα)α∈I be the “errors” in the approximation, representing
“money thrown away.”

• No Free Lunch does not allow arbitrage, but it does allow
arbitrage to exist in the limit



Kreps’ Theorem

Theorem (Kreps, 1981) A bounded process S = (St)0≤t≤T

admits NFL if and only if there exists Q ∼ P such that S is a
martingale under Q.

This creates three immediate questions:

1. Can we replace [0,T ] with [0,∞)?

2. What if S is not bounded?

3. What does convergence in nets mean vis à vis an economics
interpretation?



The Four Fundamental Papers that Clarified the
Issues Surrounding the First Fundamental Theorem

1. Harrison, J.M, Kreps, D.M. (1979) Martingales and Arbitrage
in Multiperiod Securities Markets, Journal of Economic
Theory 20, 381-408

2. Harrison, J.M, Pliska, S.R. (1981) Martingales and Stochastic
Integrals in the Theory of Continuous Trading, Stochastic
Processes and their Applications 11, 215-260

3. Kreps, D.M. (1981) Arbitrage and Equilibrium in Economics
with infinitely many Commodities, Journal of Mathematical
Economics 8, 15-35

4. Harrison, J.M, Pliska, S.R. (1983) A stochastic calculus model
of continuous trading: Complete markets Stochastic Processes
and their Application 11, 313-316



13 years later: Delbaen and Schachermayer

• Delbaen and Schachermayer, 1994: Convergence with nets
is replaced with convergence of sequences; S bounded is
replaced with S locally bounded, and M a martingale is
replaced with M a local martingale

• Delbaen and Schachermayer, 1998: The general case is
treated, where S can be càdlàg, and does not have to be
locally bounded, and M is replaced with a σ martingale.

• Before we discuss these results, we need the concept of an
admissible trading strategy



The Doubling Strategy

• Bet $1 at even money

• Stop betting if you win and collect $1 net winnings; otherwise
bet again, waging $2

• Stop if you win; you have now lost $1 and won $2, for a profit
of $1; otherwise bet again, waging $4

• In general: stop whenever you win, otherwise bet again,
doubling your last bet; your net winnings will be $1

• The probability is 1 that you will eventually win $1, so this is
an arbitrage strategy, known as the doubling strategy



Problems with the Doubling Strategy

• Need to make an unlimited number of bets (time constraints)

• Need “no fees” to make such bets (transaction costs)

• Need to have a counterparty (liquidity)

• But the above are practical problems; a theoretical problem is
the need for infinite resources

• We can eliminate the doubling strategy with an admissibility
condition



Admissibility

Definition: Let S be a semimartingale, α > 0. A predictable
process H is α-admissible if H0 = 0, and

∫ t
0 HsdSs ≥ −α, for all

t ≥ 0.

H is admissible if there exists an α > 0 such that H is
α-admissible.

Note:

• We are implicity assuming That if H is admissible it is
predictably measurable and is in the space of S-integrable
processes

• This condition of admissibility is intrinsically asymmetric: H
can increase without bound, but is strictly limited in how
much it can be negative



The Kreps-Delbaen-Schachermayer Theory

• We work on the semi-infinite time interval [0,∞], on a filtered
complete probability space (Ω,F , F,P), where F = (Ft)t≥0.

• We further assume we have a risky asset price process
S = (St)t≥0 and that the spot interest rate r = 0

• A Contingent Claim is simply an FT measurable random
variable; examples are C = (ST − K )+, which is a call at
strike price K and maturity time T ; another example is
P = (K − ST )+ which is a put We let H · S denote the
stochastic integral process (

∫ t
0 HsdSs)t≥0

• Note that a call C is unbounded if S is unbounded, but a put
P is always bounded, irrespective of the behavior of S



Definitions

• We let L0
+ denote finite-valued, nonnegative random variables

(a.s.). We define

K = {(H · S)∞|H is admissible}
Kα = {H · S)∞|H is α− admissible}

• No Arbitrage (NA): K ∩ L0
+ = {0}

• Intuition: Starting with nothing, the only nonnegative result
we can end up with is identically 0; i.e., nothing

• Next we define

A0 = K − L0
+ = {X = H · S)∞|H is admissible, f ≥ 0, finite}

A = A0 ∩ L∞ = {|X | ≤ k, some k : X = (H · S)∞ − f }

• No Free Lunch (NFL) [Kreps]: ĀM ∩ L∞+ = {0}, where the

(̄·)M denotes closure in the Mackey topology σ(L1, L∞)



• No Free Lunch with Vanishing Risk (NFLVR)
[Delbaen-Schachermayer]: Ā ∩ L∞+ = {0}, where the
closure of A is in L∞, that is, the a.s. sup norm, as opposed
to the Mackey closure of Kreps and NFL

• Theorem: NFLVR is invariant under a change to an
equivalent probability measure

• NFLVR has become the accepted definition of no arbitrage; it
is considered to be the “gold standard.”

• However, we will see when we consider bubbles, that NFLVR
is just a bit too weak.

• The idea of No Dominance was introduced by Robert Merton
in 1973, but largely forgotten



No Dominance

• Let P(S) be all probabilities equivalent to the underlying
probability P such that if Q ∈ P(S) then S is a Qσ
martingale. Let

J = {J ∈ FT |J is bounded from below and

sup
Q∈P(S)

EQ(S) < ∞}

Λ(J)t = {the market price at time t of the contingent claim J}

• Definition: An element D of J Q-dominates another
element C of J if there exists a time t < T such that

C − Λ(C )t ≤ D − Λ(D)t , for all t ≥ 0,Q a.s., and

Q{C − Λ(C )t < D − Λ(D)t} > 0 for some t ≥ 0



• We say that the model has No Dominance (ND) under P if
for any contingent claim C ∈ P(S), there does not exist
another claim D in P(S) which dominates C

• Theorem: If No Dominance holds for one Q ∈ P(S), then it
holds for Q ∈ P(S)

• Theorem: If for any H ∈ A we have Λ((H · S)T )0 = 0, then
No Dominance implies (NA).

• Theorem: If for any H ∈ A we have Λ((H · S)T )0 = 0 and Λ
is lower semicontinuous on L∞ with the ‖ · ‖ norm, then No
Dominance implies (NFLVR)



End of Lecture 1


